
Theoretical Computer Science 285 (2002) 55–71
www.elsevier.com/locate/tcs

Approximating SVP∞ to within almost-polynomial
factors is NP-hard

Irit Dinur
Dept. of Computer Science, School of Mathematical Sciences, Ramat Aviv, 69978 Tel Aviv, Israel

Received 14 May 2001

Abstract

We show SVP∞ and CVP∞ to be NP-hard to approximate to within nc=log log n for some con-
stant c¿ 0. We show a direct reduction from SAT to these problems, that combines ideas from
Arora et al. (Proc. 34th IEEE Symp. on Foundations of Computer Science, 1993, p. 724) and
Dinur et al. (Approximating-CVP to within almost-polynomial factors is NP-hard, manuscript,
1999), along with some modi5cations. Our result is obtained without relying on the PCP
characterization of NP, although some of our techniques are derived from the proof of the
PCP characterization itself (STOC: ACM Symposium on Theory of Computing (STOC), 1999).
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Shortest vector; Lattice problems; Hardness of approximation

1. Introduction

1.1. Background

A lattice L=L(v1; : : : ; vn), for linearly independent vectors v1; : : : ; vn ∈Rk is the ad-
ditive group generated by the basis vectors, i.e. the set L= {∑ aivi | ai ∈Z}. Given
L, the shortest vector problem (SVPp) is to 5nd the shortest non-zero vector in L.
The length is measured in Euclidean lp norm (16p6∞). The closest vector problem
(CVPp) is the non-homogeneous analog, i.e. given L and a vector y, 5nd a vector in
L, closest to y.
These lattice problems have been introduced in the 19th century, and have been

studied since. Minkowsky and Dirichlet tried, with little success, to come up with
approximation algorithms for these problems. It was much later that the lattice reduction
algorithm was presented by Lenstra et al. [14], achieving a polynomial-time algorithm
approximating the shortest lattice vector to within the exponential factor 2n=2, where n is

E-mail address: dinuri@tau.ac.il (I. Dinur).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00290 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82276276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

the dimension of the lattice. Babai [4] applied LLL’s methods to present an algorithm
that approximates CVP to within a similar factor. Schnorr [17] improved on LLL’s
technique, reducing the factor of approximation to (1+�)n, for any constant �¿0, for
both CVP and SVP. These positive approximation results hold for lp norm for any
p¿1 yet are quite weak, achieving only extremely large (exponential) approximation
factors. The shortest vector problem is particularly important, quoting [3], because
even the above relatively weak approximation algorithms have been used in a host of
applications, including integer programming, solving low-density subset-sum problems
and breaking knapsack based codes [13], simultaneous diophantine approximation and
factoring polynomials over the rationals [14], and strongly polynomial-time algorithms
in combinatorial optimization [11].
Interest in lattice problems has been recently renewed due to a result of Ajtai

[1], showing a reduction, from a version of SVP, to the average-case of the same
problem.
Only recently [2] showed a randomized reduction from the NP-complete problem

subset-sum to SVP. This has been improved [6], showing approximation hardness
for some small factor (1 + 1=n�). Micciancio [16] has then signi5cantly strength-
ened Ajtai’s result, showing SVP hard to approximate to within some constant
factor.
The above results all apply to SVPp, for 5nite p. SVP with the maximum norm l∞,

appears to be a harder problem. Lagarias showed SVP∞ to be NP-hard in its exact
decision version. Arora et al. [3] utilized the PCP characterization of NP to show that
both CVP (for lp norm for any p) and SVP∞ are quasi-NP-hard to approximate to
within 2(log n)1−�

for any constant �¿0. Recently, the hardness result for approximating
CVP has been strengthened [10, 9] showing that it is NP-hard to approximate to within
a factor of nc= log log n (where n is the lattice dimension, and c¿0 is some constant). In
this paper we similarly strengthen the hardness result for approximating SVP∞.

A g-approximation algorithm for SVP2 implies a
√
ng-approximation algorithm for

SVP∞, since for every vector v, ‖v‖∞6‖v‖26‖v‖∞
√
n. Thus hardness for approxi-

mating SVP∞ to within a factor
√
ng will imply the hardness for approximating SVP2

to within factor g.
So far there is still a huge gap between the positive results, showing approximations

for SVP and CVP with exponential factors, and the above hardness results. Neverthe-
less, some other results provide a discouraging indication for improving the hardness
result beyond a certain factor. Goldreich and Goldwasser [12] showed that approxi-
mating both SVP2 and CVP2 to within

√
n and approximating SVP∞ and CVP∞ to

within n=O(log n) is in NP∩ co-AM. Hence it is unlikely for any of these problems to
be NP-hard.

1.2. Our result

We prove that approximating SVP∞ and CVP∞ to within a factor of nc= log log n is
NP-hard (where n is the lattice dimension and c¿0 is some arbitrary constant).

