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When constructing a Bayesian network classifier from data, the more or less redundant
features included in a dataset may bias the classifier and as a consequence may result
in a relatively poor classification accuracy. In this paper, we study the problem of selecting
appropriate subsets of features for such classifiers. To this end, we propose a new defini-
tion of the concept of redundancy in noisy data. For comparing alternative classifiers, we
use the Minimum Description Length for Feature Selection (MDL-FS) function that we
introduced before. Our function differs from the well-known MDL function in that it
captures a classifier’s conditional log-likelihood. We show that the MDL-FS function serves
to identify redundancy at different levels and is able to eliminate redundant features from
different types of classifier. We support our theoretical findings by comparing the feature-
selection behaviours of the various functions in a practical setting. Our results indicate that
the MDL-FS function is more suited to the task of feature selection than MDL as it often
yields classifiers of equal or better performance with significantly fewer attributes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many real-life problems, such as medical diagnosis and troubleshooting of technical equipment, can be viewed as a clas-
sification problem, where an instance described by a number of features has to be classified in one of several distinct pre-
defined classes. For many of these classification problems, instances of every-day problem solving are recorded in a dataset.
Such a dataset often includes more features, or attributes, of the problem’s instances than are strictly necessary for the clas-
sification task at hand. When constructing a classifier from the dataset, these more or less redundant features may bias the
classifier and as a consequence may result in a relatively poor classification accuracy. By constructing the classifier over just a
subset of the features, a less complex classifier is yielded that tends to have a better generalisation performance [1]. Finding a
minimum subset of features such that the selective classifier constructed over this subset is optimal for a given performance
measure, is known as the feature subset selection problem [2–4]. The feature subset selection problem unfortunately is NP-
hard in general [5–8].

We begin by providing a new definition of the concept of redundancy of attributes, where the redundancy is viewed with-
in some allowed amount of noise in the data under study. It allows us to study feature selection for different types of Bayes-
ian network classifier more specifically. With our definition we distinguish between different levels of redundancy for an
attribute. The levels depend on the cardinality of the (sub)sets of other attributes with which the attribute is combined
so that the attribute is not useful for the classification task. We will argue that these levels of redundancy provide for relating
the problem of feature subset selection to the types of dependence that can be expressed by a Bayesian network classifier. By
allowing noise for the various levels, our concept of redundancy provides for studying feature selection in a practical setting.
. All rights reserved.
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For constructing a selective classifier, generally a heuristic algorithm [9] is used that searches the space of possible mod-
els for classifiers of high quality. Because of its simplicity, its intuitive theoretical foundation and its associated ease of com-
putation, the MDL function and its variants [10] have become quite popular as quality measures for constructing Bayesian
networks from data, and in fact for constructing Bayesian network classifiers [11]. The function in essence weighs the com-
plexity of a model against its ability to capture the observed probability distribution. While the MDL function and its variants
are accepted as suitable functions for comparing the qualities of alternative Bayesian networks, they are not without criti-
cism when constructing Bayesian network classifiers. The criticism focuses on the observation that the functions capture a
joint probability distribution over the variables of a classifier, while it is the conditional distribution over the class variable
given the attributes that is of interest for the classification task [11–17].

For comparing the qualities of alternative classifiers, we propose the Minimum Description Length for Feature Selection
(MDL-FS) function [18]. The MDL-FS function is closely related to the well-known Minimum Description Length (MDL) func-
tion. It differs from the MDL function only in that it encodes the conditional probability distribution over the class variable
given the various attributes. Upon using the function as a measure for comparing the qualities of Bayesian network classifiers
therefore, this conditional distribution has to be learned from the available data. Unfortunately, learning a conditional dis-
tribution is generally acknowledged to be hard [19–21], since it does not decompose over the graphical structure of a Bayes-
ian network classifier as does the joint distribution. Our MDL-FS function approximates the conditional distribution by
means of an auxiliary Bayesian network which captures the strongest relationships between the attributes. With the func-
tion, both the structure of the Bayesian network classifier over all variables involved and the structure of the auxiliary net-
work over the attributes are learned using a less demanding generative method. The conditional log-likelihood of the
classifier then is approximated by the difference between the unconditional log-likelihood of the classifier and the log-like-
lihood of the auxiliary network.

This paper is organised as follows: In Section 2 we provide some background on Bayesian networks and on Bayesian net-
work classifiers more specifically; we further review the MDL function and present our notational conventions. In Section 3
we introduce the problem of feature subset selection and provide a formal definition of the concept of redundancy. We intro-
duce our new MDL-FS function and study its relationship with the MDL function in Section 4. In Section 5, we investigate the
feature-selection behaviour of the MDL-FS function in general and we compare it with the behaviour of the MDL function.
In Section 6 we study the use of the MDL-FS function in constructing selective Naïve Bayes and TAN classifiers from data. In
Section 7 the feature-selection behaviour of the MDL-FS and MDL functions and other state of the art feature selection algo-
rithms are compared in a practical setting. Our results indicate that the MDL-FS function indeed is more suited to the task of
feature subset selection than the MDL function or other feature selection algorithms as it yields classifiers of comparably
good or even significantly better performance with fewer attributes. The paper ends with our concluding observations
and remarks in Section 8.
2. Background

In this section, we provide some preliminaries on Bayesian networks and on Bayesian network classifiers more specifi-
cally. We conclude this section with a discussion of the MDL function.

