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Abstract

A graph is matching covered if it connected, has at least two vertices and each of its edges is contained in a perfect matching.
A 3-connected graph G is a brick if, for any two vertices u and v of G, the graph G − {u, v} has a perfect matching. As shown by
Lovász [Matching structure and the matching lattice, J. Combin. Theory Ser. B 43 (1987) 187–222] every matching covered graph
G may be decomposed, in an essentially unique manner, into bricks and bipartite graphs known as braces. The number of bricks
resulting from this decomposition is denoted by b(G).

The object of this paper is to present a recursive procedure for generating bricks. We define four simple operations that can be used
to construct new bricks from given bricks. We show that all bricks may be generated from three basic bricks K4, C6 and the Petersen
graph by means of these four operations. In order to establish this, it turns out to be necessary to show that every brick G distinct
from the three basic bricks has a thin edge, that is, an edge e such that (i) G − e is a matching covered graph with b(G − e) = 1 and
(ii) for each barrier B of G − e, the graph G − e − B has precisely |B| − 1 isolated vertices, each of which has degree two in G − e.
Improving upon a theorem proved in [M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, On a conjecture of Lovász concerning bricks,
I, The characteristic of a matching covered graph, J. Combin. Theory Ser. B 85 (2002) 94–136; M.H. de Carvalho, C.L. Lucchesi,
U.S.R. Murty, On a conjecture of Lovász concerning bricks, II, Bricks of finite characteristic, J. Combin. Theory Ser. B 85 (2002)
137–180] we show here that every brick different from the three basic bricks has an edge that is thin.

A cut of a matching covered graph G is separating if each of the two graphs obtained from G by shrinking the shores of the cut to
single vertices is also matching covered. A brick is solid if it does not have any nontrivial separating cuts. Solid bricks have many
interesting properties, but the complexity status of deciding whether a given brick is solid is not known. Here, by using our theorem
on the existence of thin edges, we show that every simple planar solid brick is an odd wheel.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Matching covered graphs; Brick generation

E-mail address: cll@ic.unicamp.br (C.L. Lucchesi).
1 Supported by CNPq, Brazil, by PRONEX/CNPq (664107/1997-4), by FUNDECT-MS(0284/01) and by a Fellowship from the University of

Waterloo, Canada.
2 Supported by a grant from CNPq. Supported by PRONEX/CNPq (664107/1997-4).
3 Work done during this author’s visit to UNICAMP during March–April 2001 and February–March 2002, with the support of PRONEX/CNPq,

Brazil.

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.12.032

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82276235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:cll@ic.unicamp.br


2384 M.H. de Carvalho et al. / Discrete Mathematics 306 (2006) 2383–2410

K4 C6
P

Fig. 1. The three basic bricks.

1. Introduction

All graphs considered in this paper are loopless. For any 3-connected graph H, clearly any graph G that is obtained
from H by adding an edge is also 3-connected. Now suppose that H is a 3-connected graph with a vertex x of degree
greater than three and let H ′ be a graph obtained from H by splitting x into two vertices b1 and b2 such that each bi

has at least two neighbours in H ′. Then the graph G := H ′ + b1b2 is said to be obtained from H by an expansion of
the vertex x. It is not difficult to see that G is 3-connected. The following theorem is one of the basic facts concerning
3-connected graphs.

Theorem 1 (See Tutte [15], Thomassen [14]). Every 3-connected graph may be obtained from K4 by means of edge
additions and vertex expansions.

A nontrivial graph G is bicritical if G − {u, v} has a perfect matching for any two vertices u and v of G. Bricks,
which are 3-connected bicritical graphs, play an important role in matching theory. The main objective of this paper is
to prove an analogue of Theorem 1 for bricks.

The graph obtained from a brick by the addition of an edge is also a brick. But a vertex expansion of a brick does not
even preserve the parity of the number of vertices. However, suppose that H is a brick and let H ′ be a graph obtained
from H by splitting a vertex x as described earlier. Now, let G be a graph obtained from H ′ by adding a new vertex a
and joining it to b1 and b2 and to some vertex w in V (H − x). Then it can be shown that G is also a brick. We refer to
this operation as an expansion of the vertex x by a barrier of size two. (The reason for the choice of this terminology
will be made clear later on.) Apart from edge additions and expansions of vertices by barriers of size two, there are
two other operations of expansions that may also be used to obtain new bricks from given bricks. (These are somewhat
more complicated to describe and will be presented in Section 6.) We shall prove that every brick other than three
bricks called the basic bricks (see Fig. 1) can be obtained from one of them by a sequence of applications of the four
operations mentioned above.

This work relies heavily on the theory of matching covered graphs. We begin with a brief account of the salient
concepts and theorems from that theory.

2. Matching covered graphs

An edge e of a graph G is admissible if there is some perfect matching of G that contains e. A graph is matching
covered if it has at least two vertices, is connected and each of its edges is admissible. There is an extensive theory
of matching covered graphs, see [8,9]. We shall assume that the reader is familiar with the basic concepts and results
concerning matchings and matching covered graphs. However, we shall review a few basic definitions and results that
are relevant to this work. For notation and terminology not defined here, see [1,2,8].

2.1. Bricks and braces

For a subset X of the vertex set V of a graph G, we denote the coboundary of X by ∇(X). A cut of G is a subset of
the edge set E of the form ∇(X) for some subset X of V. If G is connected and C := ∇(X), then X and X are the only
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two subsets of V whose coboundaries are equal to C. In this case, we refer to X and X as the shores of C and refer to
properties of the subgraphs G[X] and G[X] as the properties of X and X, respectively. For example, if C := ∇(X) and
G[X] is bipartite and G[X] is nonbipartite, then we shall refer to X as the bipartite shore of C and X as the nonbipartite
shore of C. A cut C is trivial if one of its shores has cardinality one.

For a cut C := ∇(X) of G the graph obtained from G by shrinking X to a single vertex x is denoted by G{X → x}.
Similarly, the graph obtained from G by shrinking X to a single vertex x is denoted by G{X → x}. These two graphs
G{X → x} and G{X → x} are called the C-contractions of G.

A cut C of a matching covered graph G is a separating cut of G if the two C-contractions of G are also matching
covered. A cut C of G is a tight cut of G if |C ∩ M| = 1 for every perfect matching M of G. It is easy to see that every
tight cut of G is a separating cut of G. Thus, if C is a nontrivial tight cut of G, the two C-contractions of G are matching
covered graphs that have fewer vertices than G. If either of the C-contractions has a nontrivial tight cut, that graph can
be further decomposed into even smaller matching covered graphs. This procedure can be repeated until one obtains a
list of graphs each of which is a matching covered graph that has no nontrivial tight cuts. This procedure is known as
a tight cut decomposition of G.

A matching covered graph that is bipartite and has no nontrivial tight cuts is a brace, and one that is nonbipartite
and has no nontrivial tight cuts is a brick. (This definition of a brick is equivalent to the one given in the Abstract—see
Theorem 8.) Fig. 1 shows three bricks (the complete graph K4, the complement C6 of the 6-circuit and the Petersen
graph P) which have played important roles in our work. We shall refer to these three bricks as the basic bricks.

Two cuts ∇(X) and ∇(Y ) of a graph G are said to cross each other if X ∩ Y , X ∩ Y , Y ∩ X and X ∩ Y are all
nonempty. Cuts C and D that do not cross are laminar to each other; in this case, one of the shores of C includes a shore
of D. We shall need the following property of tight cuts:

Proposition 2 (See Lovász [8]). Let G be a matching covered graph and let ∇(X) and ∇(Y ) be two tight cuts such
that |X ∩ Y | is odd. Then ∇(X ∩ Y ) and ∇(X ∩ Y ) are also tight. Furthermore, no edge connects X ∩ Y to Y ∩ X.

Using the above proposition, Lovász proved the following fundamental theorem:

Theorem 3 (See Lovász [8]). Any two tight cut decompositions of a matching covered graph yield the same list of
bricks and braces (except possibly for multiplicities of edges).

In particular, any two tight cut decompositions of a matching covered graph G yield the same number of bricks; this
number is denoted by b(G). A near-brick is a matching covered graph G with b(G) = 1.

The properties of a matching covered graph can often be analysed by analysing its bricks and braces separately.
(For example, a matching covered graph has a Pfaffian orientation if and only if each of its bricks and braces has a
Pfaffian orientation, see [7].) For this reason, it is important to understand the structure of bricks and braces and to have
inductive procedures that can be used to generate them. In [11] McCuaig described a procedure for generating braces
and used it (in an unpublished paper)4 to provide a constructive characterization of bipartite matching covered graphs
that have a Pfaffian orientation. In this paper we show how every brick may be built from the three basic bricks (Fig. 1)
by means of four simple operations. A detailed statement of this will be given in Section 2.4.

2.2. Removable edges

An edge e of a matching covered graph G is said to be removable if the graph G − e is also matching covered. The
function b(G) satisfies the following monotonicity property:

Proposition 4 (See de Carvalho et al. [1]). For any removable edge e of a matching covered graph G, b(G−e)�b(G).

A removable edge e of G is b-invariant if b(G− e)= b(G). In particular, if G is a brick, an edge e of G is b-invariant
if G− e is a matching covered graph with b(G− e)=b(G)=1; in other words, e is b-invariant if G− e is a near-brick.
(In [1,2], we referred to a removable b-invariant edge as a b-removable edge.) The two bricks K4 and C6 have no

4 Added in proof: W. McCuaig, Pólya’s Permanent Problem. The Electronic J. of Combinatorics 11, 2004.
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Fig. 2. The maximal nontrivial barriers.

removable edges at all. Every edge of the Petersen graph is removable but is not b-invariant. We proved the following
theorem in [1,2].

Theorem 5. Every brick distinct from K4, C6 and P has a b-invariant edge.

A Petersen brick is a brick whose underlying simple graph is the Petersen graph. The following strengthening of the
above theorem was also proved in [1,2].

Theorem 6. Every brick that is not a Petersen brick and is distinct from K4 and C6 has a b-invariant edge e such that
the brick of G − e is not a Petersen brick.

In fact, the main theorem in [1,2] is stronger than even Theorem 6. We used that theorem in [3] to find optimal ear
decompositions of matching covered graphs.

2.3. Barriers

Let G be a graph that has a perfect matching. A nonempty subset B of V (G) is a barrier of G if O(G − B) = |B|,
where O(G − B) denotes the number of odd components of G − B. All singletons are barriers; these are trivial. The
graph in Fig. 2(a) shows a brick G; it has no nontrivial barriers. The edges e, e′ and f are b-invariant in G. Fig. 2(b)
shows the graph G − e; it has two nontrivial maximal barriers B1 and B2 that are indicated. The reader will easily be
able to check that G − e′ has two nontrivial maximal barriers and that G − f has just one nontrivial maximal barrier.
We remark that a matching covered graph is bicritical if and only if it is free of nontrivial barriers.

The following theorem plays a crucial role in arguments involving barriers.

Theorem 7 (See Lovász and Plummer [9]). Let G be a matching covered graph, and let ∼ denote the binary relation
on V where u ∼ v if G − {u, v} has no perfect matching. Then, the relation ∼ is an equivalence relation on V and the
equivalence classes are precisely the maximal barriers of G.

It can be deduced from the above theorem that the maximal barriers of any matching covered graph G partition
V (G). This partition is called the canonical partition of G.

Let B be a barrier of G and let K be a component of G − B. As G is matching covered, component K must be odd. It
is easy to see that ∇(V (K)) is a tight cut of G. We shall say that ∇(V (K)) is a tight cut associated with B. Such tight
cuts are known as barrier cuts. A matching covered graph may have tight cuts that are not barrier cuts but, as we shall
see (Lemma 13), every tight cut in a near-brick is a barrier cut.

Edmonds et al. [6] established the following characterization of bricks.