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 57

1.3. Technique

We obtain our result by modifying (and slightly simplifying) the framework of
Dimur et al. [10, 9]. Starting out from SAT, we construct a new SAT instance that
has the additional property that it is either totally satis5able, or, not even weakly-
satis5able in some speci5c sense (to be elaborated upon below). We refer to such
a SAT instance as an SSAT∞ instance (this is a variant of [10] SSAT). The
construction reducing SAT to SSAT∞ is the main part of the paper. The con-
struction has a tree-like recursive structure that is a simpli5cation of techniques
from [10, 9], along with some additional observations tailored to the l∞
norm.
We 5nally obtain our result by reducing SSAT∞ to SVP∞ and to CVP∞. These

reductions are combinatorial and utilize an additional idea from [3].
Hardness-of-approximation results are naturally divided into those that are obtained

via reduction from PCP, and those that are not. Although the best previous hardness
result for SVP∞ [3] relies on the PCP characterization of NP, our proof does not. We
do, however, utilize some techniques similar to those used in the proof of the PCP
characterization of NP itself. In fact, the nature of the SVP∞ problem eliminates some
of the technical complications from [8–10]. Thus, we believe that SVP∞ makes a good
candidate (out of all of the lattice problems) for pushing the hardness-of-approximation
factor to within polynomial range.

1.4. Structure of the paper

In Section 2, we present a variant of the SSAT problem from [10] which we call
SSAT∞. We then proceed with some standard (and not so standard) de5nitions. In
Section 3, we give the reduction from SAT to SSAT∞, whose correctness is proven
in Section 4. Finally, in Section 5 we describe the (simple) reduction from SSAT∞
to SVP∞ and to CVP∞, establishing the hardness of approximating SVP∞ and CVP∞.

2. De�nitions

2.1. SSAT∞

A SAT instance is a set �= { 1; : : : ; n} of tests (Boolean functions) over variables
V = {v1; : : : ; vm}. We denote the range of the variables by F, and the set of satisfy-
ing assignments for i ∈� by R i . The Cook–Levin [7, 15] theorem states that it is
NP-hard to distinguish whether or not the system is satis5able (i.e. whether there is an
assignment to the variables that satis5es all of the tests). We next de5ne SSAT∞,
a version of SAT that has the additional property that when the instance is not sat-
is5able, it is not even ‘weakly-satis5able’ in a sense that will be formally de5ned
below.
We recall the following de5nitions (De5nitions 1–3) from [10].

58 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

De�nition 1 (super-assignment to tests). A super-assignment is a function S mapping
to each ∈� a value from ZR . In other words S() is a vector of integer coeJcients,
one for each value r ∈R . Denote by S()[r] for r ∈R the rth coordinate of S().

If S()= 0̃ we say that S() is trivial. If S()[r] 	=0, we say that the value r appears
in S(). A natural assignment (an assignment in the usual sense) is identi5ed with a
super-assignment that assigns each ∈� a unit vector with a 1 in the corresponding
coordinate. In this case, exactly one value appears in each S().
We next de5ne the projection of a super-assignment to a test onto each of its vari-

ables. Consistency between tests will amount to equality of projections on mutual
variables.

De�nition 2 (projection). Let S be a super-assignment to the tests. We de5ne the
projection of S() on a variable x of , �x(S())∈Z|F|, in the natural way:

∀a ∈ F: �x(S())[a]
def=

∑
r∈R ;r|x=a

S()[r]:

We shall now proceed to de5ne the notion of consistency between tests. If the
projections of two tests on each mutual variable x are equal (in other words, they both
give x the same super-assignment), we say that the super-assignments of the tests are
consistent.

De�nition 3 (consistency). Let S be a super-assignment to the tests in �. S is consis-
tent if for every pair of tests i and j with a mutual variable x,

�x(S(i)) = �x(S(j)):

Given a system �= { 1; : : : ; n}, a super-assignment S :�→ZR is called not-all-
zero if there is at least one test ∈� for which S() 	= 0̃. The norm of a super-
assignment S is de5ned

‖S‖ def= max
 ∈�

(‖S()‖1);

where ‖S()‖1 is the standard l1 norm. Note that the norm of a natural super-
assignment is 1.
The gap of SSAT∞ is formulated in terms of the norm of the minimal super-

assignment that maintains consistency.

De�nition 4 (g-SSAT∞). An instance of SSAT∞ with parameter g

I = 〈� = { 1; : : : ; n}; V = {v1; : : : ; vm}; {R 1 ; : : : ;R n}〉
consists of a set � of tests over a common set V of variables that take values in a
5eld F. The parameters m and |F| are always bounded by some polynomial in n.
Each test ∈� has associated with it a list R of assignments to its variables, called

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 59

the satisfying assignments or the range of the test . The problem is to distinguish
between the following two cases,

Yes: There is a consistent natural assignment for �.
No: Every not-all-zero consistent super-assignment is of norm ¿g.

Remark. The de5nition of SSAT∞ diLers from that of SSAT [10] only in the
characterization of when a super-assignment falls into the ‘no’ category. On one hand,
SSAT∞ imposes a weaker requirement of not-all-zero rather than the non-triviality
of SSAT. On the other hand, the norm of a super assignment S is measured by a
‘stronger’ measure, taking the maximum of ‖S()‖1 over all , rather than the average
as in SSAT.

Theorem 5 (SSAT∞ Theorem). SSAT∞ is NP-hard for g= nc= log log n for some
c¿0.

We conjecture that a stronger statement is true, which would imply that SVP∞ is
NP-hard to approximate to within a constant power of the dimension.

Conjecture 6. SSAT∞ is NP-hard for g= nc for some constant c¿0.

2.2. LDFs, super-LDFs

Throughout the paper, let F denote a 5nite 5eld F=Zp for some prime number
p¿1. We will need the following de5nitions.

De�nition 7 (low degree function—[r; d]-LDF). A function f :Fd →F is said to
have degree r if its values are the point evaluation of a polynomial on Fd with degree
6r in each variable. In this case we say that f is an [r; d]-LDF, or f∈LDFr; d.