2.1. Bayesian networks and Bayesian network classifiers

We consider a set V of stochastic variables Vi; i ¼ 1; . . . ;n; n P 1. We use XðViÞ to denote the set of all possible (discrete)
values of the variable Vi; for ease of exposition, we assume a total ordering on the set XðViÞ and use vk

i to denote the kth
value of Vi. For any subset of variables S # V , we use XðSÞ ¼ �Vi2SXðViÞ to denote the set of all joint value assignments to
S. A Bayesian network over V now is a tuple B ¼ ðG; PÞ where G is a directed acyclic graph and P is a set of conditional prob-
ability distributions. In the digraph G, each vertex models a stochastic variable from V. The set of arcs captures probabilistic
independence: for a topological sort of the digraph G, that is, for an ordering V1; . . . ;Vn, n P 1, of its variables with i < j for
every arc Vi ! Vj in G, we have that any variable Vi is independent of the preceding variables V1; . . . ;Vi�1 given its parents in
the graphical structure. Associated with the digraph is a set P of probability distributions: for each variable Vi are specified
the conditional distributions PðVijpðViÞÞ that describe the influence of the various assignments to the variable’s parents pðViÞ
on the probabilities of the values of Vi itself. The network defines a unique joint probability distribution PðVÞ over its vari-
ables with
PðVÞ ¼
Y
Vi2V

PðVijpðViÞÞ
Note that the thus defined probability distribution factorises over the network’s digraph into separate conditional distribu-
tions. Bayesian network classifiers are Bayesian networks of restricted topology that are tailored to solving classification
problems. In a classification problem, instances described by a number of features have to be classified in one of several dis-
tinct predefined classes. We consider to this end a set A of stochastic variables Ai, called attributes, that are used to describe
the features of the instances. We further have a designated variable C, called the class variable, that captures the various pos-
sible classes. Bayesian network classifiers now are defined over the set of variables A [ fCg. Like a Bayesian network in general,
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they include a graphical structure that captures a probabilistic independence relation among the variables involved, and rep-
resent a joint probability distribution that is factorised in terms of this graphical structure.

A Naive Bayes classifier over A [ fCg has for its graphical representation a tree-like structure with the variables A [ fCg for
its nodes. The class variable is the root of the tree and each attribute has the class variable for its unique parent. The graphical
structure of the classifier models the assumption that all attributes Ai 2 A are mutually independent given the class variable.
The joint probability distribution PðC;AÞ defined by the classifier now equals PðC;AÞ ¼ PðCÞ �

Q
Ai2APðAijCÞ. A Tree Augmented

Network (TAN) classifier [11] over A [ fCg has for its graphical representation a directed acyclic graph in which the class var-
iable is the unique root and in which each attribute has the class variable and at most one other attribute for its parents. The
subgraph induced by the set of attributes, moreover, is a directed tree, termed the attribute tree of the classifier. The joint
probability distribution that is defined by the classifier equals PðC;AÞ ¼ PðCÞ �

Q
Ai2APðAijpðAiÞÞ.

2.2. Learning Bayesian network classifiers

Bayesian network classifiers are typically constructed from a dataset in which instances of every-day problem solving
have been recorded along with their associated classes. A labelled instance is composed of a set of attributes A and an asso-
ciated class value; it thus is an element of XðA [ fCgÞ. For the learning task, we consider a dataset D with N P 1 labelled in-
stances over A [ fCg. With D, we associate the counting function ND : [S # A[fCgXðSÞ ! N that associates with each value
assignment sk to S, the number of instances in D for which S ¼ sk; for S ¼£, we take the function value of ND to be equal
to N. The dataset D now induces a joint probability distribution bPDðC;AÞ, termed the observed distribution, over A [ fCg, withbPDðcg ; akÞ ¼ Nðcg ; akÞ=N, for all values cg of C and all value assignments ak to A. In the sequel, we will omit the subscript D
from the counting function ND and from the observed distribution bPD as long as ambiguity cannot occur. Learning a classifier
from the dataset now amounts to selecting a classifier, from among a specific family of classifiers, that approximates the ob-
served data. We assume that there might be noise – by means of any errors that interfere in the relationships between class
and attributes – in the dataset D. For a review of the impact of the noise over the class variable and the attributes in a dataset
we refer to Zhu and Wu [22]. For comparing alternative classifiers various different quality measures are in use. In this sec-
tion, we review the measures that we will use throughout the paper. Before doing so, we briefly review the basic concepts of
entropy; for a more elaborate introduction, we refer the reader to any textbook on information theory.

2.2.1. Entropy
The concept of entropy originates from information theory and describes the expected amount of information that is re-

quired to establish the value of a stochastic variable, or set of stochastic variables, to certainty. For an overview of these con-
cepts we refer to Shannon [23]. We consider a set of variables X and a joint distribution P over X. The entropy HPðXÞ of X in P is
defined as
HPðXÞ ¼ �
X

xi2XðXÞ

PðxiÞ � log PðxiÞ
where log indicates a logarithm to the base 2 and 0 � log 0 is taken to be equal to 0. The entropy function attains its maximum
value for a uniform probability distribution over X. The larger the set XðXÞ of possible value assignments to X, the larger the
maximum attained is; for a binary variable, for example, the maximum equals 1.00, while for a variable with jXðXÞj possible
values, the maximum entropy is log jXðXÞj. The function further attains its minimum value for any degenerate distribution P
over X with PðxjÞ ¼ 1 for some value assignment xj 2 XðXÞ and PðxiÞ ¼ 0 for all other assignments xi 2 XðXÞ; i–j. The mini-
mum value equals 0, indicating that there is no uncertainty left as to the true value of X.