Theorem 8 (See Edmonds et al. [6], Lovász [8], Szigeti [13]). A graph G is a brick if and only if it is bicritical and
3-connected.
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Fig. 3. Two types of thin barriers.

Corollary 9. Every graph that has a brick as a spanning subgraph is itself a brick.

2.4. The Main Theorem

Let G be a matching covered graph. For each barrier B of G, let IG(B) denote the set of vertices of G − B that are
isolated in G − B. A barrier B of G is special if G − B has precisely one nontrivial component. Thus, a barrier B of G
is special if and only if |IG(B)| = |B| − 1. A barrier B of G is thin if it is special and each vertex of IG(B) has degree
two in G. Let e be a removable edge of G. Edge e is special if each barrier of G − e is special and is thin if each barrier
of G − e is thin. In the brick G shown in Fig. 2, the edge e is not thin but the edge f is. Fig. 3 depicts the two types of
thin barriers of graph G − e, obtained by the deletion of an edge e from a bicritical G.

Theorem 10 (Main Theorem). Let G be a brick distinct from K4, C6 and the Petersen graph. Then, G has a b-invariant
edge that is thin.

As a corollary of the above theorem, we have the following interesting property of bricks.

Corollary 11. Every brick G of minimum degree greater than three has an edge e such that G − e is a brick.

2.5. An analogue for braces

A nontrivial tight cut of a bipartite matching covered graph is thin if one of its shores has cardinality three. The
following theorem, which may be regarded as an analogue of Theorem 10 for braces, may be deduced from a theorem
of McCuaig [11].

Theorem 12. Every brace G different from K2 and C4 has a removable edge e such that (i) G − e has at most two
nontrivial tight cuts and (ii) each nontrivial tight cut of G − e is thin.

2.6. Outline of the proof of the Main Theorem

For any b-invariant edge e of a brick G, the index of e is the number of nontrivial maximal barriers of G − e. We
proved in [1] that the index of a b-invariant edge in a brick is at most two. If e is an edge of index zero, then G − e is a
brick and hence e is thin. If a b-invariant edge has index greater than zero and is not thin, we shall need to show that
there is some other edge that is thin.

Let e be a b-invariant edge of a brick G that is not thin. Then we show that there is some other b-invariant edge e′ of
G such that the size of the brick of G− e′ is at least as large as the size of the brick of G− e. This leads us to define the
rank of e: we denote the size of the brick of G − e by r(G − e) and refer to r(G − e) as the rank of e. (For example, if
e is of index zero, then r(G − e) = |V |.) The idea behind this notion is that the larger the rank of a b-invariant edge is,
the closer it is to being thin. We shall indeed show that there is a b-invariant edge of maximum rank that is thin.

In the next section we shall discuss properties of barriers and tight cuts in near-bricks obtained from bricks by the
deletion of b-invariant edges. These properties are useful for computing and comparing the ranks of b-invariant edges
of a brick.

As noted above, if a brick has a b-invariant edge that is not thin, then there is some other b-invariant edge of the brick
of equal or higher rank. In Section 4, we shall establish the tools necessary for finding such alternatives.



2388 M.H. de Carvalho et al. / Discrete Mathematics 306 (2006) 2383–2410

We shall present a proof of the Main Theorem in Section 5 and in Section 6 describe the four operations by means
of which all bricks may be built starting from the three basic bricks. Finally, in Section 7 we shall apply our Main
Theorem to show that odd wheels are the only simple planar solid bricks.

3. Barriers and tight cuts in near-bricks

In this section we shall establish the relationship between barriers and tight cuts in near-bricks. We start by proving
the following basic fact concerning tight cuts in near-bricks.

Lemma 13. For any tight cut C := ∇(X) in a near-brick G, precisely one of the shores of C is bipartite. Furthermore,
C is a barrier cut associated with a special barrier of G.

Proof. Let G1 := G{X → x} and G2 := G{X → x} denote the two C-contractions of G. Then, b(G1) + b(G2) =
b(G) = 1, whence one of b(G1) and b(G2) is equal to zero, the other to one. Thus, one of G1 and G2 is bipartite, the
other is nonbipartite.

Adjust notation so that G[X], the subgraph of G induced by X, is bipartite. Each C-contraction of G is matching
covered, therefore 2-connected, whence each shore of C spans a connected subgraph of G. In particular, G[X] is
connected. The bipartition of G[X] is unique. Let {B, I } denote this bipartition and adjust notation so that |B| > |I |.
Then, it can be verified that B is a special barrier of G, I is the set of isolated vertices of G − B and that G[X] is the
nontrivial component of G − B. �

Let G be a near-brick, C a tight cut of G, X the bipartite shore of C (see 2.1). The majority part B of G[X] is called
the external part of X, the minority part I the internal part. See Fig. 4 (the vertices of the barrier associated with the
cut C are indicated by solid dots).

Lemma 13 shows that given any tight cut of a near-brick G, there is a unique special barrier that corresponds to it.
Conversely, given any special barrier of G, there is a unique tight cut that corresponds to it. We shall use the following
notation for nontrivial tight cuts associated with special barriers of near-bricks.

Notation 14. Let C be a tight cut of a near-brick G. Then, XG(C) denotes the bipartite shore of C, BG(C) its external
part, IG(C) its internal part. Whenever G and C are understood, we shall write simply X, B and I, instead of XG(C),
BG(C) and IG(C), respectively. We shall adopt the same notational conventions for tight cuts C1, C′ etc., writing
simply X1, B1, I1, X′, B ′ and I ′ etc., respectively.

Correspondingly, let B denote a special barrier of a graph G. Then, IG(B) denotes the set of isolated vertices of
G − B, XG(B) denotes set B ∪ IG(B) and CG(B) denotes cut ∇G(XG(B)). Whenever G and B are understood, we
shall write simply I, X and C, instead of IG(B), XG(B) and CG(B), respectively. We shall adopt the same notational
conventions for special barriers B1 and B ′ etc., writing simply I1, X1, C1, I ′, X′ and C′ etc., respectively.

In general, not every barrier in a near-brick is special. (For example, the near-brick in Fig. 4 has a barrier whose
deletion gives two nontrivial components, one of which is bipartite.)

B

B

I

C
X

X

Fig. 4. Cuts and their shores in near-bricks.
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Proposition 15. Every maximal barrier in a near-brick is special.

Proof. Let G be a near-brick, B a maximal barrier of G. Assume, to the contrary, that B is not special. Let K1 and K2
denote two nontrivial components of G − B. For i = 1, 2, cut Ci := ∇(V (Ki)) is tight in G. As G is a near-brick,
precisely one of the Ci-contractions of G is bipartite. Let Gi := G{V (Ki) → xi}.

We assert that at least one of G1 and G2 is bipartite. If G1 is bipartite then we are done. Assume thus that H :=
G{V (K1) → v} is bipartite. Then, C2 is a tight cut of H, a matching covered bipartite graph, whence both C2-
contractions of H are bipartite; in particular, G2 is bipartite. As asserted, at least one of G1 and G2 is bipartite. Adjust
notation so that G1 is bipartite. Let (A1, B1) be a partition of G1 so that x1 lies in B1. Then, B ∪ (B1 −x1) is a barrier of
G. As K1 is nontrivial, it follows that B1 is not a singleton, whence B1 − x1 is nonnull. This contradicts the maximality
of B. �

A tight cut C of a matching covered graph G is extremal if it has at least one bipartite shore that is maximal among
all the bipartite shores of tight cuts of G.

Lemma 16. Let G be a near-brick, C an extremal tight cut of G. Then, the associated barrier B of G is maximal.

Proof. Certainly B is a barrier of G. To prove that it is maximal, let B ′ denote the maximal barrier of G that includes B.
By hypothesis, G is a near-brick. Thus, B ′ is special. No vertex of I lies in B ′, otherwise B ′ would span all the edges of
G incident with the vertex, and that would imply that G has nonadmissible edges. Every vertex of I thus lies in G − B ′
and is isolated in G − B ′, because B ′ includes B. Thus, I is a part of I ′. By definition, B is a part of B ′. It follows that
the bipartite shore of C′ includes that of C. But C is extremal, whence C′ = C. By the uniqueness of the bipartition of
G[X], we conclude that B = B ′, whence B is maximal. �

The converse of the preceding result is not true in general. But it is true for near-bricks that are the result
of the removal of a b-invariant edge from a brick. More generally, it is true for every graph such that every barrier is
special.

Lemma 17. Let G be a matching covered graph such that every barrier is special. Then, for every (special) maximal
barrier of B of G, the associated cut C is extremal.

Proof. By hypothesis, every barrier of G is special. Therefore, cut C is well defined. Let C′ denote an extremal special
cut of G whose bipartite shore includes that of C. The bipartition {B, I } of the bipartite shore X of C is unique. The
bipartition {B ′, I ′} of the bipartite shore X′ of C′ is also unique. Moreover, G[X] is an induced subgraph of G[X′].
Therefore, {B ′ ∩ X, I ′ ∩ X} = {B, I }. One of B ′ and I ′ is a barrier of G. Adjust notation so that B ′ is a barrier of G.

Assume, to the contrary, that I ′ ∩X =B, whereupon B ′ ∩X = I . In that case, B ′ −X is a barrier of G, with precisely
two nontrivial components: G[X′] and G[X]. This is a contradiction to the hypothesis that every barrier of G is special.
Thus, B ′ ∩ X = B and I ′ ∩ X = I . By the maximality of B, it follows that B = B ′, whence |I |′ = |I |, and therefore
X = X′ and C = C′. Thus, C is extremal. �

3.1. Near-bricks inherited from bricks

A near-brick obtained from the deletion of a b-invariant edge from a brick is said to be inherited from that brick.
Many properties that do not hold in general for all near-bricks hold for near-bricks inherited from bricks. The purpose
of this subsection is to describe some of those properties.

Lemma 18 (See de Carvalho et al. [1]). Let G be a brick and let e be a b-invariant edge in G. Then all barriers of
G − e are special.

Lemma 19 (See de Carvalho et al. [1]). Let G be a brick, e a b-invariant edge of G, B a (special) nontrivial maximal
barrier of G − e. Then, graph G′ := G{X → x} is a brick.
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Proof. Let C := ∇(X). Graph G′ − e is the nonbipartite (C − e)-contraction of G − e, whence it is a near-brick.
Therefore, G′ has perfect matchings. Thus, for every set B ′ of vertices of G′, the number of odd components of G′ −B ′
is at most |B ′|. Call extremal those sets B ′ for which equality holds. We assert that every extremal set is trivial. For
this, assume the contrary, let B ′ denote a nontrivial extremal set. Then, B ′ is a barrier of G′ − e. If B ′ contains x, the
contraction vertex, then B ∪ (B ′ − x) is a barrier of G − e that properly includes B, a contradiction to the maximality
of B. If B ′ does not contain x then x lies in some component of G′ −B ′. Graph G[X]− e is connected, it is the bipartite
shore of tight cut C − e of G − e. Therefore, the component of G′ − B ′ that contains x is the contraction of set X
to vertex x in a component of G − B ′. Then, the number of odd components of G − B ′ is also |B ′|, whence B ′ is a
nontrivial barrier of G, a contradiction. As asserted, every extremal set is trivial.

This implies that edge e is admissible in G′, otherwise its ends would lie in a nontrivial extremal set. Since G′ − e

is matching covered, so too is G′. Since G′ is free of nontrivial extremal sets, then G′ is bicritical. Since G′ − e is a
near-brick, then so too is G′, by Proposition 4. In sum, G′ is a bicritical near-brick. By Lemma 13, near-brick G′ is
free of nontrivial tight cuts. We conclude that G′ is a brick. �

The following lemma is of fundamental importance. It will play a crucial role in the rank computations that we shall
encounter in the proof of the Main Theorem.