Sometimes we omit the parameters and refer simply to an LDF.

De�nition 8 (low degree extension). Let m; d be natural numbers, and let H⊂F such
that |Hd|=m. A vector (a0; : : : ; am−1)∈Fm can be naturally identi5ed with a function
A :Hd →F by viewing points in Hd as representing numbers in base |H|.
There exists exactly one [|H| − 1; d]-LDF Â :Fd →F that extends A. Â is called

the |H| − 1 degree extension of A in F.

A D-dimensional aJne subspace (D-cube for short) C⊂Fd is said to be parallel
to the axises if it can be written as C= x+spn(ei1 ; : : : ; eiD), where x∈Fd and ei ∈Fd

is the ith axis vector, ei =(0; : : : ; 1; : : : ; 0). We write the parameterization of the cube
C as follows:

C(Nt) def= x +
D∑

j=1
tjeij ∈ Fd for Nt = (t1; : : : ; tD) ∈ FD:

60 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

While for a general (non-parallel) cube, the restriction of an [r; d]-LDF to a D-cube
in Fd is an [rD; D]-LDF, its restriction to a parallel D-cube is an [r; D]-LDF. We will
need the following (simple) proposition,

Proposition 9. Let f :Fd →F. Suppose; for every parallel D-cube C⊂Fd the func-
tion f|C :FD →F de>ned by

∀x ∈ FD f|C(x) = f(C(x))

is an [r; D]-LDF. Then f is an [r; d]-LDF.

Similar to the de5nition of super-assignments, we de5ne a super-[r; d]-LDF (or a
super-LDF for short) G∈ZLDFr; d to be a vector of integer coeJcient G[P] per LDF
P ∈LDFr; d. This de5nition arises naturally from the fact that the tests in our 5nal
construction will range over LDFs. We further de5ne the norm of a super-LDF to be
the l1 norm of the corresponding coeJcient vector.

We say that an LDF P ∈LDFr; d appears in G iL G[P] 	=0. A point x is called
ambiguous for a super-LDF G, if there are two LDFs P1; P2 appearing in G such that
P1(x)=P2(x). The following (simple) property of low-norm super-LDFs is heavily used
in this paper.

Proposition 10 (low ambiguity). Let G be a super-[r; d]-LDF of norm 6g. The frac-
tion of ambiguous points for G is 6amb(r; d; g) def=(g2)rd=|F|.

Proof. The number of non-zero coordinates in an integer vector whose l1 norm is g is
6g. There are 6(g2) pairs of LDFs appearing in G, and each pair agrees on at most
rd=|F| of the points in Fd.

The following embedding-extension technique taken from [8] is used in our con-
struction.

De�nition 11 (embedding extension). Let b; k¿1 and t be natural numbers. We de-
5ne the embedding extension mapping Eb :Ft →Ftk as follows. Eb maps any point
x=(&1; : : : ; &t)∈Ft to y∈Ftk , y=Eb(x)= ('1; : : : ; 'tk) by

Eb(&1; : : : ; &t)
def=(&1; (&1)b; (&1)b

2
; : : : ; (&1)b

k−1
; : : : ; &t ; (&t)b; (&t)b

2
; : : : ; (&t)b

k−1
):

The following (simple) proposition, shows that any LDF on Ft can be represented
by an LDF on Ftk with signi5cantly lower degree:

Proposition 12. Let f :Ft →F be a [bk − 1; t]-LDF; for integers t¿0; b¿1; k¿1.
There is a [b− 1; tk]-LDF fext :Ftk →F such that

∀x ∈ Ft : f(x) = fext(Eb(x)):

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 61

For any [b−1; kt]-LDF f, its ‘restriction’ to the manifold f|Eb :F
t →F is de5ned as

∀x ∈ Ft f|Eb(x)
def= f(Eb(x))

and is a [bk − 1; t]-LDF (the degree in a variable &i of f|Eb is 6(b − 1)(b0 + b1 +
· · ·+ bk−1)= bk − 1).
Let G̃ be a super-[bk−1; t]-LDF (i.e. a vector in ZLDFbk−1; t). Its embedding-extension

is the super-[b− 1; tk]-LDF G de5ned by

∀f ∈ LDFb−1;tk G[f] def= G̃[f|Eb]:

In a similar manner, the restriction of a super-[b− 1; tk]-LDF G is a super-[bk − 1; t]-
LDF G̃ de5ned by

∀f ∈ LDFbk−1;t G̃[f] def= G[fext]:

The following proposition holds (e.g. by a counting argument).

Proposition 13. Let G1;G2 be two super-[b − 1; tk]-LDFs; and let G̃1; G̃2 be their re-
spective restrictions (with parameter b). G̃1 = G̃2 if and only if G1 =G2.

3. The construction

We prove that SSAT∞ is NP-hard via a reduction from SAT, described herein.
We adopt the whole framework of the construction from [9], and refer the reader there
for a more detailed exposition.
Let (= {’1; : : : ; ’n} be an instance of SAT, viewed as a set of Boolean tests over

Boolean variables V(= {x1; : : : ; xm}, (m= nc′ for some constant c′¿0) such that each
test depends on D=3 variables. Cook’s theorem [7] states that it is NP-hard to decide
whether there is an assignment for V(satisfying all of the tests in (.
Starting from (, we shall construct an SSAT∞ test-system � over variables

V� ⊃V(. Our new variables V� will be non-Boolean, ranging over a 5eld F, with
|F|= nc= log log n for some constant c¿0. An assignment to V� will be interpreted as
an assignment to V(by identifying the value 0∈F with the Boolean value true and
any other non-zero value with false.