We now consider a set of stochastic variables X [ Y and a joint probability distribution P over X [ Y . The amount of uncer-
tainty as to the true value of X that is expected to remain after observing a value assignment for Y, is captured by the con-
ditional entropy HPðXjYÞ of X given Y in P; it is defined as
HPðXjYÞ ¼ �
X

xi2XðXÞ;yj2XðYÞ

Pðxi; yjÞ � log PðxijyjÞ
The entropy of the set of variables X is never expected to increase by observing a value assignment for the set Y, that is,
HPðXjYÞ 6 HPðXÞ, for any (disjoint) sets X, Y; if the sets X and Y are independent in the probability distribution under consid-
eration, then HPðXjYÞ ¼ HPðXÞ. More in general, for any sets Y, Z with Z \ Y ¼ ;, we have that HPðXjY; ZÞ 6 HPðXjYÞ.

2.2.2. Quality measures
The main purpose in constructing a Bayesian network is to approximate, as well as possible, the unknown true joint prob-

ability distribution P over the variables involved. Upon constructing the network from data, for this purpose only an ob-
served distribution bP is available. Alternative networks then are compared by means of a quality measure that serves to
express how well the represented distribution explains the data. The most commonly used quality measure is the log-like-
lihood measure that assigns to a network, given a particular dataset, a numerical value that is proportional to the probability
of the dataset being generated by the joint probability distribution represented by the network. The log-likelihood of a net-
work B given a dataset D is defined more formally as



698 M.M. Drugan, M.A. Wiering / International Journal of Approximate Reasoning 51 (2010) 695–717
LLðBjDÞ ¼ �N �
X
Vi2V

HbP ðVijpBðViÞÞ
where V is the set of variables included in the network and pBðViÞ denotes the set of parents of Vi in the network’s digraph.
While for constructing Bayesian networks in general the main purpose is to approximate the true joint distribution, for a

Bayesian network classifier it is the conditional probability distribution of the class variable given the attributes that is of
importance. Alternative classifiers therefore are to be compared as to their ability to describe the data for the various differ-
ent classes. The conditional log-likelihood of a classifier C given a dataset D now is defined as
CLLðCjDÞ ¼ �N � HbPC ðCjAÞ

where bPC again denotes the observed joint distribution factorised over the classifier’s graphical structure. Since the condi-
tional probability distribution of the class variable given the attributes does not factorise over the graphical structure of a
classifier, the conditional log-likelihood measure does not decompose into separate terms as does the unconditional log-like-
lihood measure. Because of its associated complexity of computation, the conditional log-likelihood measure is not used di-
rectly in practice.

An alternative measure that is often used for comparing the qualities of Bayesian network classifiers, is the classification
accuracy [24]. In essence, we define the classification accuracy of a classifier C to be the probability of an instance being la-
belled with its true class value, that is,
accuracyðCÞ ¼
X

ak2XðAÞ

PðakÞ � accuracyðC; akÞ
where
accuracyðC; akÞ ¼ 1 if C returns the true class value for ak

0 otherwise

(

Note that the joint probability distribution PðakÞ over all possible value assignments to A is readily established from the joint
probability distribution over all variables involved:
PðakÞ ¼
X

cg2XðCÞ
Pðcg ; akÞ
Since upon constructing a Bayesian network classifier from data the true joint probability distribution is not known, it is
approximated for practical purposes by the observed distribution.

2.2.3. The MDL function
The well-known Minimum Description Length (MDL) principle [10] is often employed as the basis for comparing the qual-

ities of Bayesian networks in general. Since in this paper we build upon this principle, we briefly review the, more or less
standard, two-parts MDL function.

Let V be a set of stochastic variables as before. Let D be a dataset of N labelled instances over V and let bPðVÞ be the joint
probability distribution observed in D. Let B be a Bayesian network over V. Then, the MDL score of the network with respect
to the data is defined as
MDLðBjDÞ ¼ log N
2
� jBj � LLðBjDÞ
where
jBj ¼
X
Vi2V

ðjXðViÞj � 1Þ � jXðpBðViÞÞj
with pBðViÞ as before, and where LLðBjDÞ is the log-likelihood of the network given the data.
The MDL score of a given network serves to indicate the network’s quality with respect to the data under study. The smal-

ler the score, the better the network is. The larger the value of the log-likelihood term, that is, the closer it is to zero, the
better the network models the observed probability distribution. As a fully connected network perfectly matches the data,
it will have the largest log-likelihood term. Such a network will generally show poor performance, however, as a result of
overfitting. The penalty term now counterbalances the effect of the log-likelihood term within the MDL function since it in-
creases in value as a network becomes more densely connected. For a network that is too simple, the values of both the pen-
alty term and the log-likelihood term are rather small. For a network that is too complex, on the other hand, the values of the
two terms are both quite large.

The two-parts MDL function reviewed above is just one of the many forms of the Minimum Description Length prin-
ciple. An overview and comparison of the various alternative forms is provided by Hansen and Yu [25]. The alternative
MDL functions typically are generalisations of the two-parts function. Many of these alternative functions have been de-
signed for other purposes and are hard to implement in the context of learning Bayesian networks from data. A possible
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exception is the normalised maximum log-likelihood (NML) [26] function for multimodal (discrete) data, which has been
tailored to Naive Bayes classifiers [27] and to general Bayesian network classifiers [28]. Just like the two-parts MDL func-
tion, moreover, the NML function encodes the joint probability distribution over the class variable and the attributes
rather than the conditional distribution. In the remainder of the paper, we will argue that the poor feature-selection
behaviour of the two-parts MDL function originates from not using the conditional distribution. Our observations can thus
be extended to the NML function and in fact to any form of the MDL function that captures the joint distribution over the
variables involved.
3. Feature subset selection

We now define the problem of feature subset selection. We further introduce the concept of redundant attribute which
we will use in the sequel for studying the feature-selection behaviour that is induced by various different quality measures.