Lemma 20 (The three case lemma, see de Carvalho et al. [1]). Let G be a brick, e a b-invariant edge of G. Then, one
of the following alternatives holds:

(1) graph G − e is a brick, or
(2) graph G − e has precisely one maximal nontrivial barrier, B, and the graph (G − e){X → x} is a brick, or
(3) graph G − e has precisely two maximal nontrivial barriers, B1 and B2, and

• edge e has one end in I1 − X2 and the other in I2 − X1,
• the graph (G − e){X1 → x1} is a near-brick, B2 − X1 is its unique nontrivial maximal barrier and X2 − X1

is the bipartite shore of its unique nontrivial extremal tight cut,
• the graph (G − e){X1 → x1}{X2 − X1 → x2} is a brick.

Recall that, for a b-invariant edge e of a brick G, we refer to the number of nontrivial maximal barriers of G − e as
the index of e. By Lemma 20, the index of any b-invariant edge is either zero, one or two. If an edge e is of index zero,
then G − e is a brick. In this case, r(G − e) = |V (G)|. We describe below the procedure for finding the rank of G − e

when the index of e is positive.
Suppose that a b-invariant edge e of a brick G has index one and suppose that B is the only nontrivial maximal barrier

of G−e. Then the edge e might have both its ends in I or one end in I and one end in X. In either case, the graph obtained
from G − e by contracting X to a single vertex is the brick of G − e. Thus, in this case, r(G − e) = |V (G)| − |X| + 1.

Now suppose that a b-invariant edge e of a brick G has index two and suppose that B1 and B2 are the two nontrivial
maximal barriers of G−e. In this case, B ′

2 := B2 −X1 is the only maximal nontrivial barrier of G′ := G−e{X1 → x1}
and G′{X2 − X1 → x2} is the brick of G − e. Thus, in this case r(G − e) = (|V (G)| − |X1| + 1) − |X2 − X1| + 1 =
|V (G)| − (|X1| + |X2 − X1|) + 2. Fig. 5 illustrates a possible interaction of the maximal nontrivial barriers in a near-
brick G − e obtained by deleting a b-invariant edge e of index two from a brick G. In this example, both the nontrivial
maximal barriers B1 and B2 have cardinality three. They, as they are expected to be, are disjoint. But B2 contains a
vertex of I1 and B1 contains a vertex of I2, and r(G − e) = |V (G)| − (|X1| + |X2 − X1|) + 2 = 10 − (5 + 3) + 2 = 4.

4. Removable edges in near-bricks

Suppose that G is a brick and e is a b-invariant edge of G that is not thin. Our objective then is to show that there
is some other b-invariant edge of G that is thin. The first step is to show that there exist b-invariant edges (thin or not)
other than e. This section is devoted to the development of tools that are necessary for finding such edges. If B is a
nontrivial maximal barrier of G − e, it turns out that one can always find a b-invariant edge of G incident with a vertex
in I that is of degree greater than two. We begin our discussion with some general results concerning removable edges
in matching covered graphs.
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Fig. 5. A b-invariant edge of index two in a brick.

The following elementary proposition gives conditions under which a removable edge of G − e is also removable
in G.

Proposition 21. Let G be a matching covered graph, e a removable edge of G, e′ an edge of E(G)−e that is removable
in G − e. Edge e′ is removable in G if and only if G has a perfect matching that contains edge e but does not contain
edge e′.

Proof. By hypothesis, edge e′ is removable in G − e. Thus, graph G − e − e′ is matching covered. That is, G − e − e′
is connected and each edge of G − e − e′ lies in some perfect matching of G − e − e′. Thus, G − e′ is connected and
each edge of G − e′ distinct from e lies in some perfect matching of G − e′. As asserted, edge e′ is removable in G if
and only if G has a perfect matching that contains e but does not contain e′. �

The next result, which can be easily derived using Hall’s Theorem, gives conditions under which an edge of a bipartite
graph is not admissible.

Lemma 22 (See de Carvalho et al. [1, Theorem 2.3]). An edge e of a bipartite graph H with bipartition {A, B} that
has a perfect matching is not admissible if, and only if, there exists a partition (A′, A′′) of A and a partition (B ′, B ′′)
of B such that |A′| = |B ′|, edge e joins a vertex of A′′ to a vertex of B ′ but no edge of H joins some vertex of A′ to some
vertex of B ′′.

We shall now establish a general result concerning bicritical graphs which provides an essential tool in achieving
the objective stated at the beginning of this section. Towards this end, let G be a bicritical graph, e a removable edge
of G, B a special (possibly trivial) barrier of G − e. Let K denote the nontrivial component of G − e − B. Let H be the
graph (G − e){V (K) → vK}. Then, graph H is bipartite, with bipartition {A, B}, where A = I ∪ {vK}.

Lemma 23. Let v be a vertex of H in A. (i) If v = vK , then every edge of H incident with v is removable in H
and (ii) if v �= vK and the degree of v is greater than two, then at most one edge of H incident with v is not removable
in H.

Proof. By induction on |B|. If |B|=1, then vK is the only vertex in A and every edge of H is a multiple edge. Therefore,
the assertion is trivially valid in this case. So, suppose that |B| > 1.

If every edge of H incident with v is removable in H then the assertion holds immediately. We may thus assume that
there is an edge e′ incident with v that is not removable in H. Let w be its end in B. Let x denote the end of e′ in G that
does not lie in B. Thus, if v �= vK then x = v, whereas if v = vK then x lies in V (K).

By Lemma 22 there exists a partition (B ′, B ′′) of B and a partition (A′, A′′) of A such that |A′| = |B ′| and e′ is the
only edge of H that joins a vertex of A′ to a vertex of B ′′. If vK does not lie in A′′ then set A′′ + x is a nontrivial
barrier of G, a contradiction. Thus, vK lies in A′′. We conclude that edge e′ is not incident with vertex vK in H. Thus,
v �= vK . This conclusion holds for every edge e′ incident with v that is not removable in H. This proves the first part
of the assertion.
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Fig. 6. An illustration for the proof of Lemma 23.

To prove the second part, assume that v �= vK and that the degree of v in H is at least three. Observe that B ′
is a (possibly trivial) special barrier of G − e. Let K ′ denote the nontrivial component of G − e − B ′. (Note that
V (K ′)=V (K)∪ (A′′ − vK + v)∪B ′′. See Fig. 6.) Let H ′ denote the bipartite graph obtained from G− e by shrinking
V (K ′) to a single vertex vK ′ .

Since |B ′| < |B|, it follows by induction that every edge of H ′ incident with vK ′ is removable in H ′. To complete the
proof, note that ∇(V (K ′)) is a tight cut of the bipartite graph H. The graph H ′ is one of the two ∇(V (K ′))-contractions
of H. In the other ∇(V (K ′))-contraction of H, all edges in ∇H (v) − e′ are multiple edges and hence, are removable in
that graph. Moreover, all such edges are incident with vK ′ in H ′. It follows that all edges in ∇H (v) − e′ are removable
in H. �

Based on the above results, we are now in a position to establish the required result concerning b-invariant edges in
G − e.

4.1. Existence of b-invariant edges in G − e

Theorem 24. Let G be a brick, e a b-invariant edge of G, B a maximal nontrivial (special) barrier of G − e. Let v be
a vertex of I that has degree strictly greater than two in G − e. Then, the following properties hold:

(1) At most one edge of ∇(v) − e is not b-invariant in G − e.
(2) At most one edge of ∇(v) − e is b-invariant in G − e but not b-invariant in G.
(3) If e is of index two, then every edge of ∇(v) − e that is b-invariant in G − e is also b-invariant in G.

Proof. Let H denote the bipartite graph defined before the statement of Lemma 23. Let e′ be any edge that is removable
in H and lies in ∇(v). Recall that we denote by C the cut associated with special barrier B. Cut C − e is tight in G − e.
One of the (C − e)-contractions of G − e is H, the other is G′ := (G − e){X → x}. Edge e is b-invariant in G, whence
G′ is a near-brick.

One of the (C − e)-contractions of G − e − e′ is G′, the near-brick seen above. The other (C − e)-contraction is
H − e′, a bipartite graph. We conclude that any edge of H that does not lie in C and is removable in H is b-invariant in
G − e. By Lemma 23, at most one edge of ∇(v) − e is not b-invariant in G − e. This completes the proof of the first
item of the assertion.

Let e′ be an edge of ∇(v) − e that is b-invariant in G − e. Let M denote a perfect matching of G that contains edge
e. If e′ does not lie in M then, by Proposition 21, edge e′ is removable in G. Moreover,

b(G − e′)�b(G − e − e′) = b(G − e) = b(G),
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where the inequality follows from the monotonicity of function b, and the equalities from the fact that edge e′ is
b-invariant in G − e and edge e is b-invariant in G. Thus, edge e′ is b-invariant in G. This conclusion holds for every
edge e′ of ∇(v) − e that is b-invariant in G − e and does not lie in some perfect matching of G that contains edge e.
Thus, at most one edge of ∇(v) − e is b-invariant in G − e but not b-invariant in G. If B is the only nontrivial maximal
barrier of G − e then the proof of the assertion is complete.

Now suppose that e is of index two. Let B ′ denote the second nontrivial maximal barrier of G − e and let z denote
the end of e in X. It follows from Lemma 20 that vertex z lies in I ′ − X and thus z is not adjacent to any vertex of X in
G − e.

Assume, to the contrary, that ∇(v)−e contains an edge, e1, that is b-invariant in G−e but not removable in G. Then,
edge e depends on e1, that is, every perfect matching of G that contains edge e contains also edge e1. Therefore, graph
G − e − e1 has barriers that contain both ends of edge e. Let B1 be a maximal barrier of G − e − e1 that contains both
ends of e. Graph G − e − e1 is matching covered, therefore e is the only edge of G that depends on e1. We conclude
that in G the set B1 spans edge e and no other edge of G.

Proposition 25. The end z of e in X is the only vertex of B1 in X. Moreover, G[X] − z is connected. Consequently all
the vertices of X − z lie in the same component of G − e − e1 − B1.

Proof. Certainly, z, an end of e, lies in B1. Let G1 := G{X → x}. By Lemma 19, G1 is a brick. Bricks are 3-connected.
Therefore, G1 − x − z is connected. That is, G[X] − z is connected. Let z′ denote any vertex of X − z. Graph G1, a
brick, is bicritical, thereforeG1 − z− z′ has a perfect matching, say, M ′. Let f be the edge of C in M ′. Edge e is incident
with z in G1, therefore edge e does not lie in M ′. Thus, f lies in C − e.

Edge e1 is an edge of G that is removable in G − e and does not lie in C. Thus, f and e1 are distinct, whence, f lies in
a perfect matching, say, M ′′, of G− e − e1. Then, M ′ ∪ (M ′′ ∩E(G[X])) is a perfect matching of G− e − e1 − z − z′.
Therefore, vertex z′ does not lie in B1. This conclusion holds for each vertex z′ of X − z. �

Consider set B2 := B1 − z. For i =1, 2, let Ki denote the set of components of G− e− e1 −Bi . For every matching
covered graph L and every barrier Z of L, each component of L − Z is odd. In particular, G − e − e1 is matching
covered and B1 is a barrier of G − e − e1, whence the components of K1 are odd.

Let K denote the component in K1 that contains the vertices of X − z. We have seen that all the vertices that are
adjacent to z in G− e lie in X. Therefore, all the vertices that are adjacent to z in G− e− e1 lie in V (K). Consequently,
K2 = (K1 − K) ∪ {G[V (K) + z]}. Thus, G − e − e1 − B2 has |B2| odd components and one even component. Thus,
B2 is a barrier of matching covered graph G − e − e1 such that G − e − e1 − B2 has an even component. This is a
contradiction. As asserted, under the hypothesis that G− e has two nontrivial maximal barriers, we conclude that every
edge of ∇(v) − e that is b-invariant in G − e is also b-invariant in G. �

5. Proof of the Main Theorem

Let G be a brick and let e be a b-invariant edge of G that is not thin. Then G − e has at least one nontrivial maximal
barrier. Let B be one such barrier of G − e and let vI be a vertex of I that has degree greater than two. We have seen in
the last section that at least one edge of G − e incident with vI is b-invariant in both G and G − e. Let e′ be such an
edge.