3.1. Constructing the CR-forest

In order to construct the SSAT∞ instance I = 〈�;V; {R 1 ; : : : ;R n}〉 we need to
describe for each test ∈�, which variables it depends on, and its satisfying assign-
ments R . We begin by constructing the CR-forest, which is a combinatorial object
holding the underlying structure of �. The forest Fn(() will have a tree T’ for every
test ’∈(. Each node in the forest will have a set of variables associated with it. For
every leaf there will be one test depending on the variables associated with that leaf.
Let us (briePy) describe one tree T’ in the forest Fn(().

62 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

Every tree will be of depth K6 log log n (however, not all of the leaves will be at
the bottom level).
Each node v in the tree will have a domain domv =Fd of points (domv =Fd0 in

case v is the root node) associated with it. We set d0 = log log n and d= a(D+2) and
5x a=4.
The oLsprings of a non-leaf node v will be labeled each by a distinct (D+ 2)-cube

Cv of domv (this part is slightly simpler than in [9]),

labels(v) def={C |Cis a (D + 2)-cube in domv}:
The points in the domain domv of each node v will be mapped to some of �’s variables,
by the injection varv : domv →V�. This mapping is de5ned inductively as follows. For
each node v, we denote by Vv the set of ‘fresh new’ variables mapped from domv (i.e.
none of the nodes de5ned inductively so far have points mapped to these variables).
Altogether

V def= V�=
⋃

v∈T’
’∈(

Vv:

For the root node, varroot’ : domroot’ →V� is de5ned (exactly as in [9]) by mapping

Hd0 ⊆ domroot’ =Fd0 to V(and the rest of the points to the rest of Vroot’
def= V̂(⊂V�

(i.e. the low-degree-extension of V(). It is important that varroot’ is de5ned indepen-
dently of ’.
For a non-root node v with parent u, the points of the cube Cv ∈ labels(u) label-

ing v are mapped into the domain domv by the embedding extension mapping, Ebv :
Cv → domv, de5ned above in Section 2.2 (the parameter bv speci5ed below depends
on the speci5c node v, rather than just on v’s level as in [9]). These points are u’s
points that are ‘passed on’ to the oLspring v. We think of the point y=Ebv(x)∈ domv

as ‘representing’ the point x∈Cv ⊂ domu, and de5ne varv : domv →V� as follows,

De�nition 14 (varv; for a non-root node v). Let v be a non-root node, let u be v’s
parent, and let Cv ⊂ domu be the label attached to v. For each point y∈Ebv(Cv)⊂ domv

de5ne varv(y)
def= varu(E−1

bv (y)), i.e. points that ‘originated’ from Cv are mapped to the
previous-level variables, that their pre-images in Cv were mapped to. For each ‘new’
point y∈ domv\Ebv(Cv) we de5ne varv(y) to be a distinct ‘fresh’ variable from Vv.

The parameters used for the embedding extension mappings Ebv are t=D + 2,
k =d=t= a. We set the degree of the root node rroot’ = |H|= |F|1=10 and rv and bv

(for non-root nodes v) are de5ned by the following recursive formulas:

bv =

{
a
√

ru + 1 Cv is parallel to the axises;
a
√

ru(D + 2) + 1 otherwise;

rv = bv − 1:

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 63

We stop the recursion and de5ne a node to be a leaf (i.e. de5ne its labels to be empty)
whenever rv62(D + 2).
We will show below that bv; rv decrease with the level of v until for some level

K¡ log log n, rv62(D + 2)=O(1). (This may happen to some nodes sooner than
others, therefore not all of the leaves reside in level K .)
We now complete the construction by describing the tests and their satisfying as-

signments.

De�nition 15 (tests). � will have one test v for each leaf v in the forest. v will
depend on the |F|d variables in varv(domv). The set of satisfying assignments for v’s
variables, R v , will consist of assignments A that satisfy the following two conditions:
(1) A is an [rv; d]-LDF on varv(domv).
(2) If v∈T’ for ’∈(and ’’s variables appear in varv(domv), then A must satisfy ’.

3.2. Construction size

We assume, for simplicity, that all parameters K; d0; d; bv; rv are natural numbers.

Recall that we de5ned d0
def= log log n and d def= a(D+2) for a=4. We also set rroot’ =

|F|1=10 = nc= log log n.
We claim that the forest’s depth is bounded by K6 log log n. Suppose to the contrary

that there’s a node v of depth K all of whose ancestors u have ru¿a(D + 2).
For this purpose we prove by simple induction that every node v of level i obeys

rv6max((rroot’)
1=2i ; 2(D + 2)). For rroot’ this indeed holds. Assume by induction that

it holds for nodes u of level 6i. Let v be a node of level i + 1 with parent u. Thus,
ru¿2(D + 2) (otherwise u would have been a leaf) and so

rv ¡ bv 6 a
√
(D + 2)ru + 1 ¡ a

√
2ru(D + 2)6 (ru)2=a 6

√
ru 6 (rroot’)

1=2i+1
:

We set K to be the minimal i for which (rroot’)
1=2i+1

62(D+ 2)=O(1). Since rroot’ =
2c log n= log log n, K6�log(c log n= log log n)�+1¡ log log n. This completes the induction.
The range of the tests. The tests of the test-system range over [r; d]-LDFs for

r62(D+2)=O(1). The number of monomials of degree r, and dimension d= a(D+
2)=O(1) is bounded by (r+1)d =O(1). The number of [r; d]-LDFs is hence bounded
by |F|O(1)¡O(n) and therefore the range of the tests is polynomial in n.
The number of tests and variables. It is only left to verify that the size of the forest

is polynomial. We have |(|= n trees, so let’s verify that the number of nodes in each
tree is polynomially-bounded.
Consider a tree T=T’ ∈Fn((). root’ has 6(|F|d0)D+3 = nO(1) oLsprings and each

node in level i (0¡i¡K) has 6(|F|d)D+3 = |F|O(1) oLsprings. Altogether the number
of nodes in T is bounded by

nO(1)
K∏
i=1

|F|O(1) = nO(1)|F|O(K) = nO(1)(2log n= log log n)O(log log n) = nO(1):

64 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

Hence the number of tests in � is polynomial, and the number of variables is6|F|d|�|
= nO(1).

4. Correctness of the construction

4.1. Completeness

Lemma 16 (completeness). If there is an assignment A :V(→{true; false} satisfy-
ing all of the tests in (; then there is a natural assignment A� : V� →F satisfying
all of the tests in �.

We extend A in the obvious manner, i.e. by taking its low-degree-extension (see
De5nition 8) to the variables V̂(, and then repeatedly taking the embedding extension
of the previous-level variables, until we’ve assigned all of the variables in the system.
More formally,

Proof. We construct an assignment A� : V� →F by inductively obtaining [rv; d]-
LDFs Pv : domv →F for every level-i node v of every tree in the CR-forest, as
follows. We 5rst set (for every ’∈() Proot’ to be the low degree extension (see
De5nition 8) of A (we think of A as assigning each variable a value in {0; 1}⊂F

rather than {true; false}, see discussion in the beginning of Section 3). Assume
we’ve de5ned an [ru; d]-LDF Pu consistently for all level-i nodes, and let v be an
oLspring of u, labeled by Cv. The restriction f=Pu|Cv of Pu to the cube Cu is an
[r; D + 2]-LDF where r= ru or r= ru(D + 2) depending on whether Cv is parallel
to the axises or not. Proposition 12 says that f can be extended to a [a

√
r + 1 −

1; a(D + 2)]-LDF fext over the larger domain Fd (recall that d= a(D + 2)). We
de5ne Pv =fext to be that [rv; d]-LDF (recall that bv =

a
√
r + 1 and

rv = bv − 1).

Finally, for a variable x∈ varv, x= varv(x), we set A�(x)
def= Pv(x). The construc-

tion implies that the assignment is well de5ned there are no collisions, i.e. whenever
x′ = varv′(x′)= varv(x)= x implies Pv(x)=Pv′(x′).

4.2. Soundness

We need to show that a ‘no’ instance of SAT is mapped to a ‘no’ instance of
SSAT∞. We assume that the constructed SSAT∞ instance has a consistent non-
trivial super-assignment of norm 6g, and show that (—the SAT instance we began
with—is satis5able.

Lemma 17 (soundness). Let g def= |F|1=102. If there exists a consistent super-assign
ment of norm 6g for �; then (is satis>able.

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 65

Let A be a consistent non-trivial super-assignment for �, of size ‖A‖∞6g. It
induces (by projection) a super-assignment to the variables

m : V� → Z|F|

i.e. for every variable x∈V�; m assigns a vector �x(A()) of integer coeJcients,
one per value in F where is some test depending on x. Since A is consistent,
m is well de5ned (independent of the choice of test). Alternatively, we view m
as a labeling of the points

⋃
v∈Fn(() domv by a ‘super-value’—a formal integer linear

combination of values from F. The label of the point x∈ domv for some v∈Fn((), is
simply m(varv(x)), and with a slight abuse of notation, is sometimes denoted m(x). m
is used as the “underlying point super-assignment” for the rest of the proof, and will
serve as an anchor by which we test consistency.
The central task of our proof is to show that if a tree has a non-trivial leaf, then

there is a non-trivial super-LDF for the domain in the root node that is consistent with
m. We will later want to construct from these super-LDFs an assignment that satis5es
all of the tests in (. For this purpose, we need the super-LDFs along the way to be
legal.

De�nition 18 (legal). An LDF P is called legal for a node v∈T’ (for some ’∈(),
if it satis5es ’ in the sense that if ’’s variables have pre-images (under the mapping
varv : domv →V�) x1; : : : ; xD ∈ domv, then P(x1); : : : ; P(xD) satisfy ’. A super-LDF G

is called legal for v∈T’ if for every LDF P appearing in G, P is legal for v∈T’.

The following lemma encapsulates the key inductive step in our soundness proof.

Lemma 19. Let u be a level-i node for some 06i¡K . There is a legal super-[ru; d]-
LDF Gu with ‖Gu‖16‖m‖∞ def= maxx‖m(x)‖1 such that for every x∈ domu; �x(Gu)
=m(x). Furthermore; if there is a node v in u’s sub-tree for which Gv 	= 0̃ then Gu 	= 0̃.

Proof. We prove the lemma for i¡K by induction on K − i. For nodes in level i=K

(or any other leaf) the lemma follows by setting Gu
def= A(u).