3.1. The problem of feature subset selection

For our motivating example for doing feature selection in the context of the Bayesian network classifiers, we consider the
task of constructing a Bayesian network classifier over a set of attributes A that contains two perfectly correlated attributes Ai

and Aj where Aj is an exact copy of Ai. As argued before [29], by including both Ai and Aj in for example a Naive Bayesian
classifier, Ai (or Aj alternatively) will have twice the influence of the other attributes, which may strongly bias the perfor-
mance of the classifier. A possible way to improve the classification performance then is to eliminate one of the attributes
Ai and Aj from the set A and to construct the classifier over the reduced set of attributes; the resulting classifier is called a
selective classifier. Eliminating attributes upon constructing a classifier is commonly known as feature subset selection. We de-
fine the problem of feature subset selection more formally.

Definition 1. Let A be a set of attributes, let C be a class variable, and let D be a set of labelled instances over A [ fCg. LetM
be a specific family of Bayesian network classifiers and let R be a performance measure onM. The problem of feature subset
selection for A and D givenM andR is the problem of finding a minimum subset S # A such that the selective classifier C 2 M
constructed over S maximises performance on D according to the measure R.

From the definition we have that the problem of feature subset selection is restricted to a specific family of Bayesian net-
work classifiers and to a specific performance measure. Example families of classifiers are the family of Naive Bayesian clas-
sifiers and the family of TAN classifiers [11]. Examples of performance measures are the classification accuracy and the
conditional log-likelihood.

Our definition of the problem of feature subset selection is related to the first definition proposed by Tsamardinos and
Aliferis [6]. In our notation, they define a feature selection problem to be a tuple hD;A [ fCg; alg;Ri, where D is a dataset over
the variables A [ fCg, alg is the algorithm used to construct the classifier with, andR is a performance measure. A solution to
the problem then is a subset of attributes S # A such that the selective classifier over S that is constructed using alg maxi-
mises performance on D given R. There are a number of differences between the two definitions, however. For example
we assume in our definition a fixed family of classifiers from among which a model is to be selected. Tsamardinos and Aliferis
argue that practitioners would not like to solve a feature-selection task for a fixed family of classifiers and therefore do not
restrict their definition. Our main motivation for including a fixed family of classifiers in our definition is that practitioners
often are forced to select a model from among a fixed family for computational reasons or for lack of data. Another motiva-
tion for restricting our definition to a family of classifiers, is that it provides for studying the feature-selection behaviour of
different quality measures in more detail. We further note that we do not specify a particular learning algorithm with our
definition of the problem of feature subset selection. Our main motivation for not including a learning algorithm is that we
do not want to capture the biases introduced by the heuristics involved into our definition. Defining the problem feature
subset selection as a fundamental concept now allows us to study and compare the biases of the various learning algorithms
in use.

3.2. The concept of redundancy

Upon constructing a selective classifier, the set of attributes A under study is split into two subsets S and O, with S [ O ¼ A
and S \ O ¼£. S is the subset of attributes that are selected to construct the classifier with and O is the subset of attributes
that will not be incorporated in the classifier. The attributes included in S are deemed important, whereas the attributes from
O are considered to be redundant for the classification task. We define our concept of redundancy.

Definition 2. Let Ai 2 A be an attribute, let S # A n fAig be a subset of attributes, and let C be the class variable as before. Let D
be a dataset of labelled instances over A [ fCg. We say that Ai is redundant for C given S in D, if for every value ak

i of Ai, for
every value cl of C, and for every value assignment sj to S such that Nðak

i ; s
jÞ > 0, we have that
Nðak
i ; s

j; clÞ
Nðak

i ; s
jÞ
¼ Nðsj; clÞ

NðsjÞ
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For jSj ¼ m, we say that Ai is redundant for C at level m. We further say that Ai is irredundant for C given S in D if it is not
redundant for C given S in D. If, for all subsets S with jSj ¼ m, attribute Ai is not redundant for C given S, we say that Ai is
irredundant for C at level m.

We note that, if an attribute Ai is redundant for C given S in D, we have, in terms of probabilities, that bPðCjAi; SÞ ¼ bPðCjSÞ,
that is, the class variable C is independent of Ai given S in the observed distribution. Moreover, if Ai is redundant for C given S
and Nðsj; clÞ > 0 for all value assignments cl and sj, then
Table 1
The exa

C

0
1
1
1
1
0
1
1
0
1
1
1
1
0
1
1

Nðak
i ; s

j; clÞ
Nðsj; clÞ ¼

Nðak
i ; s

jÞ
NðsjÞ
from which we have that bPðAijS;CÞ ¼ bPðAijSÞ.
The following example illustrates our concept of redundancy as well as the different levels at which attributes can be

redundant for a class variable.