A fact that should be kept in mind is that the edge e′ has both its ends in X, whereas the edge e has either one (Fig. 7a)
or two ends in I (Fig. 7b). (The former case must occur when e is of index two.) Another important fact to remember
is that B, a barrier of G − e, is also a barrier of G − e − e′. Moreover, any barrier of G − e − e′ that includes B is also
a barrier of G − e, because e′ has an end in B. Since B is a maximal barrier of G − e, it follows that B is a maximal
barrier of G − e − e′.

We begin our analysis by showing that the rank of e′ is at least as big as that of e.

Lemma 26. r(G − e′)�r(G − e − e′) = r(G − e).

Proof. Recall that edge e is b-invariant in G and e′ is b-invariant in each of G − e and G, whence G − e, G − e′ and
G − e − e′ are near-bricks. As B is a barrier of G − e − e′, cut C = ∇(X) is also a tight cut of G − e − e′. Since e′ has
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Fig. 7. The two b-invariant edges e and e′.

both its ends in X, the nonbipartite shore X of C in G − e − e′ is the same as it is in G − e. Therefore:

r(G − e − e′) = r(G − e).

On the other hand, note that if ∇G−e′(S) is any tight cut of G − e′, then ∇G−e−e′(S) is a tight cut of G − e − e′. Thus,
clearly,

r(G − e′)�r(G − e − e′).

It follows that r(G − e′)�r(G − e − e′) = r(G − e). �

The crucial part of the proof of the Main Theorem involves the study of conditions under which the ranks of e and
e′ can be equal. We now prove two basic lemmas that are needed for this purpose.

Lemma 27. Let C′ be a nontrivial tight cut of G − e′. If C′ does not cross C, then X′ ⊂ X.

Proof. Clearly, C′ − e is a tight cut of G − e − e′. As G − e − e′ is a near-brick, one shore of C′ − e is bipartite and it
must be X′, with B ′ and I ′ as its external and internal parts, respectively.

The cut C′ is tight in G − e′ but C is not. Thus, C′ �= C. Thus, as C′ does not cross C, the possible containment
relations between X and X′ are: (i) X′ ⊂ X, (ii) X ⊂ X′, (iii) X ⊂ X′, or (iv) X′ ⊂ X. Our task is to show that (iv)
holds. We do this by showing that the other possibilities cannot occur.

Since C′ is a nontrivial tight cut of G − e′, the edge e′ must have at least one end in I ′. Otherwise, C′ would be a
tight cut of G itself, which is not possible. Now, since e′ has both its ends in X, it follows that X′ cannot be a subset of
X. That is, (i) cannot hold.

The shore X of C − e is nonbipartite whereas the shore X′ of C′ − e is bipartite. Hence (ii) cannot hold.
Note that {B, I } is the bipartition of X and {B ′, I ′} is the bipartition of X′. Assume, to the contrary, that X is a subset

of X′. Then, {B ′ ∩ X, I ′ ∩ X} = {B, I }. Thus, one of B and I is a subset of B ′. But edge e′ has one end in B, the other
in I, therefore in either case edge e′ has an end in B ′. Thus, B ′, a nontrivial barrier of G − e′, is also a nontrivial barrier
of brick G, a contradiction. Thus, (iii) cannot hold. �

Corollary 28. If every tight cut of G − e′ is laminar to C, then r(G − e′) > r(G − e).

Proof. If G − e′ is a brick then this assertion holds immediately. We may thus assume that G − e′ has nontrivial tight
cuts. Cut C is not tight in G − e′, and by Lemma 27, every nontrivial tight cut of G − e′ has its bipartite shore as a
proper subset of X. We conclude that in any tight cut decomposition of G − e′, the brick G′

0 thereby obtained contains
all the vertices of X and at least three other vertices. Thus r(G − e′)� |X| + 3.

On the other hand, consider a tight cut decomposition of G− e that uses cut C. Let G0 be the brick thereby obtained.
The bipartite shore of C is X, whence V (G0) has at most |X|+1 vertices. We conclude that r(G−e′) > |X|+1�r(G−e).
As asserted, r(G − e′) > r(G − e). �
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Fig. 8. Cuts ∇(X) and ∇(X′) in G − e − e′.

Corollary 29. If some nontrivial tight cut C0 of G − e′ crosses C, then there exists an extremal tight cut of G − e′ that
crosses C.

Proof. Let C′ be a tight cut of G − e′ such that X0 ⊆ X′. Since C0 crosses C, X0 is not a subset of X, therefore X′ is
not a subset of X. By Lemma 27, C′ crosses C. �

Lemma 30. Let C′ be a tight cut of G−e′ that crosses cut C. Then, X∩X′ and X∩X′ are both even and the following
properties hold:

(1) cut D := ∇G−e−e′(X −X′) is a nontrivial tight cut of G− e− e′, X −X′ is its bipartite shore, B −X′ the external
part and I − X′ the internal part of X − X′,

(2) cut D′ := ∇G−e−e′(X′ − X) is a tight cut of G − e, X′ − X is its bipartite shore, B ′ − X the external part and
I ′ − X the internal part of X′ − X. (See Fig. 8.)

(3) edge e′ has one end in I − X′, the other in B ∩ I ′.

Proof. Let us first show that X ∩ X′ is even. Suppose that X ∩ X′ is odd. As C and C′ − e are tight cuts of G − e − e′,
then, by Proposition 2, cuts ∇(X ∩ X′) and ∇(X ∩ X′) are also tight cuts in G − e − e′. As X and X′ are bipartite,
so too is G[X ∩ X′] − e − e′. Moreover, G[X ∩ X′] − e − e′ is connected, whence its bipartition is unique. Thus,
{B ∩X′, I ∩X′}={B ′ ∩X, I ′ ∩X}. Let Y ′ denote one of B ′ and I ′, let Z′ denote the other, so that B ∩X′ =Y ′ ∩X and
I ∩ X′ = Z′ ∩ X. No edge of G − e − e′ joins a vertex ofX − X′ to a vertex of X′ − X. It follows that {B ∪ Y ′, I ∪ Z′}
is a bipartition of G[X ∪ X′] − e − e′. Cut C′′ := ∇G−e−e′(X ∪ X′) is tight in G − e − e′. Therefore, X ∪ X′ is its
bipartite shore in G − e − e′. Moreover, edge e′ has one end in B, the other in I, whence G[X ∪ X′] − e is bipartite. In
sum, cut C′′ is tight in G − e, X ∪ X′ its bipartite shore in G − e. On the other hand, cut C is extremal in G − e, by
Lemma 17. This is a contradiction. We conclude that X ∩ X′ is even. It follows that X ∩ X′ is also even.

It follows from Proposition 2 that D and D′ are tight cuts of G − e − e′.
Every tight cut of G − e − e′ that has a subset of X as a shore is a tight cut in G − e, because cut C is tight in both

G − e and G − e − e′, and edge e′ has both ends in X. In particular, D′ is a tight cut in G − e.
Graph G[X]− e is bipartite, whence so too is G[X −X′]− e − e′. Thus, X −X′ is the bipartite shore of D. Set X′ is

a shore of tight cut C′ − e of G− e− e′, whence G[X′]− e− e′ is connected. Thus, at least one edge joins a vertex, say
v, of X − X′, to a vertex of X ∩ X′. That vertex lies in the external parts of both X and X − X′. Therefore, vertex v lies
in B, whence B meets the external part of X − X′. But {B − X′, I − X′} is the only bipartition of G[X − X′] − e − e′.
Thus, B − X′ is the external part of X − X′ and I − X′ its internal part. A similar argument shows that X′ − X is the
bipartite shore of D′, B ′ − X its external part, I ′ − X its internal part.
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In order to complete the proof, we must now show that D is nontrivial and also that edge e′ has one end in I − X′,
the other in B ∩ I ′. For this, let vI denote the end of e′ in I.

Assume, to the contrary, that vI lies in X′. Vertex vI does not lie in B ′, otherwise B ′ would be a nontrivial barrier of
G. Thus, vI lies in I ′. Thus, vI lies in I ∩ I ′. Let f be any edge of G − e − e′ that is incident with vertex vI . The end of
f distinct from vI lies in B ∩ B ′. But B is a maximal barrier of G − e − e′ and B ′ is a barrier of G − e − e′. Therefore,
B ′ ⊆ B. It follows that B ′ − X, the external part of D′, is empty. This is a contradiction. We conclude that vI lies in
I − X′. We have seen that I − X′ is the internal part of D. Thus, D is nontrivial. Finally, edge e′ must have one end in
I ′, otherwise B ′ would be a nontrivial barrier of G. Thus, the end vB of e′ in B lies in I ′. �

In all the subsequent lemmas in this section, we assume that there is an extremal tight cut C′ of G − e′ such that C
and C′ − e are crossing tight cuts of G− e − e′. We shall adopt the notation in the statement of the above lemma. (Note
that the neighbours in G − e of vertices in I are in B and the neighbours in G − e′ of vertices in I ′ are in B ′. Since
G − e − e′ is a subgraph of both G − e and G − e′, all neighbours of I in G − e − e′ are in B and all neighbours of I ′
in G − e − e′ are in B ′.)

Lemma 31. If e′ is of index one, then r(G − e′) > r(G − e).

Proof. Assume that e′ is of index one, let C′ be the extremal (nontrivial) tight cut of G − e′. Then,

r(G − e′) = |X′| + 1 = |V (G)| − (|X′| − 1). (1)

By Lemma 26,

r(G − e) = r(G − e − e′). (2)

If no tight cut of G − e′ crosses C then the asserted inequality holds, by Corollary 28. We may thus assume that some
tight cut of G − e′ crosses C. By Corollary 29, cuts C′ and C cross. By Lemma 30, cut D is nontrivial and tight in
G − e − e′, X − X′ is its bipartite shore. Moreover, cut C′ is tight in G − e − e′, with bipartite shore X′. Therefore,

r(G − e − e′)� |V (G)| − (|X′| − 1) − (|X − X′| − 1),

whence

r(G − e − e′) < |V (G)| − (|X′| − 1). (3)

From (1)–(3), we conclude that r(G − e′) > r(G − e). �

Lemma 32. Suppose that e is of index two and r(G − e) = r(G − e′). Then the maximal nontrivial barrier B2 of
G{X → x} − e is a subset of a barrier of G − e′.

Proof. By hypothesis, r(G − e) = r(G − e′). By Corollaries 28 and 29, graph G − e′ has an extremal tight cut C′ that
crosses cut C. By Lemma 31, edge e′ has index two.

Let B ′
2 denote the maximal nontrivial barrier of G{X′ → x′} − e′. Note that B2 and B ′

2 are barriers of G − e − e′.
We prove the required assertion by showing that B2 = B ′ − X.