Let 0¡i¡K , let u be a level-i node, and assume (by induction) that for every
oLspring v of u there is a legal super-[rv; d]-LDF Gv over domv, with ‖Gv‖16‖m‖∞
such that

∀x ∈ domv �x(Gv) = m(x):

For each such v, let G̃v be the super-[(bv)a − 1; D + 2]-LDF that is the restriction
of Gv to the manifold Ebv(Cv) as de5ned in Section 2.2. Note that the degree of G̃v

is (bv)a − 1= ru when Cv is parallel to the axises, and (bv)a − 16ru(D + 2) in any
other case. Thus the super-LDFs G̃v have total degree 6(D + 2)2ru. We know (see
Proposition 13 from Section 2.2) that if Gv 	= 0̃ then G̃v 	= 0̃.
The following consistency lemma will imply the existence of a super-LDF Gu for u

with the desired consistency property.

66 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

Lemma 20 (Dinur et al. [9]). Let -¡ 1
100 be an arbitrary positive constant. Let u be

a level-i node for some 06i¡K . If for every o@spring v of u there is a super-LDF
G̃v over Cv; of total degree 6r and norm ‖G̃v‖16s; such that

Pr
x∈Cv

(�x(G̃v) = m(x))¿ 1− -;

then there is a super-LDF Gu over domu of total degree r and norm ‖Gu‖162s that
obeys

Pr
Cv

(�Cv(Gu) = G̃v)¿ 1− -:

(This lemma is the Consistency Lemma (Lemma 7) from [9]. It is stated there only
for ‘good’ nodes u and v, however all nodes are ‘good’ in our context because we are
dealing with l∞ norm rather than l1.).

We apply this lemma taking s= ‖m‖∞ and r def=(D+2)2ru. Note that in our case the
inductive assumption gives

∀Cv ∈ labels(u); Pr
x∈Cv

(�x(G̃v) = m(x)) = 1:

Thus we obtain a super-LDF Gu over domu of total-degree r. Although we only ob-
tain consistency of Gu on most points x∈Fd, we next claim that consistency fol-
lows in fact for all points. Let N= {x∈Fd | �x(Gu) 	=m(x)} be the set of inconsistent
points. For the sake of contradiction assume N 	=/, and let x0 ∈N. Consider any cube
Cv ∈ labels(u) that contains x0. We have �x0 (G̃v)=m(x0) 	= �x0 (Gu), so �Cv(Gu) 	= G̃v,
therefore the super-LDF �Cv(Gu) − G̃v (subtraction is de5ned as subtraction of two
vectors in Z|LDFr; D+2|) is non-trivial. Proposition 10 (low-ambiguity), when applied to
�Cv(Gu)− G̃v implies that for almost all points x∈Cv, �x(Gu) 	= �x(G̃v)=m(x), so these
points are also in N. A simple geometric argument shows that the distribution of choos-
ing a (D+2)-cube C containing x0, and then choosing a random point x∈R C is very
close to uniformly choosing a point x∈R F

d. We saw that a point chosen in this man-
ner has high probability of being in N, thus N consists of (much more than) half of
the points in Fd. The fraction of (D + 2)-cubes that don’t hit a point in N is (by
another simple geometric argument, relying on the fact that N is large enough) very
small, and in particular, less than 1 − -. Thus by Lemma 20 there is a cube Cv for
which �Cv(G̃v)= G̃v with ∃x1 ∈N∩Cv and so �x1 (Gu)= �x1 (G̃v)=m(x1), a contradiction
to x1 ∈N. Thus N=/, or

∀x ∈ Fd �x(Gu) = m(x):

We now turn to establish the legality of Gu. For this we need to show that every LDF f
appearing in Gu is legal, i.e. if ’ is the test for which u∈T’ and if ’’s variables appear
in varu(domu), then f satis5es ’ (see also De5nition 18). First note that the equality
�Cv(Gu)= G̃v actually holds for every oLspring v of u (this follows instantly from
the low ambiguity property, and because we already know that for any x∈Cv ⊂ domu,
�x(G̃v)= �x(Gu)). Now suppose indeed ’’s variables appear in varu(domu), and consider

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 67

the (D + 2)-cubes Cv ⊂ domu (respectively, the oLsprings v of u) that contain the D
points x1; : : : ; xD corresponding to these variables. Let x0 ∈Fd be a non-ambiguous
point for Gu (most points qualify). It follows that x0 is non-ambiguous for �Cv(Gu)= G̃v

where Cv is a (D+2)-cube containing x0 and x1; : : : ; xD. For every LDF f appearing in
Gu, its restriction f|Cv appears in G̃v which is a legal super-LDF (because Gv is legal
by the inductive assumption). Hence f is legal, making Gu legal.
In addition, we claim that any LDF f appearing in Gu, is of degree ru rather than

r=(D + 2)2ru. This follows by considering the set of cubes parallel to the axises
in which f appears. The super-LDFs G̃v over these cubes are of degree ru. Propo-
sition 9 (along with previously noted fact that �Cv(Gu)= G̃v for every v) thus im-
plies that f is an [ru; d]-LDF as claimed, and it makes sense to say that Gu is a
super-[ru; d]-LDF.
Finally, if Gv 	= 0̃ for some oLspring v of u, then G̃v 	= 0̃ because of Proposition 13

and since �Cv(Gu)= G̃v, we deduce Gu 	= 0̃. By Proposition 10 (low-ambiguity) for most
points ‖m(x)‖1 = ‖Gu‖1, so obviously ‖Gu‖16maxx‖m(x)‖1 = ‖m‖∞.

This completes the proof of Lemma 19.