Example 1. We consider a classification problem with the binary attributes A ¼ fA1; . . . ;A8g and the binary class variable C.
The class variable C is defined as C ¼ ðA4 � A1Þ _ A2, where � denotes the XOR operator and _ the logical OR operator. Among
the nine variables involved, there are some logical relationships and some probabilistic independence relationships. The
logical relationships among the attributes are A6 ¼ A1 _ A2 _ A4; A7 � A5, and A8 � A2. For the independence relationships,
we have that A3 is independent of C given A2; A3 further is unconditionally dependent of A2 and of C. Given these
relationships, there are 32 possible instances of the variables involved; these instances are shown in Table 1. We now assume
that we have a dataset in which each possible instance occurs exactly once. From the dataset, we observe that the attributes
A1 and A4 both are redundant for the class variable C at level 0; so, for all values aj

1 2 XðA1Þ; ak
4 2 XðA4Þ and cl 2 XðCÞ, we

have that Nðcl; aj
1Þ=Nðaj

1Þ ¼ NðclÞ=N and Nðcl; ak
4Þ=Nðak

4Þ ¼ NðclÞ=N. A1 and A4 are irredundant for C at all higher levels, since for
all subsets S # A n fA1;A4g there are values aj

1; ak
4; cl, and si 2 XðSÞ, for which Nðcl; aj

1; a
k
4; s

iÞ=Nðaj
1; a

k
4; s

iÞ–Nðcl; siÞ=NðsiÞ. The
attributes A5 and A7 are redundant for the class variable at all possible levels, that is, from level 0 to level jAj � 1 ¼ 7. The
attribute A2 is irredundant for C at all levels including level 0. A3 and A8 are irredundant for C at level 0, but redundant at all
higher levels given any subset of attributes that containsA2. The attribute A6 is irredundant for C at all levels below level 3; at
level 3 and higher, it is redundant for C given any subset of attributes that contains A1; A2 and A4. We note that the attributes
A1; A2 and A4 serve to completely determine the value of the class variable C. The Bayesian network classifier with the
smallest number of attributes giving the highest classification accuracy is shown in Fig. 1.
3.2.1. Related work
We are not the first to define a concept of redundancy in the context of feature subset selection. The various concepts in

use [5,6,30–35] differ in whether they address redundancy with respect to the class variable in terms of single attributes or
in terms of sets of attributes. Using a concept of redundancy in terms of single attributes involves studying the relationship
between the class variable and each attribute separately. Using a concept of redundancy in terms of subsets of attributes
involves investigating all possible subsets of attributes and, as a consequence, is much more demanding from a computa-
tional point of view. Tsamardinos and Aliferis [6] studied redundancy in terms of sets of attributes and found that the con-
cept does not behave monotonically with respect to taking supersets of attributes, that is, a redundant subset of attributes
may become irredundant by including an additional attribute, and vice versa. We have decided, in accordance with this
observation, to explicitly distinguish between redundancy at various different levels.
mple dataset illustrating the concept of redundancy.

A1 A2 A3 A4 A5 A6 A7 A8 C A1 A2 A3 A4 A5 A6 A7 A8

0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0
0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1
1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0
1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0
1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0 0
0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0
1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0
1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1



Fig. 1. The optimal Bayesian network classifier for our example dataset.
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We compare our concept of redundancy to some of the other concepts that have been defined in terms of sets of attri-
butes. John et al. [31], for example, defined the closely related concepts of relevance and irrelevance. Upon introducing their
concepts, they argued that a simple distinction between relevant and irrelevant attributes does not suffice to partition the set
of attributes into subsets that provide for studying the differences in feature-selection behaviour of alternative algorithms
and quality measures. They therefore introduce two degrees of relevance. In contrast with the concept of John et al., our con-
cept provides for studying redundancy at all possible levels 0; . . . ; jAj � 1 separately. In the sequel we will illustrate the
importance of distinguishing between these levels for learning different types of classifier.

Alternative definitions of redundancy have also been proposed by Tsamardinos and Aliferis [6], Koller and Sahami [33]
and Liu et al. [34]. Tsamardinos and Aliferis relate the conditional probability of the class variable given a set of attributes
to conditional independence and build their concept of redundancy on the associated concept of Markov blanket. Given a
dataset of labelled instances, the Markov blanket of the class variable is the minimal set of attributes which, upon value
assignment, completely substitutes the influences of the other attributes on the class variable; given its Markov blanket,
therefore, the class variable is independent of all other attributes. Tsamardinos and Aliferis now showed that, for any prob-
ability distribution that is faithful to a Bayesian network, the Markov blanket of the class variable coincides with the set of
strongly relevant attributes; a distribution is said to be faithful to a Bayesian network if all dependences and independences
embedded in the distribution can be captured by a graphical structure. They further showed that, in a Bayesian network
faithfully modelling the distribution, an attribute Ai is weakly relevant for the class variable C if and only if Ai is not strongly
relevant and there is an undirected path from Ai to C. The concept of redundancy defined by Tsamardinos and Aliferis thus in
essence is equivalent to that of John et al. for any probability distribution that is faithful to a Bayesian network. For an ob-
served distribution that is not faithful to a Bayesian network, however, the Markov blanket of the class variable may not be
unique. Moreover, any of the multiple blankets may then include weakly relevant attributes in addition to strongly relevant
ones [36]. Building upon the concept of Markov blanket would then not result in a minimal subset of attributes shielding the
influences of the other attributes from the class variable. Finally, Liu et al. [34] use parameters which are learned from the
data to discriminate between relevant and irrelevant features.