We achieve this by first showing that X′
2 ⊆ X − X′. By Lemma 30, edge e′ has one end vI in I − X′, the other vB

in B ∩ I ′. But e′ has an end in I ′
2, in turn disjoint with X′. Thus, vI lies in I ′

2 and is therefore adjacent in G − e′ only
to vertices of B ′

2. Hence, this is also true in G − e − e′. The nonnull set of neighbours of vI in G − e − e′ lie all in B.
Recall that B is a maximal barrier of G − e − e′. Therefore, B ′

2, which meets B, is a subset of B. Indeed, B ′
2 is a subset

of B − X′.
Let v be a vertex of I ′

2. Vertex v is adjacent in G − e − e′ to a vertex of B ′
2 ⊆ B. Thus, v does not lie in B. In

G − e − e′ − B ′
2, v is isolated, whence it is isolated in G − e − e′ − B. Therefore, v lies in I. This conclusion holds

for each vertex v in I ′
2. Thus, I ′

2 ⊆ I , whence X′
2 ⊆ X. We conclude that X′

2 ⊆ X − X′.
We now proceed to show that X′

2 = X − X′ and X2 = X′ − X. Since X′
2 ⊆ X − X′,

r(G − e′) = 2 + |X ∩ X′| + |X − X′ − X′
2|�2 + |X ∩ X′|,
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with equality only if X′
2 = X − X′. On the other hand, by Lemma 30,

r(G − e)�2 + |X ∩ X′|,

with equality only if X2 = X′ − X. By hypothesis, r(G − e) = r(G − e′). We conclude that X′
2 = X − X′ and

X2 = X′ − X. Finally, B2 is by definition the external part of X2 and B ′ − X the external part of X′ − X, by Lemma
30. Thus, B2 = B ′ − X. As asserted, B2 ⊆ B ′. �

With the aid of the above lemmas we can now complete the proof of the Main Theorem.

Proof of the Main Theorem. Let G be a brick distinct from K4, C6 and the Petersen graph. Our task is to show that
G has a b-invariant edge that is thin. By Theorem 5, graph G has a b-invariant edge. By Lemma 18, every edge that is
b-invariant in G is special. By Lemma 20, for every b-invariant edge e of G, graph G − e has index at most two.

Among the b-invariant edges of G, choose one, e, such that the rank of G − e is maximum. If possible, choose e so
that its index is two.

We assert that e is thin. For this, assume the contrary. Then, G − e has a (nontrivial special) barrier B0 that is not
thin. Let B denote the maximal nontrivial barrier of G − e that includes B0. Then B is also special and not thin. Let v

denote a vertex of I that has degree greater than two in G − e. By Theorem 24, ∇(v) − e has at least two edges that are
b-invariant in G− e. Let e′ and e′′ be any two such edges. By Theorem 24 at least one of e′ and e′′, say e′, is b-invariant
in G.

By Lemma 26, r(G − e′)�r(G − e). By the choice of e, r(G − e′) = r(G − e). By Corollaries 28 and 29, there is
an extremal tight cut C′ of G − e′ that crosses C. By Lemma 31, edge e′ has index two. By the choice of e, edge e also
has index two. We deduce now, from Lemma 32, that the maximal nontrivial barrier B2 of G{X → x} − e is a subset
of barrier B ′ of G − e′.

Since e has index two, then, by Theorem 24, e′′ is also b-invariant in G. Arguing as above, we may deduce that B2
is also a subset of a barrier B ′′ of G − e′′.

Let x and y be any two vertices in B2. Since G is a brick, there is a perfect matching M of G − {x, y}. On the other
hand, since B2 is a subset of B ′ which is a barrier of G − e′, there is no perfect matching in G − e′ − {x, y}. Thus e′
must be an edge in M. By an analogous argument, we may conclude that e′′ is also in M. This is impossible because e′
and e′′ are adjacent edges. Hence e must be thin. �

By adapting the above proof and using Theorem 6 one may prove the following theorem.

Theorem 33. Every brick that is not a Petersen brick and is distinct from K4 and C6 has a b-invariant thin edge e such
that the brick of G − e is not a Petersen brick.

6. Building bricks

In this section we give a precise definition of the four operations alluded to in the Introduction. The first operation
simply consists of adding an edge to a given brick H to obtain a new brick G. But the other three operations are more
complicated and involve the notion of splitting vertices in graphs. We begin with a definition of this notion.

Let H be a graph and let x be a vertex of H. A graph

H ′ := H {x → (b1, b2, . . . , bk)}

is said to be obtained from H by splitting x into b1, b2, . . . , bk if:

(i) V (H ′) = V (H − x) ∪ {b1, b2, . . . , bk},
(ii) E(H ′) = E(H),

(iii) H ′ − {b1, b2, . . . , bk} = H − x, and
(iv) every edge of H that joins a vertex v ∈ V (H − x) to x in H joins v to one of the vertices b1, b2, . . . , bk in H ′.

(Thus (∇H ′(b1), ∇H ′(b2), . . . ,∇H ′(bk)) is a partition of ∇H (x).)
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Fig. 9. Expansion of a vertex x by a barrier of size two.

The fourth operation on bricks that we shall define involves splitting two distinct vertices of a brick. Thus, suppose that
x and x′ are two distinct vertices of a graph H, then H ′′ := H {x → (b1, b2); x′ → (b′

1, b
′
2)} is the graph obtained by

splitting x into vertices b1 and b2 and then splitting x′ into vertices b′
1 and b′

2 in the resulting graph.
Let H be a graph and let H ′ := H {x → (b1, b2, . . . , bk)} be a graph obtained from H by a splitting a vertex x.

Then H can be recovered from H ′ by identifying the vertices b1, b2, . . . , bk to form a single vertex x. The following
propositions, which will be used in the proof of Theorem 36, are simple consequences of this observation:

Proposition 34. A graph obtained from a connected graph by splitting a vertex into two vertices has at most two
components.

Proposition 35. A graph obtained from a 2-connected graph by splitting a vertex into (any number of) vertices of
positive degree is connected.

6.1. The four operations

We are now in a position to define the four operations on bricks that can be used to generate all bricks from the three
basic bricks. We shall refer to these four operations as expansions of a brick.

Edge addition: Let H be a brick and let x and y be two distinct vertices of H. Obtain G from H by adding a new edge
joining x and y.

Expansion of a vertex by a barrier of size two: Let H be a brick and let x be a vertex of H whose degree is at least
four. Let H ′ := H {x → (b1, b2)} such that, in the underlying simple graph of H ′, b1 and b2 have degree at least two.
Now obtain G from H ′ by adding a new vertex a and joining it to b1 and b2 and to a vertex w of H − x by an edge
labelled e (see Fig. 9). We shall refer to the graph G thus constructed as a graph obtained from H by an expansion of x
by a barrier of size two. We shall see (Theorem 36) that G is a brick for any vertex w of H − x.

Expansion of a vertex by a barrier of size three: Let H be a brick and let x be a vertex of H whose degree is at least
five. Let H ′ := H {x → (b1, b2, b3)} such that, in the underlying simple graph of H ′, the degrees of b1 and b3 are at
least two and the degree of b2 is at least one. Now obtain G from H ′ by adding two new vertices a1 and a2, and joining
a1 to b1 and b2, joining a2 to b2 and b3, and joining a1 and a2 by an edge labelled e (see Fig. 10). We shall refer to
the graph G thus constructed as a graph obtained from H by an expansion of x by a barrier of size three. We shall see
(Theorem 36) that G is a brick.

Expansion of two vertices by barriers of size two: Let H be a brick and let x and x′ be two vertices of H whose
degrees are at least four. Let H ′′ := H {x → (b1, b2); x′ → (b′

1, b
′
2)} such that, in the underlying simple graph of H ′′,

each of b1, b2, b′
1 and b′

2 has degree at least two and has at least one neighbour in V (H − {x, x′}). Now obtain G from
H ′′ by adding two new vertices a and a′, joining a to b1 and b2, joining a′ to b′

1 and b′
2, and joining a and a′ by an edge

labelled e (see Fig. 11). We shall refer to the graph G thus constructed as a graph obtained from H by an expansion of x
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Fig. 10. Expansion of a vertex by a barrier of size three.

x

b1 b2

x

b1 b2

a

a
G

e

H

H     {x,x } H     {x,x }

Fig. 11. Expansion of two vertices by barriers of size two.

and x′ by barriers of size two. (Note that the order in which the two vertices x and x′ are split is immaterial.) We shall
see (Theorem 36) that G is a brick.

Theorem 36. Let H be a brick and let G be a graph obtained from H by one of the four operations of expansion. Then
G is a brick.

Proof. The proof is obvious in the case of the first operation which simply consists of adding an edge to a brick. In each
of the other three cases, it is straightforward to verify that G − e is a near-brick. Using the definitions of expansions
and the fact that H is a brick, we shall verify that G is bicritical. This, in particular means that G is matching covered
and, by Proposition 4, it follows that G is a near-brick. The required assertion now follows because, by Lemma 13,
every bicritical near-brick is a brick.

If possible suppose that B is a nontrivial barrier of G. Since G − e is a spanning matching covered subgraph of G,
it follows that B is also a barrier of G − e. Therefore, by Theorem 7, B cannot contain any pair {u, v} of vertices such
that G − e − {u, v} has a perfect matching. In particular B cannot contain both the ends of any edge of G − e.

Throughout the proof we shall implicitly use the fact that, since H is a brick, H − {u, v} has a perfect matching for
any two vertices u and v of H. We shall also use Theorem 7 without specifically referring to it. Now we proceed to deal
with each of the three remaining cases separately.

Expansion of a vertex x by a barrier of size two: See Fig. 9.
For any two vertices u and v of H − x and any perfect matching M of H − {u, v}, either M ∪ {b2a} or M ∪ {b1a}

is a perfect matching of G − {u, v} depending on whether M has an edge incident with b1 or with b2. It follows that
|B ∩ V (H − x)|�1. We consider two cases depending on the value of |B ∩ V (H − x)|.
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Case 1: |B ∩ V (H − x)| = 0. In this case, B ⊆ {b1, b2, a}. Since ab1 and ab2 are edges of G − e, a cannot be in B.
Therefore, B = {b1, b2}. However, G − {b1, b2} is connected. A contradiction.

Case 2: |B ∩ V (H − x)| = 1. Say B ∩ V (H − x) = {v}. For any perfect matching M of H − {x, v}, M ∪ {b2a} is
a perfect matching of G − {b1, v} and M ∪ {b1a} is a perfect matching of G − {b2, v}. Since v is in B, it follows that
B ∩{b1, b2}=∅. So, the only possibility left to be examined is B ={a, v}. But G−{a, v} is connected, a contradiction.
We conclude that G is a brick.

Expansion of a vertex x by a barrier of size three: See Fig. 10.
Suppose that u and v are any two vertices of H−x and let M be a perfect matching of H−{u, v}. Then M∪{b2a1, b3a2}

or M ∪ {b1a1, b3a2} or M ∪ {b1a1, b2a2} is a perfect matching of G − {u, v}. It follows that |B ∩ V (H − x)|�1. We
consider two cases depending on the value of |B ∩ V (H − x)|.

Case 1: |B ∩ V (H − x)| = 0. In this case B ⊆ {b1, b2, b3, a1, a2}. For any perfect matching Mf of H containing
an edge f incident with b3, Mf ∪ {a1b2} is a perfect matching of G − {a2, b1}. Thus, B cannot contain both a2 and
b1. Similarly, B cannot contain both a1 and b3. All other pairs of aibj are edges of G − e. Therefore, B is a subset
of either {a1, a2} or {b1, b2, b3}. G − {a1, a2} is connected, G − S is connected for any 2-subset S of {b1, b2, b3} and
G − {b1, b2, b3} has two components. Therefore, there are no nontrivial barriers of G contained in {b1, b2, b3, a1, a2}.

Case 2: |B ∩ V (H − x)| = 1. Say B ∩ V (H − x) = {v}. Let M be a perfect matching of H − {x, v}. Then,
M ∪ {b2a1, b3a2} is a perfect matching of G − {b1, v} and M ∪ {b1a1, b3a2} is a perfect matching of G − {b2, v} and
M ∪ {b1a1, b2a2} is a perfect matching of G − {b3, v}. It follows that |B ∩ {b1, b2, b3}| = 0. Hence B ⊆ {a1, a2, v}.
For any 2-subset S of {a1, a2, v}, G − S is connected. So B = {a1, a2, v}. The graph G − {a1, a2, v} is the same as the
graph H ′ − v. It is obtained from the 2-connected graph H − v by splitting x into three vertices b1, b2 and b3. If all
these three vertices have positive degree in H ′ − v then, by Proposition 35, H ′ − v is connected. On the other hand,
ifv is the unique neighbour of b2 in V (H − x), then only b1 and b3 have positive degree in H ′ − v. In either case,
G − {a1, a2, v} has at most two components and hence {a1, a2, v} is not a barrier of G. We conclude that G is a brick.