In order to complete the soundness proof, we need to 5nd a satisfying assignment
for (. We obtained, in Lemma 19, a super-[r0; d]-LDF G’ for each root node root’,
such that ∀x∈ domroot’ =Fd0 , m(x)= �x(G’). Note that indeed, for every pair of tests
’ 	=’′, the corresponding super-LDFs must be equal G’ =G’′ (denote them by G).
This follows because they are point-wise equal �x(G’)=m(x)= �x(G’′), and so the
diLerence super-LDF G’ −G’′ is trivial on every point, and must therefore (again, by
Proposition 10-low-ambiguity) be trivial.
If A is not trivial, then there is at least one test v ∈� for which A(v) 	= 0̃. Thus,

denoting by ’ the test for which v is a leaf in T’, Lemma 19 implies G=G’ 	= 0̃.

Take an LDF f that appears in G, and de5ne for every v∈V(, A(v) def= f(x) where
x∈Hd0 is the point mapped to v. Since G is legal, (is totally satis5ed
by A.

5. From SSAT∞ to SVP∞

In this section, we show the reduction from g-SSAT∞ to the problem of ap-
proximating SVP∞. This reduction follows the same lines of the reduction in [3] from
Pseudo-Label-Cover to SVP∞. We begin by formally de5ning the gap-version of SVP∞
(presented in Section 1) which is the standard method to turn an approximation problem
into a decision problem.

De�nition 21 (g-SVP∞). Given a lattice L and a number d¿0, distinguish between
the following two cases:
Yes. There is a non-zero lattice vector v∈L with ‖v‖∞6d.
No. Every non-zero lattice vector v∈L has ‖v‖∞¿gd.

68 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

We will show a reduction from g-SSAT∞ to
√
g-SVP∞, thereby implying SVP∞

to be NP-hard to approximate to within a factor of
√
g= n0(1)=log log n.

Let I = 〈�;V; {R }〉 be an instance of g-SSAT∞, where �= { 1; : : : ; n} is a set
of tests over variables V = {v1; : : : ; vm}, and R i is the set of satisfying assignments

for i ∈�. We construct a
√
g-SVP∞ instance (L(B); d) where d def= 1 and B is an

integer matrix whose columns form the basis for the lattice L(B).
The matrix B will have a column ṽ[; r] for every pair of test ∈� and an assignment

r ∈R for it. There will be one additional special column t̃. The matrix B will have
two kinds of rows, consistency rows and norm-measuring rows, de5ned as follows.
Consistency rows. B will have |F|+1 rows for each threesome (i; j; x) where i

and j are tests that depend on a mutual variable x. Only the columns of i and j

will have non-zero values in these rows.
The special column t̃ will have

√
g in each consistency row, and zero in the other

rows.
For a pair of tests i and j that depend on a mutual variable x, let’s concentrate

on the sub-matrix consisting of the columns of these tests, and the |F|+1 rows of the
threesome 〈 i; j; x〉 viewed as a pair of matrices G1 of dimension (|F| + 1)× |R i |
and G2 of dimension (|F|+ 1)× |R j |. Let r ∈R i be a satisfying assignment for i

and r′ ∈R j be a satisfying assignment for j. The rth column in G1 equals
√
g times

the unit vector ei where i= r|x (i.e. a vector with zeros everywhere and a
√
g in the

r|xth coordinate). The r′th column in G2 equals
√
g(̃1− ei) where i= r′|x and 1̃ is the

all-one vector (i.e.
√
g everywhere except a zero in the r′|xth coordinate).

Notice that any zero-sum linear combination of the vectors {ei; 1̃−ei; 1̃}i=1:::|F| must
give ei the same coeJcient as 1̃−ei, because the vectors {̃1; ei}i are linearly independent
(notice we are looking at vectors with |F|+ 1 coordinates).
Norm-measuring rows. There will be a set of R rows designated to each test

 ∈� in which only ’s columns have non-zero values. The matrix B, when restricted
to these rows and to the columns of , will be the (|R | × |R |) Hadamard matrix H
(we assume for simplicity that |R | is a power of 2, thus such a matrix exists, see [5],
p. 74). Recall that the Hadamard matrix Hn of order 2n × 2n is de5ned by H0 = (1)

and Hn =(Hn−1 Hn−1

Hn−1 −Hn−1
).

The vector t̃, as mentioned earlier, will be zero on these rows. (Fig. 1.)

Proposition 22 (completeness). If there is a natural assignment to �; then there is a
non-zero lattice vector ṽ∈L(B) with ‖̃v‖∞ =1.

Proof. Let A be a consistent natural assignment for �. We claim that

ṽ = t̃ − ∑
 ∈�

ṽ[;A()]

is a lattice vector with ‖̃v‖∞ =1. Restricting
∑

 ∈� ṽ[;A()] to an arbitrary row in the
consistency rows (corresponding to a pair of tests i; j with mutual variable x), gives

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 69

Fig. 1. The matrix B.

√
g, because A(i)|x =A(j)|x. Subtracting this from t̃ gives zero in each consistency-

row.
In the norm-measuring rows, since every test ∈� is assigned one value by A,

ṽ restricted to ’s rows equals some column of the Hadamard matrix which is a ±1
matrix. Altogether, ‖̃v‖∞ =1 as claimed.

Proposition 23 (soundness). If there is a non-zero lattice vector ṽ∈L(B) with ‖̃v‖∞
¡
√
g; then there is a consistent non-trivial super-assignment A for �; for which

‖A‖∞¡g.