3.3. The issue of noise

When constructing a selective classifier in practice, the relationship between an attribute Ai and the class variable C, as
captured by the available data, is investigated. Using our definition, the attribute can be either redundant or irredundant for
the class variable, that is, it can be either (conditionally) independent or dependent of C. The (in)dependences are established
from a dataset of instances that are assumed to have been generated from an unknown true probability distribution. As the
dataset under study is finite, however, it may not reflect the (in)dependences from the true distribution exactly; the dataset
then is said to include noise [22]. More specifically, the attribute Ai may be independent of the class variable C in the true
distribution, yet appear to be irredundant in the observed distribution, for example, due to chance of observed instances
or to the misclassified instances. Attributes that have a very weak dependence of the class variable in the observed distri-
bution therefore, may in fact be independent. To provide for feature subset selection in a practical setting, we introduce
the concept of redundancy within an allowed amount of noise.

Definition 3. Let Ai 2 A be an attribute, let S # A n fAig be a subset of attributes, and let C be the class variable as before. Let D
be a dataset of N labelled instances over A [ fCg. Let nðAi;C; S;NÞ > 0 be a threshold value for the allowed amount of noise.
We say that Ai is redundant for C given S in D within the allowed amount of noise nðAi;C; S;NÞ, if
HbP ðCjSÞ � HbP ðCjAi; SÞ < nðAi; C; S;NÞ
Otherwise, we say that Ai is irredundant for C given S.

From the above definition, we have that an attribute Ai is said to be redundant for the class variable C given S within some
allowed amount of noise n, if obtaining a value for Ai serves to reduce the conditional entropy of C given S by at most n. Note
that if obtaining a value for Ai does not reduce the entropy of C given S at all, that is, if HbP ðCjSÞ � HbP ðCjAi; SÞ ¼ 0, we have that
Ai is simply redundant for C given S. Since the conditional entropy depends on the number of values that the variables in-
volved can adopt, we have defined the allowed amount of noise to be functionally dependent of Ai, C and S. The function is
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also taken to be dependent of the number of observed instances, since we would like to allow less noise for larger datasets in
which the true (in)dependences are better represented. The threshold function may have many different forms; we will re-
turn to this observation in subsequent sections where we analyse the feature-selection behaviour of the MDL function.

Note that HbP ðCjSÞ � HbP ðCjAi; SÞ ¼ HbP ðAijSÞ � HbP ðAijC; SÞ. We further call the term HbP ðAijSÞ � HbP ðAijC; SÞ � nðAi; C; S;NÞ the
amount of irredundancy the attribute Ai has for C given the attribute set S within the allowed noise level nðAi;C; S;NÞ. We ob-
serve that a negative amount of irredundancy corresponds to redundancy of the attribute Ai for C given S within nðAi;C; S;NÞ,
whereas a positive amount of irredundancy corresponds with irredundancy.

Zhu and Wu [22] experimentally study the relationship between the (in)dependency between attributes and the class
variable and the impact of noise over the performance of a classifier. In their study, they make the assumption that attributes
are independent of each other given the class variable. They show that the stronger the relationship between an attribute
and the class variable the more impact the noise of this attribute has over the classifier. Our definition of noise also captures
the relationships between the class variable and the involved attributes. Furthermore, it generalises the above observation
by considering also the dependencies between the attributes given the class variable.

By redefining our concept of redundancy, we explicitly provide for handling a limited amount of noise in a dataset under
study. Another approach to the problem of insufficient data is to not allow explicitly for noise, but to use heuristic algorithms
for establishing redundancy. Such an algorithm for example never studies a larger number of variables at the same time.

4. An MDL-based quality measure for feature subset selection

We build upon the assumption that the relatively poor feature-selection behaviour of the MDL function originates, to at
least some extent, from not using the conditional probability distribution. For that we introduce a new quality measure,
called MDL-FS, that is tailored to feature selection [18]. The MDL-FS function in essence is based upon the same ideas as
the MDL function. Like the MDL function, it captures the joint probability distribution PðC;AÞ over all variables involved
in a log-likelihood term. In addition however, it captures the joint probability distribution PðAÞ over just the attributes.
We note that while the joint distribution PðC;AÞ factorises over the structure of the classifier under study, the distribution
PðAÞ does not; to allow for ease of computation, the function therefore uses an auxiliary Bayesian network to factorise PðAÞ.
The function now establishes the difference between the log-likelihood of the probability distribution PðC;AÞ and the log-
likelihood of the distribution PðAÞ, and thereby effectively models the conditional probability distribution
PðCjAÞ ¼ PðC;AÞ
PðAÞ
Informally speaking, by capturing the difference between the two log-likelihood terms, the strengths of the relationships
among the attributes themselves are eliminated from the joint distribution. In contrast with the MDL function, therefore,
the MDL-FS function will identify and remove attributes that are redundant for the class variable yet strongly related to
one or more other attributes.

In Section 4.1, we introduce the MDL-FS function. In Section 4.2, we study the relationships of the conditional log-like-
lihood term of the function and the conditional distribution of the class variable given the set of attributes; we will argue
more specifically that the former may be considered an approximation of the latter.

4.1. The MDL-FS function for feature selection

We formally define the MDL-FS function.

Definition 4. Let A be a set of attributes and let C be the class variable as before. Let D be a dataset of N labelled instances
over A [ fCg. Let C be a Bayesian network classifier over A [ fCg and let S be a Bayesian network over A. Then,
MDL-FSðC;SjDÞ ¼ log N
2
� jCj � CALLðC;SjDÞ
where jCj is as before and
CALLðC;SjDÞ ¼ LLðCjDÞ � LLðSjDÞ
with LLðCjDÞ as before and
LLðSjDÞ ¼ �N �
X
Ai2A

HbP ðAijpSðAiÞÞ
where, for each attribute Ai 2 A, the set pSðAiÞ is the set of parents of Ai in the graphical structure of the network S.