Expansion of two vertices x and x′ by barriers of size two: See Fig. 11.
Let u and v be two vertices of H − {x, x′} and let M be a perfect matching of H − {u, v}. Then M ∪ {b1a, b′

1a
′}

or M ∪ {b1a, b′
2a

′} or M ∪ {b2a, b′
1a

′} or M ∪ {b2a, b′
2a

′} is a perfect matching of G − {u, v}. It follows that |B ∩ V

(H − {x, x′})|�1. We consider two cases depending on the value of B ∩ V (H − {x, x′}).
Case 1: |B ∩ V (H − {x, x′})| = 0. In this case B is a subset of {b1, b2, a, b′

1, b
′
2, a

′}. For i = 1, 2 and j = 1, 2, any
perfect matching M of H − {x, x′} can be extended to a perfect matching of G − {bi, b

′
j }. It now follows that B is a

subset of either {b1, b2, a
′} or {b′

1, b
′
2, a}. Suppose that B ⊆ {b1, b2, a

′} (the other case is similar). For any 2-subset S
of {b1, b2, a

′}, G − S is connected. So, B = {b1, b2, a
′}. In this case, one component of G − B has just a as its vertex.

The component G − B − a is obtained from splitting the 2-connected graph H − x into two vertices of positive degree
and hence, by Proposition 35, is connected. Thus G − B has two components and B is not a barrier.

Case 2: |B ∩ V (H − {x, x′})| = 1. Say B ∩ V (H − {x, x′}) = {v}. For any perfect matching M of H − {x, v},
M ∪ {b2a, b′

1a
′} or M ∪ {b2a, b′

2a
′} is a perfect matching of G − {b1, v}. Thus, b1 /∈ B. Arguing similarly with other

elements of {b1, b2} and {b′
1, b

′
2} we may now conclude that B ∩{b1, b2}=∅ and B ∩{b′

1, b
′
2}=∅. Thus B ⊆ {a, a′, v}.

For any 2-subset S of {a, a′, v}, G−S is connected. Therefore, B ={a, a′, v}. The graph G−{a, a′, v} is obtained from
the 2-connected graph H − v by splitting x first into two vertices of positive degree and then, in the resulting graph,
splitting x′ into two vertices of positive degree. By Propositions 35 and 34, G−{a, a′, v} has at most two components.
Hence {a, a′, v} is not a barrier of G. We conclude that G is a brick. �

We remark that the above proof also shows that, in every case, the edge e is a thin edge of the brick G and that H is
the brick of G − e.

As a complement to the above result, we now prove the following theorem that justifies the title of this paper.

Theorem 37. Every brick different from the three basic bricks can be obtained from one of them by a sequence of
applications of the four operations of expansion.

Proof. By induction on the number of edges. Let G be a brick that is distinct from the three basic bricks. By Theorem
10, there exists an edge e of G that is thin. Let H denote the brick obtained by the tight cut-contractions associated with
the thin barriers of G − e. Clearly, H has fewer edges than G. By induction, H can be obtained from one of the three
basic bricks by a sequence of the four operations of expansion. Thus, to complete the proof, it suffices to show that G
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Fig. 12. A brick and its three thin edges.

can be obtained from H by means of an expansion operation. We consider four cases depending on the index and the
cardinalities of the nontrivial thin barriers of G − e.

• Edge e is of index zero in G − e. In this case, H = G − e and G is obtained from H by the addition of an edge.
• Edge e is of index one. Let B be the unique nontrivial thin barrier of G − e. Since e is thin, either |B| = 2 and e joins

the vertex of I to a vertex of V (G)\(B ∪ I ) or |B| = 3 and e joins the two isolated vertices of G − e − B. In the
former case, G is obtained from H by an expansion of a vertex by a barrier of size two and, in the latter case, G is
obtained from H by an expansion of a vertex by a barrier of size three.

• Edge e is of index two. In this case, G − e has two thin barriers B and B ′, each of size two, and e joins the vertex of
I and the vertex of I ′ and G is obtained by the expansion of two vertices of H by barriers of size two. �

A natural question that arises at this stage is whether all the four operations are really required for building bricks.
We proceed to show that this is indeed the case: (1) First suppose that G is any brick of minimum degree at least four.
For any thin edge e of G, the graph G − e is a brick. Thus G can only be obtained from a smaller brick by the addition
of an edge. (2) Let G be any odd wheel of order at least five. The only thin edges of G are its spokes, and for any spoke
e, the graph G − e has precisely one nontrivial barrier and that barrier is of size two. Thus the only way to obtain G
from a smaller brick is by the expansion of a vertex by a barrier of size two. (3) Let G be the graph shown in Fig. 12.
It can be shown that the only thin edges of this graph are the three edges indicated by solid lines. If e is any one of
these edges, G − e has precisely one maximal nontrivial barrier and that barrier is of size three. It follows that the only
way to obtain G from a smaller brick is by the expansion of a vertex by a barrier of size three. (4) Finally, let G be any
triangle-free cubic brick distinct from the Petersen graph. Clearly, for any thin edge e of G, the graph G − e must have
two maximal nontrivial barriers, both of size two. It follows that the only way to obtain G from a smaller brick is by
expansion of two vertices by barriers of size two.

We conclude this section with the observation that, in view of Theorem 33, every brick that is not a Petersen brick
may be obtained from K4 and C6 by a sequence of applications of the four operations of expansion.

7. Solid bricks

A matching covered graph G is solid if the only separating cuts it has are tight cuts. It can be shown that every bipartite
matching covered graph is solid. However, not every nonbipartite matching covered graph is solid. For example, both
C6 and P have separating cuts that are not tight.

Analogous to a tight cut decomposition one may define a separating cut decomposition of a matching covered graph.
Thus one may obtain any matching covered graph by splicing together graphs that are free of nontrivial separating
cuts. The bipartite matching covered graphs that have no nontrivial separating cuts are braces. Nonbipartite matching
covered graphs that have no nontrivial separating cuts are solid bricks.
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Solid bricks have many interesting properties. (For example, every removable edge in a solid brick is also b-invariant,
see [1].) There is also an interesting interpretation of solid bricks in terms of their perfect matching polytopes. For any
graph G, Edmonds showed that the perfect matching polytope of G is the set of solutions to: (i) x�0, (ii) x(∇(v))= 1,
for all v ∈ V , and (iii) x(∇(S))�1, for all odd subsets S of V. It is well-known that, when G is bipartite, this polytope
may be defined just in terms of the first two conditions. We showed that when G is a brick, (i) and (ii) imply (iii) if and
only if G is solid [4]. This is related to the result, first proved by Lucchesi [10], which shows that every solid r-graph
is r-edge colourable. (Seymour [12] conjectured that every r-graph that does not have the Petersen graph as a minor is
r-edge colourable.)

Although separating cut decompositions do not have many of the nice properties that tight cut decompositions have,
in view of the results cited above, we believe that an understanding of the structure of solid bricks would be helpful in
the resolution of many important problems concerning bricks. Unfortunately, we do not even know if the problem of
deciding whether a given brick is solid is in NP.

The following proposition provides a simple necessary condition for a separating cut in a matching covered graph
to be not tight.

Proposition 38 (See de Carvalho et al. [1]). Let C = ∇(X) be a separating cut in a matching covered graph G that
is not tight. Then both the shores G[X] and G[X] of C are nonbipartite.

A graph G is odd-intercyclic if any two odd circuits of G have at least one vertex in common. It follows from
the above proposition that every odd-intercyclic brick is solid. Odd wheels, described below, are an infinite class of
odd-intercyclic bricks. (See [1] for a description of odd-intercyclic graphs.)

A wheel is a simple graph obtained from a circuit by adding a new vertex and joining that vertex to each vertex of the
circuit; the circuit is called the rim, the new vertex the hub and each edge joining the hub to the rim a spoke. The order
of the wheel is the number of vertices of its rim; a wheel of order n is denoted Wn. A wheel is even or odd, according
to the parity of n. Note that the hub of a wheel is uniquely identified, except for W3, which is K4, the complete graph
on four vertices; in this case, we may take any of its vertices to be its hub. It is easy to see that every odd wheel is a
brick and that it is odd-intercyclic. Thus:

Proposition 39. Every odd wheel is a solid brick.

A matching covered graph G is extremal if the number of perfect matchings in G is equal to the dimension of the
matching lattice of G. In [5] we showed that every simple extremal solid brick is an odd wheel and used that result to
give a characterization of all extremal bricks. In this section, using Theorem 37, we shall show that every simple planar
solid brick is an odd wheel. The following two theorems play a useful role in establishing this fact.

Theorem 40 (See de Carvalho et al. [1]). A matching covered graph G is solid if and only if each of its bricks is solid.
(Conversely, if one of the bricks of G is nonsolid, then G is nonsolid.)

Theorem 41 (See de Carvalho et al. [1]). Let G be a solid brick and let e be a removable edge of G. Then e is
b-invariant and the brick of G − e is also solid.

We shall also need the following propositions that show that certain graphs that can be obtained from odd wheels
are nonsolid.

Proposition 42. Let W be an odd wheel of order five or more and let u and v be two nonadjacent vertices on its rim.
Then W + uv is nonsolid.

Proof. Since the rim of W is an odd circuit, it consists of two internally disjoint paths connecting u and v, where exactly
one of them, say P, has an odd number of vertices. Let C := ∇(V (P )). Then, both C-contractions of W + uv are odd
wheels (up to multiple edges). As W is a brick, C is not tight in W. Then C is not tight in W + uv either and so, W + uv

is nonsolid. �
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Fig. 13. An unavoidable subgraph of a solid brick on six vertices.

By Theorem 41, every supergraph of a nonsolid brick is nonsolid. Thus, it follows from the above proposition that
every proper simple supergraph of an odd wheel is nonsolid. The proof of the following proposition is similar to the
above proof. It uses the fact that any spoke of an odd wheel of order five or more is removable.

Proposition 43. Let W be an odd wheel of order five or more and let u and v be two nonadjacent vertices on its rim.
Then W + uv − uh, where h is the hub of W, is nonsolid.

As a warm-up to the characterization of planar solid bricks, we shall first present a characterization of solid bricks
on eight or fewer vertices.

7.1. Small solid bricks

The odd wheel W3 = K4 is the only simple brick on four vertices. Thus, W3 is the only simple solid brick on four
vertices. There are several simple bricks on six vertices, but only one of them is solid, namely W5. The following
theorem is clearly equivalent to the assertion that W5 is the only simple solid brick on six vertices.

Theorem 44. Let G be a simple brick on six vertices. Then G is either nonsolid or is the 5-wheel W5.

Proof. By induction on |E|. Since the minimum degree of G is at least three, |E| is at least nine. The only brick on
six vertices and nine edges is C6. Since C6 is nonsolid, the statement is true when |E| = 9. So, we may assume that
|E|�10.

Clearly G is not one of the three basic bricks. Therefore, by the Main Theorem, G has thin edges. We shall consider
two cases depending on whether or not G has a thin edge of index zero.

Case 1: G has thin edges of index zero. Let e be a thin edge of G of index zero. Then, by definition, G − e is a brick.
By induction, G − e is either nonsolid or is W5. If G − e is nonsolid then, by Theorem 41, G is also nonsolid. On the
other hand, if G − e = W5, by Proposition 42, G is nonsolid and the assertion holds.