Proof. Let

ṽ = ct · t̃ +
∑
 ; r

c[; r] · ṽ[; r]

be a lattice vector with ‖̃v‖∞¡
√
g. The entries in the consistency rows of every lattice

vector, are integer multiples of
√
g. The assumption ‖̃v‖∞¡

√
g implies that v is zero

on these rows.
De5ne a super-assignment A to � by setting for each ∈� and r ∈R , A()[r] def=

c[; r].
To see that A is consistent, let i; j ∈� both depend on the variable x. Notice that

(as mentioned above) any zero-sum linear combination of the vectors {̃1; ek ; 1̃ − ek}k
must give ek and 1̃− ek the same coeJcient because the vectors {̃1; ek}k are linearly
independent (notice we are looking at k + 1-coordinate vectors). This implies that for
any value k ∈F for x,

∑
r|x=k

c[i ; r] =
∑

r′|x=k
c[j ; r′]:

This, in turn, means that �x(A(i))= �x(A(j)) thus A is consistent.

70 I. Dinur / Theoretical Computer Science 285 (2002) 55–71

A is also not-all-zero because ṽ 	= 0̃ (if only ct was non-zero, then ‖̃v‖∞ =
√
g).

The norm of A is de5ned as

‖A‖∞ = max
 ∈�

(‖A()‖1):

The vector ṽ restricted to the norm-measuring rows of is exactly HA(). Now
since 1=

√|R |H is a (|R | × |R |) orthonormal matrix, we have∥∥∥∥∥ 1√|R |
HA()

∥∥∥∥∥
2

= ‖A()‖2:

Since for every z ∈Rn, ‖z‖∞¿‖z‖2=
√
n, we obtain ‖HA()‖∞¿‖A()‖2. Now for

every integer vector z,
√‖z‖16‖z‖2, and altogether,√

‖A()‖1 6 ‖A()‖2 6 ‖HA()‖∞ 6 ‖v‖∞ ¡
√
g

showing ‖A‖∞ def= max ∈� ‖A()‖1)¡g as claimed.

Finally, if � is a SSAT∞ no instance, then the norm of any consistent super-
assignment A must be at least g, and so the norm of the shortest lattice vector in
L(B), must be at least g. This completes the proof of the reduction.

The reduction to CVP∞ is quite similar, taking t̃ to be the target vector, and is
omitted.

References

[1] M. Ajtai, Generating hard instances of lattice problems, Proc. of the 28th ACM Symp. on Theory of
Computing, 1996, pp. 99–108.

[2] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, Proc. of the 30th
Annual ACM Symp. on Theory of Computing (STOC-98), May 23–26 1998, ACM Press, New York,
pp. 10–19.

[3] S. Arora, L. Babai, J. Stern, Z. Sweedyk, The hardness of approximate optima in lattices, codes
and linear equations, Proc. of the 34th IEEE Symp. on Foundations of Computer Science, 1993,
pp. 724–733.

[4] L. Babai, On LovVasz’s lattice reduction and the nearest lattice point problem, Combinatorica 6 (1986)
1–14.

[5] B. BollobVas, Combinatorics, Cambridge University Press, Cambridge, 1986.
[6] J.Y. Cai, A. Nerurkar, Approximating the SVP to within a factor (1 + 1=dim�) is NP-hard under

randomized reductions, Proc. of the 13th Annual IEEE Conference on Computational Complexity, 1998,
pp. 46–55.

[7] S. Cook, The complexity of theorem-proving procedures, Proc. of the Third ACM Symp. on Theory of
Computing, 1971, pp. 151–158.

[8] I. Dinur, E. Fischer, G. Kindler, R. Raz, S. Safra, PCP characterizations of NP: Towards a
polynomially-small error-probability, STOC: ACM Symp. on Theory of Computing (STOC), 1999.

[9] I. Dinur, G. Kindler, R. Raz, S. Safra, Approximating-CVP to within almost-polynomial factors is
NP-hard, manuscript, 1999.

[10] I. Dinur, G. Kindler, S. Safra, Approximating-CVP to within almost-polynomial factors is NP-hard.
FOCS: IEEE Symp. on Foundations of Computer Science (FOCS), 1998.

I. Dinur / Theoretical Computer Science 285 (2002) 55–71 71

[11] A. Frank, VE. Tardos, An application of simultaneous approximation in combinatorial optimization, 26th
Annual Symp. on Foundations of Computer Science, Portland, Oregon, 21–23 October 1985, IEEE
Press, New York, pp. 459–463.

[12] O. Goldreich, S. Goldwasser, On the limits of non-approximability of lattice problems. Proc. of the
30th ACM Symp. on Theory of Computing, 1998, pp. 1–9.

[13] J.C. Lagarias, A.M. Odlyzko, Solving low-density subset sum problems, J. ACM 32 (1) (1985)
229–246.

[14] A.K. Lenstra, H.W. Lenstra, L. LovVasz, Factoring polynomials with rational coeJcients, Math. Ann.
261 (1982) 513–534.

[15] L. Levin, Universal’nyYZe perebornyYZe zadachi universal search problems, Problemy Peredachi Informatsii
9 (3) (1973) 265–266 (in Russian).

[16] D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, Proc.
of the 39th IEEE Symp. on Foundations of Computer Science, 1998.

[17] C.P. Schnorr, A hierarchy of polynomial-time basis reduction algorithms, Proceedings of Conference
on Algorithms, PVecs (Hungary), North-Holland, Amsterdam, 1985, pp. 375–386.