The basic idea underlying the MDL-FS function is the same as that of the MDL function. The MDL-FS function also in-
cludes a penalty term to capture the length of an encoding of the classifier and a term that indicates the length of an
encoding of the observed probability distribution given the classifier. The latter term in essence captures the observed
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conditional distribution and is called the conditional auxiliary log-likelihood term of the MDL-FS function. Like the MDL
score, the MDL-FS score of a Bayesian network classifier indicates the classifier’s quality with respect to the data under
study. The smaller the score, the better the classifier is.

For the conditional auxiliary log-likelihood term, we have that the larger the value of the term LLðCjDÞ, that is, the closer it
is to zero, the better the classifier models the observed joint probability distribution, as we have argued before in Section 2.
The term therefore tends to approach zero for classifiers with a complex graphical structure and to be quite small for simpler
models. The term LLðSjDÞ also attains its minimum value for the simplest Bayesian network and its maximum value for a
fully connected model. The maximum value of the conditional auxiliary log-likelihood term therefore is obtained for a fully
connected Bayesian network classifier and an empty auxiliary Bayesian network without any arcs. Now, to achieve a small
score for a classifier, we basically would like to maximise the conditional auxiliary log-likelihood term of the MDL-FS func-
tion. From the above considerations however, we must conclude that we cannot simply maximise the term, as the function
does not suggest any reason for using a more complex auxiliary network than the empty one. Yet, using an empty auxiliary
network would not meet our purpose of capturing the relationships among the attributes from the joint distribution: for this
purpose, a more complex auxiliary network is required. As the MDL-FS function has no control over the complexity of the
auxiliary network to be used, in practical applications we propose to set a specific family of auxiliary networks beforehand.
Since we would like to eliminate the influence of PðAÞ from PðC;AÞ, we should select from this family a maximum log-like-
lihood network. We thus have to maximise the log-likelihood of both the classifier and the auxiliary networks to model a
conditional auxiliary log-likelihood term suited for feature subset selection.

Like the MDL function, the MDL-FS function includes a penalty term to counterbalance the effect of the conditional aux-
iliary likelihood term. From the definition of the MDL-FS function, we observe that this penalty term captures just the com-
plexity of the classifier and not the complexity of the auxiliary network. We have decided not to include a penalty term for
the auxiliary network since we are basically interested in the complexity of the classifier only. A difference of penalty terms
for the complexities of the classifier and the auxiliary network however, would serve to more evenly counterbalance the dif-
ference between the log-likelihoods of the two networks. A quality measure that includes such a difference of penalty terms
would amount to taking the difference of the MDL score of the classifier and the MDL score of the auxiliary network. The
penalty term for the auxiliary network would then have a negative effect on the feature-selection behaviour of the MDL-
FS function in the sense that it would become less selective.

4.2. Comparing the conditional auxiliary log-likelihood with conditional entropy

Upon reviewing the MDL-FS function, we have argued that its conditional auxiliary log-likelihood term in essence models
the log-likelihood of the conditional probability distribution of the class variable given the attributes. In this section, we
show that for a fully connected classifier and a fully connected auxiliary network, the term indeed models the log-likelihood
of the conditional distribution. In practical applications, fully connected classifiers have major disadvantages: in addition to
the large number of data required for their construction, these classifiers tend to overfit the available data and to show poor
generalisation performance. As a consequence, they are hardly ever used in practice. Our result therefore serves to give a
fundamental insight only. We will further argue that for classifiers and auxiliary networks that do not accurately capture
all information from the data, the conditional auxiliary log-likelihood term can only be looked upon as an approximation
of the log-likelihood of the conditional distribution.

Proposition 1. Let Cfull be a fully connected Bayesian network classifier over A [ fCg and let Sfull be a fully connected Bayesian
network over A. Then,
CALLðCfull;SfulljDÞ ¼ �N � HbP ðCjA1; . . . ;AnÞ
Proof. Since the Bayesian network classifier Cfull is fully connected, we have that
LLðCfulljDÞ ¼ �N � HbP ðC;A1; . . . ;AnÞ ¼ �N � ðHbP ðCjA1; . . . ;AnÞ þ � � � þ HbP ðAnÞÞ
For the Bayesian network S moreover, we have that
LLðSfulljDÞ ¼ �N � HbP ðA1;A2; . . . ;AnÞ ¼ �N � ðHbP ðA1jA2; . . . ;AnÞ þ � � � þ HbP ðAnÞÞ
For the conditional auxiliary log-likelihood term of the MDL-FS function, we thus find that
CALLðCfull;SfulljDÞ ¼ �N � HbP ðCjA1; . . . ;AnÞ
as stated above. h

From the previous proposition, we have that for fully connected classifiers and fully connected auxiliary networks, the
conditional auxiliary log-likelihood term of the MDL-FS function accurately models the log-likelihood of the conditional dis-
tribution. As we have argued above, in practical applications classifiers of a simpler complexity than fully connected ones are
used. For these classifiers, the previous proposition no longer holds and the conditional auxiliary log-likelihood term of the
MDL-FS function may differ from the log-likelihood of the conditional distribution.
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4.3. Related work

Kontkanen et al. [37] propose to perform feature subset selection using the supervised marginal log-likelihood (closely
related with the conditional log-likelihood). When they evaluate a subset of features, they only consider the case when
the attributes are independent of each other given the class variable. Their method is closely related with our method be-
cause it learns the joint probability distribution over the class variable and the attribute set. However, unlike our method,
they do not use an auxiliary structure to express the joint probability distribution over the attribute set and, as a conse-
quence, this method is too computationally expensive to consider the relationships between attributes given the class var-
iable (for example to learn TANs). Jebara and Jaakkola [38] associate to each attribute a probability value with a maximum
entropy discrimination framework. They use regression methods in discriminant functions (closely related with conditional
log-likelihood) to perform classification or regression. In the sequel, similarly with Drugan and van der Gaag [18], Guo and
Greiner [12] propose a BIC score composed of a conditional log-likelihood term and a penalty score to learn Bayesian net-
work classifiers. Again, unlike our method, they do not use an auxiliary structure, but search for parameters that optimize
the conditional log-likelihood score. For their experiments, they set these parameters to the frequencies from the dataset.
They experimentally show that their conditional BIC can learn Naive Bayes and TAN classifiers from data.