Case 2: G has no thin edge of index zero. Let e be a thin edge of G of positive index. Since |V | = 6, it is easy to see
that the index of e must be one and that the nontrivial barrier of G − e has cardinality two. Let b1, b2, a, v1, v2, and
v3 denote the vertices of G, where B := {b1, b2} is the unique nontrivial barrier of G − e, a is the isolated vertex of
G − e − B and {v1, v2, v3} is the vertex set of the nontrivial component of G − e − B. Clearly the underlying simple
graph of the brick of G − e is K4. Thus, the subgraph of G induced by {v1, v2, v3} is K3. Since G is a brick, all its
vertices have degree at least three. Therefore a must have a neighbour distinct from b1 and b2. We may assume without
loss of generality that a is joined to v3. A perfect matching of G containing the edge av3 matches {b1, b2} with {v1, v2}.
So, we may assume without loss of generality that b1 is joined to v1 and b2 is joined to v2. Thus G must contain the
graph shown in Fig. 13(a) as a subgraph.

Since {b1, b2} is a barrier of G − e, b1b2 is not an edge of G. Therefore, a perfect matching of G containing the
edge v1v2 must contain an edge joining v3 to one of b1 and b2. Thus, we may assume without loss of generality
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Fig. 14. Minimal solid bricks on eight vertices.

that b1 is joined to v3 in G. Since b2 must have degree at least three in G, it must be joined to either v3 or v1
or both.

If b2 is joined to v1, then ∇({a, b1, v3}) would be a separating cut of G (Fig. 13(b)). This is impossible because G is
solid. Therefore, b2 must be joined to v3 and G contains W5 with v3 as its hub (Fig. 13(c)). If G has any additional edges,
they would be thin edges of index zero. By the hypothesis of the case, G has no thin edges of index zero. Therefore, it
follows that G = W5. �

Now we proceed to describe solid bricks on eight vertices. Fig. 14 shows three bricks on eight vertices. The first of
these is the odd wheel W7. The second is the Möbius ladder M8. Bricks W7 and M8 are odd-intercyclic and hence are
solid. The third graph S8 is the smallest example of a solid brick that is not odd-intercyclic.

No simple graph on eight vertices that properly contains either W7 or S8 is solid, but there are simple solid bricks
that can be obtained by adding edges to M8. However, the following theorem shows that these three graphs are the only
minimal solid bricks on eight vertices. (A brick G is minimal if it has no edge e such that G − e is a brick. Thus, every
thin edge of a minimal brick has index greater than zero.)

Theorem 45. Every minimal solid brick on eight vertices is isomorphic to one of the three bricks shown in Fig. 14.

Proof. Let G be a minimal solid brick on eight vertices. Clearly, G is distinct from the three basic bricks. Therefore,
by the Main Theorem, G has a thin edge e. By minimality, the index of e is greater than zero. There are three possible
cases depending on the cardinalities and the number of nontrivial maximal barriers of G − e. We analyse these
separately.

Case 1: The index of e is two. In this case, G − e has two barriers of size two and the underlying simple graph of
the brick of G − e is K4. Let B := {b1, b2} and B ′ := {b′

1, b
′
2} be the two nontrivial barriers of G − e, a1 and a2 be

the isolated vertices of G − e − B and G − e − B ′, respectively, and let v1 and v2 be the remaining two vertices of
G. As v1 and v2 are vertices of the underlying simple brick K4 of G − e, it follows that v1 and v2 are adjacent in G.
A perfect matching of G − B ′ must match a1 with a2 and the vertices of B with {v1, v2}. Similarly, a perfect matching
of G − B must match a1 with a2 and the vertices of B ′ with {v1, v2}. Thus, by renaming the vertices, if necessary, we
may assume that the graph H shown in Fig. 15 is a subgraph of G.

As G is a brick, all vertices have degree at least three in G. Thus there must be edges incident with the vertices of B
and B ′ in addition to the edges shown in Fig. 15. Since G is simple, it has no multiple edges and since B and B ′ are
barriers of G− e, b1b2 and b′

1b
′
2 cannot be edges. However, since the brick of G− e contains K4, there must be at least

one edge joining B and B ′. Now we consider various possibilities.
First let us show that b1b

′
1 cannot be an edge of G. For, suppose that b1b

′
1 is an edge of G. In this case, regardless

of where the additional edges incident with b2 and b′
2 are, it is easy to see that ∇({v1, b1, b

′
1}) would be a nontrivial

separating cut of G. This is impossible because G is solid. Therefore b1b
′
1 cannot be an edge of G. Similarly, b2b

′
2

cannot be an edge of G.
As noted above, there must be at least one edge joining B and B ′. Thus, either b1b

′
2 or b′

1b2 is an edge of G. Using the
symmetries of H, we may assume that b1b

′
2 is an edge of G. Suppose that b′

1b2 is not an edge of G. Then, in order for b′
1 and

b2 to have degree at least three, both b′
1v2 and b2v1 must be edges of G. It can be seen that H −v1v2 +b1b

′
2 +b′

1v2 +b2v1
is isomorphic to M8 and hence G − v1v2 is a brick. This is not possible by the hypothesis. Therefore, b′

1b2 must be an
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b2

v1

v2

Fig. 15. A subgraph H of G when e is of index two.

a1 a2

b1
b2 b3

v1

v2

v3

Fig. 16. A subgraph H of G when G − e has one barrier of size three.

edge of G. The graph H + b1b
′
2 + b′

1b2 is isomorphic to M8. As H + b1b
′
2 + b′

1b2 is a spanning subgraph of G, by the
minimality of G it follows that G is isomorphic to M8.

Case 2: The index of e is one and the maximal nontrivial barrier of G− e has cardinality three. Let B := {b1, b2, b3}
denote the barrier of G − e with I := {a1, a2}. Let v1, v2 and v3 denote the three vertices that are not in B ∪ I . Since
the underlying simple graph of the brick of G − e must be K4, it follows that v1v2, v2v3 and v1v3 are edges of G.
Furthermore, any perfect matching of G containing the edge a1a2 must match the vertices of B with the vertices in
{v1, v2, v3}. Thus, without loss of generality, we may assume that the graph H shown in Fig. 16 is a subgraph of G.

Note that all vertices of G must have degree at least three and that no edge can join two vertices of B or a vertex of I
to a vertex that is not in B ∪ I . Moreover, as e is thin, both ends of e must have degree two in G − e, whence b1 is not
joined to a2. Therefore, we may assume that b1 is joined to v2 or v3.

We now prove that b1 is not joined to v2. For this, assume the contrary. We consider two cases, depending on whether
or not b3 is also joined to v2. Consider first the case in which b3 is also adjacent to v2. Let C := ∇G({a1, a2, b2}).
One of the C-contractions of G is K4, up to multiple edges. The other C-contraction of G has W5 with hub v2 as a
spanning subgraph. But W5 is a brick. By Corollary 9, both C-contractions of G are bricks, whence C is a nontrivial
separating cut of G. This is a contradiction to the hypothesis that G is solid. Consider last the case in which b3 is not
joined to v2. In that case, b3 and v1 are adjacent. Let D := ∇G({b3, v1, v3}). One of the D-contractions of G is K4, up
to multiple edges. The other D-contraction of G has C6 as a spanning subgraph. But C6 is a brick. By Corollary 9, both
D-contractions of G are bricks, whence D is a nontrivial separating cut of G. This is a contradiction to the hypothesis
that G is solid. In both cases we derived a contradiction. As asserted, b1 is not joined to v2.

We conclude that vertices b1 and v3 are adjacent in G. Likewise, vertices b3 and v1 are adjacent in G. Thus, G has
G′ := H + b1v3 + b3v1 as a spanning subgraph. But G′ is S8. By the minimality of G and Corollary 9, it follows that
G itself is S8.
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Fig. 17. The case in which x is the hub of G′.

Case 3: The index of e is one and the nontrivial barrier of G − e has cardinality two. Let B := {b1, b2} denote
the nontrivial barrier of G − e and let a denote the isolated vertex of G − e − B. Since e is of index one, G′ :=
(G − e){{b1, b2, a} → x} must be a brick. Since G is solid, G′ is solid. By Theorem 44, the underlying simple graph
of G′ is the odd wheel W5. Let h denote the hub of G′ and let C := (v0, v1, v2, v3, v4, v0) denote its rim. We consider
two subcases depending on whether x is the hub of G′ or a vertex on the rim of G′.

Subcase: Vertex x is the hub of G′. In G′, x is adjacent to each vi . Therefore in G, each vi must be adjacent to at least
one of b1 and b2. Furthermore, since the degrees of b1 and b2 must be at least three, each of them must be adjacent to
at least two distinct vi . Therefore, we may assume that there exists a partition of V (C) into two parts S1 and S2 with
|S1| = 3, |S2| = 2, such that b1 is adjacent to all vertices in S1 and b2 is adjacent to all vertices in S2. We consider
two cases depending on whether or not S1 consists of three consecutive vertices of C. In the first case, we may assume
that b1 is adjacent to v1, v2 and v3 and b2 is adjacent to v4 and v5. Edge e joins a to one of the vertices of C. Thus, in
this case, graph G must be isomorphic to one of the three graphs (i)–(iii) in Fig. 17. In the alternative case, where the
vertices of S1 are not consecutive vertices of C, G must be isomorphic to one of the five graphs (iv)–(viii) shown in
Fig. 17.

The graph labelled (iii) in Fig. 17 is isomorphic to S8. By deleting the edges indicated in dotted lines in the graphs
labelled (v) and (vi) in Fig. 17, we obtain graphs isomorphic to M8. In each other case, the graph has a separating cut
consisting of the coboundary of the set of the three vertices indicated by solid dots.

Subcase: Vertex x is on the rim of G′. Suppose that x = v0. Note that the only neighbours of x in G′ are v1, v4 and h.
Therefore, a perfect matching of G − {h, a} must match the vertices in {b1, b2} with those in {v1, v4}. Thus, we may
assume without loss of generality that b1v1 and b2v4 are edges of G. Furthermore, since x is adjacent to h in G′, in G,
at least one of b1, b2 must be adjacent to h. Assume without loss of generality that b1 is adjacent to h. Also, since b2
has degree at least three in G, either it is also adjacent to h or it is adjacent to v1. The edge e joins a to h or to one of the
vertices v1, v2, v3 and v4 on the rim of C. Thus, it can be seen that, up to isomorphism, G must contain one of the eight
graphs shown in Fig. 18 as a subgraph. The first graph in the list is the odd wheel W7. The graph obtained by deleting
the edges indicated by dotted lines from the sixth graph is isomorphic to M8. In all other cases, the coboundary of the
set of vertices indicated by solid dots is a separating cut. �

7.2. Planar solid bricks

Here we shall prove that odd wheels are the only simple planar solid bricks. The following simple facts can be
gathered from the proofs of the theorems concerning solid bricks of order six and eight.
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a

b1 b2

v1

v2 v3

v4

h

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Fig. 18. The case in which x is on the rim of G′.

Lemma 46. No planar brick that is obtained by an expansion of the hub of W5 (up to multiple edges) by a barrier of
size two is solid.

Lemma 47. No planar brick that is obtained by an expansion of a vertex of W3 (up to multiple edges) by a barrier of
size three is solid.

Lemma 48. No planar brick that is obtained by an expansion of two vertices of W3 (up to multiple edges) by barriers
of size two is solid.

More generally, it turns out that a simple planar solid brick G with |V (G)|�6 can only be built from an odd wheel W
on |V (G)|−2 vertices by means of an expansion of a vertex on the rim of W by a barrier of size two. In the remainder of
this section, we shall let W denote an odd wheel (up to multiple edges) with hub h and rim R := (v0, v1, v2, . . . , v2n, v0).

Lemma 49. Let G be a planar brick obtained from an odd wheel W, of order five or more, by the expansion of the hub
h by a barrier of size two. Then G is nonsolid.

Proof. By induction on |E|. If G has any multiple edges, we may delete a multiple edge and apply induction. Therefore,
we may suppose that G is simple. Also, by Lemma 46, the statement is true when W has order five. Hence we may
assume that the order of W is at least seven.

Since every vertex on the rim is adjacent to the hub h in W, every vertex on the rim is adjacent to at least one of b1,
b2 in G. Thus, as the rim has at least seven vertices, we may assume without loss of generality that b1 has at least four
neighbours on the rim. Also, by the definition of the expansion under consideration, both b1 and b2 have at least two
distinct neighbours apart from a. Suppose first that there is a vertex vi on the rim that is adjacent to both b1 and b2 in
G. This means that the edges e1 := b1vi and e2 := b2vi of G correspond to multiple edges of W incident with h. After
the deletion of e1, both b1 and b2 still have at least two distinct neighbours apart from a. Thus G − e1 is obtained from
W − e1 by the expansion of h by a barrier of size two. By the induction hypothesis, G − e1 is nonsolid and hence, by
Theorem 41, G is also nonsolid. Thus we may suppose that every vertex on the rim is adjacent to precisely one of b1
and b2.

Let M be a perfect matching of G containing e. Then M matches the vertices in {b1, b2, a} with three vertices on the
rim of W. Thus there is a spoke f of W incident with b1 that does not belong to M. The cut C := ∇({b1, b2, a}) is a
tight cut of G − e. One of the C-contractions of G − e is W and f is removable in W. The other C-contraction of G − e

is a brace on four vertices and f is a multiple edge in it. Thus, f is removable in both the C-contractions of G − e and,
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therefore, is removable in G − e. But since f does not belong to the perfect matching M, it follows that f is removable
in G itself.

Suppose that vi is the end of f on the rim of W. It is adjacent to the vertices vi−1 and vi+1 on the rim and to b1 and no
other vertices. Thus, in G−f the vertex vi has degree two. Let Y := {vi−1, vi, vi+1}. The graph W ′ := (W−f ){Y → y}
is an odd wheel (up to multiple edges) of order two less than that of W and G′ := (G − f ){Y → y} is obtained from
W ′ by the expansion of h by a barrier of size two. (Since b1 has at least four distinct neighbours in G, it can be seen
that in G′ both b1 and b2 have at least two distinct neighbours on the rim of W ′.) It follows from Theorem 36 that G′ is
a brick. Furthermore, since G is planar, G′ is planar. By the induction hypothesis, G′ is nonsolid. As G′ is clearly the
only brick of G − f , it follows from Theorem 40 that G − f is nonsolid. Finally, it follows from Theorem 41 that G
itself is nonsolid. �

In Lemma 50 we shall consider a planar brick G that is obtained by the expansion of a vertex of an odd wheel W
by a barrier of size three and in Lemma 51 a planar brick that is obtained by an expansion of two vertices of W by
barriers of size two. In the proofs of these lemmas, under certain conditions, it is possible to directly find a separating
cut in G and deduce that it is nonsolid. In other cases, we find a suitable spoke f of W that is removable in G and apply
induction. The proofs in these cases are similar to the proof of the above lemma.

Lemma 50. Let G be a planar brick obtained from an odd wheel W by the expansion of a vertex x by a barrier of size
three. Then G is nonsolid.

Proof. By induction on the order of |E|. If G has any multiple edges, we may delete a multiple edge and apply induction.
Therefore, we may suppose that G is simple. Also, by Lemma 47, the statement is true if W has order three. So, we may
assume that the order of W is at least five. We shall divide the proof into two cases depending on whether the vertex x
is a vertex on the rim of W or is the hub h. (In the former case, we shall take x to be v0.)

Case 1: x=v0. Let M be a perfect matching of G containing the edge e. Then, M matches {b1, b2, b3} with {v1, h, v2n}.
The rest of the edges of M are from the rim of W. Let f be a spoke of W joining h to v2. As in the proof of Lemma 49, it
follows that f is removable in G. As G is simple, f is not a multiple edge. Thus, v2 has degree two in G − f and ∇(Y ),
where Y = {v1, v2, v3}, is a tight cut of G − f . Since all neighbours of b1, b2 and b3 in G are in the set {v1, h, v2n},
the numbers of neighbours of these vertices in G′ := (G − f ){Y → y} are the same as those in G. Hence G′ may be
regarded as an expansion of the vertex v0 on the rim of (W − f ){Y → y} by a barrier of size three. By the induction
hypothesis, G′ is nonsolid. As in the proof of Lemma 49, it follows that G is nonsolid.

Case 2: x = h. In this case, it is straightforward to verify that ∇({a1, a2, b2}) is a separating cut of G. Hence G is
nonsolid. �

Lemma 51. Let G be a planar brick obtained from an odd wheel W by the expansion of two vertices x and x′ by
barriers of size two. Then G is nonsolid.

Proof. By induction on |E|. As in the proof of the previous lemma, we may suppose that G is simple and that the
order of W is at least five. We shall consider three different cases depending on the locations of the vertices x and x′
in W.

Case 1: One of the two vertices x and x′ is the hub x := h of W. We may assume, without loss of generality, that G is
obtained from W by the expansion of the hub h by B := {b1, b2} and the vertex x′ := v0 on the rim by B ′ := {b′

1, b
′
2}.

Using the notation in Section 6, G has an edge e joining a and a′ where a is an isolated vertex of G − B and a′ is
an isolated vertex of G − B ′. A perfect matching of G − B matches the vertices of B ′ with the vertices in {v1, v2n}.
Thus, we may assume without loss of generality that v1b

′
1 and b′

2v2n are edges of G. Furthermore, there is an edge in
W joining h and v0. Thus, there must be at least one edge of G joining a vertex in B to a vertex in B ′. Thus, we may
assume without loss of generality that b1b

′
1 is an edge of G.

We may extend the rim R of W to the circuit C := (a′, b′
1, v1, v2, . . . , v2n, b

′
2, a

′). By planarity, the neighbours
of b1 and b2 on C must consist of nonoverlapping segments of that circuit. Each of these segments must have at
least two vertices. Let S1 and S2 denote the segments of C, consisting of the neighbours of b1 and b2, respectively.
Vertices b′

1 and v1 are certainly in S1 and v2n is certainly in S2. Vertex b′
2 may or may not belong to S2. If b′

2
belongs to S2, then b2b

′
2 is an edge of G and M := {b1b

′
1, aa′, b2b

′
2, v1v2, . . . , v2n−1v2n} is a perfect matching of
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G containing e = aa′. On the other hand, if b′
2 does not belong to S2, it must be adjacent to v1 in G. In this case,

M := {b1b
′
1, aa′, b′

2v1, b2v2n, v2v3, . . . , v2n−2v2n−1} is a perfect matching of G containing e = aa′.
If the vertex v2 is in both S1 and S2, then there are two spokes of W incident with v2. Let f := b1v2. In G − f , each

of the four vertices in B ∪ B ′ has at least two neighbours not in {a, a′} and at least one neighbour in W − {h, v0}. Thus
G − f may be regarded as an expansion of W − f at h and v0 by B and B ′, respectively, and induction can be applied.
So, suppose that there is only one spoke, say f, of W incident with v2. Then consider the graph G′ : (G − f ){Y → y}
and the odd wheel W ′ := (W − f ){Y → y}, where Y = {v1, v2, v3}. It can be verified that G′ may be regarded as an
expansion of W ′ at h and v0 by B and B ′. By the induction hypothesis G′ is nonsolid. As in the proof of Lemma 49, it
follows that G is nonsolid.

Case 2: x = vi and x′ = vj are nonadjacent vertices on the rim of W. A perfect matching of G − {h, a} matches the
vertices of B with the vertices in {vi−1, vi+1} and a perfect matching of G − {h, a′} matches the vertices of B ′ with the
vertices in {vj−1, vj+1}. Therefore, we may assume without loss of generality that

C := (b1, a, b2, vi+1, . . . , vj−1, b
′
1, a

′, b′
2, vj+1, . . . , vi−1, b1)

is a circuit of G. The edge e = aa′ and the edges incident with h belong to two overlapping bridges of C. Hence they
must belong to different residual domains of the Jordan curve C. We may assume that h is in the interior and e is the
exterior of C. Using planarity and the facts that NW(x) = {vi−1, h, vi+1} and NW(x′) = {vj−1, h, vj+1}, it is now easy
to deduce that NG(b1) = {vi−1, a, h}, NG(b2) = {vi+1, a, h}, NG(b′

1) = {vj−1, a
′, h} and NG(b′

2) = {vj+1, a
′, h}.

Since C is an odd circuit, one of the two components, say P, of C − {a, a′} is even. It can be verified that both
∇(P ∪ {h})-contractions of G are odd wheels (up to multiple edges). It follows that G is nonsolid.

Case 3: x and x′ are adjacent vertices on the rim of W. We may adjust notation so that x = v0 and x′ = v1. A perfect
matching of G−B matches the vertices of B ′ with the two vertices in {h, v2} and a perfect matching of G−B ′ matches
the vertices of B with the two vertices in {h, v2n}. So, we may assume without loss of generality that v2nb1, b2h, b′

1h

and b′
2v2 are edges of G. Thus

C := (b1, a, a′, b′
2, v2, v3, . . . , v2n, b1)

is a circuit of G. The circuit C together with the spokes hv2, hv3, . . . , and hv2n and the two paths (h, b2, a) and
(h, b′

1, a
′) is a subdivision of an odd wheel and so has a unique embedding in the plane. Now, using planarity, we may

deduce that b1b
′
1 and b2b

′
2 cannot be edges of G. Since v0 and v1 are adjacent in W, there must be at least one edge in G

between B and B ′. Thus, we may conclude that the set of edges between B and B ′ is a nonempty subset of {b1b
′
2, b2b

′
1}.

If both b1b
′
2 and b2b

′
1 are edges of G, then

{e, b1b
′
2, b2b

′
1, v2h, v3v4, . . . , v2n−1v2n}

is a perfect matching of G containing the edge e. If b1b
′
2 is an edge and b2b

′
1, is not an edge, then b2v2n and b′

1v2 will
have to be edges and

{e, b1b
′
2, b

′
1v2, b2h, v3v4, . . . , v2n−1v2n}

is a perfect matching of G. If b2b
′
1 is an edge and b1b

′
2, is not an edge, then b1h and b′

2h will have to be edges and
{e, b2b

′
1, b1h, b′

2v2, v3v4, . . . , v2n−1v2n} is a perfect matching of G. In every case, one can easily verify that the spoke
f = hv3 can be deleted and induction applied to deduce that G is nonsolid. �

Theorem 52. Every simple solid planar brick G is an odd wheel.

Proof. By induction on |E|. If G has four vertices, the theorem is clearly true. Therefore, we may assume that |V |�6.
Thus, clearly, G is distinct from the three basic bricks. Therefore, by Theorem 36, G is obtained by applying one of
the four operations of expansion to a planar solid brick G′ with |E(G′)| < |E(G)|. By the induction hypothesis, the
underlying simple graph of G′ is an odd wheel. To conform to the notation we have been using, let us set W := G′.

From Proposition 42 and Lemmas 49–51, it follows that G is obtained by expanding a vertex on the rim of W by a
barrier of size two. Let us take that vertex x to be v0. A perfect matching of G − {a, h} matches the vertices of B with
{v1, v2n}. Without loss of generality, we may assume that v1b1 and b2v2n are edges of G. Since x and h are adjacent in W,
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at least one of b1 and b2 must be adjacent to h in G. Assume without loss of generality that b1h is an edge of G. We
shall consider two separate cases depending on whether or not b2h is also an edge of G.

Case 1: b2h /∈ E(G). In this case b2v1 must be an edge of G. Then, by planarity, edge e must join a to either h or to
v2n. If ah is an edge, then G is nonsolid by Proposition 43. If av2n is an edge, then ∇({a, b2, v2n}) is a separating cut
of G and hence G is nonsolid.

Case 2: b2h ∈ E(G). In this case, if e joins a to a vertex other than h, then G has a separating cut by Proposition 43.
Thus, we may assume that ah is an edge. In this case G is an odd wheel. �
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