Bilmes [39], and later Pernkopf and Bilmes [40], uses a measure that prefers arcs between two attributes which have a
high conditional mutual information given the class variable but a low un-conditioned mutual information. Such an algo-
rithm has a different behaviour in learning the structure of the Bayesian network classifiers than an algorithm that uses
the MDL-FS score since it does not perform feature selection (e.g. the arcs are preferentially added between attributes of
the entire set of attributes). Grossman and Domingos [19] also maximise the conditional log-likelihood using the parameters
of maximum log-likelihood approximated with a regression algorithm. Burge and Lane [41] learn also discriminative struc-
tures by using separate Bayesian network classifiers for each class value. They approximate the conditional log-likelihood for
the two value class as the ratio between the log-likelihood of the classifier given one class variable and the classifier given
the other class variable and the same classifier.

5. The feature-selection behaviour of the MDL-FS and MDL functions in general

We begin by studying the feature-selection behaviour of the MDL-FS function for complete Bayesian network classifiers
and auxiliary structures, to review in an informal way some of its general properties. Recall that fully connected networks
perfectly model the data and are of maximum log-likelihood for that data but, for pragmatical reasons, are seldom used in
practice; we will substantiate the reviewed properties in the subsequent sections for more commonly used classifiers. In this
section, we study the ability of the MDL and MDL-FS functions to identify and eliminate redundant attributes at different
levels. We will argue that the MDL function tends to eliminate from a Bayesian network classifier only attributes that are
redundant at level 0 for the class variable as well as for the other attributes. The MDL-FS function overcomes this drawback
by comparing the strength of the relationship between an attribute and its parents in the classifier with the strength of the
relationship between an attribute and its parents in the auxiliary structure. We show that MDL-FS tends to eliminate from
fully connected Bayesian network classifiers the attributes that are redundant for the class variable at the highest level with-
in an allowed amount of noise determined by the penalty term by using a fully connected auxiliary network whereas MDL
tends to not eliminate these attributes. We find that the level of the eliminated redundant attributes with the MDL-FS score
depends on the complexity of the auxiliary network: with a fully connected auxiliary network, it eliminates redundant attri-
butes at level jAj � 1, whereas with an empty auxiliary network, MDL-FS eliminates attributes redundant at level 0 for the
class variable and for the other variables from the attributes set.

5.1. The feature-selection behaviour of the MDL function

In this section, we investigate the feature-selection behaviour of the MDL function. We will show that the MDL function is
able to identify and eliminate only attributes that are redundant at level 0 for the class variable as well as for the other attri-
butes. Before presenting this result, we observe that, to allow for comparing the MDL and/or MDL-FS scores of two classifiers,
they both need to capture a joint probability distribution over the same set of variables. When comparing the score of a
selective classifier with the score of a classifier that includes more attributes therefore, we look upon the selective classifier
as being extended with the deleted attributes by means of nodes without any incident arcs.

Proposition 2. Let C be a Bayesian network classifier and let Ai 2 A be an attribute in C with the set of parents pCðAiÞ and the set of
children cCðAiÞ. From C, we construct the selective classifier C� by deleting the incident arcs of Ai. Then,
MDLðC�jDÞ < MDLðCjDÞ

if and only if
HbP ðAiÞ � HbP ðAijpCðAiÞÞ �
log N
2 � N � ðjXðAiÞj � 1Þ � ðjXðpCðAiÞÞj � 1Þ

� �
þ

X
Ak2cCðAiÞ

HbP ðAijpC� ðAkÞÞ � HbP ðAijAk;pC� ðAkÞÞ
h

� log N
2 � N � ðjXðAkÞj � 1Þ � jXðpC� ðAkÞÞj � ðjXðAiÞj � 1Þ

�
< 0
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Proof. We begin by observing that, since the two classifiers differ only in the incident arcs for the attribute Ai, the difference
of their MDL scores pertains to just Ai and its parents and children. To investigate the difference of the two scores, we now
study the differences of their log-likelihood terms and of their penalty terms separately. The difference of the log-likelihood
terms for the two classifiers equals
LLðCjDÞ � LLðC�jDÞ ¼ �N � ðHbP ðAijpCðAiÞÞ � HbP ðAiÞÞ � N �
X

Ak2cCðAiÞ
ðHbP ðAkjpCðAkÞÞ � HbP ðAkjpC� ðAkÞÞÞ
The difference of the penalty terms of the two classifiers equals
log N=2 � ðjCj � jC�jÞ ¼ log N=2 � ðjXðAiÞj � 1Þ � ðjXðpCðAiÞÞj � 1Þ þ
X

Ak2cCðAiÞ
ðjXðAkÞj � 1Þ � jXðpC� ðAkÞÞj � ðjXðAiÞj � 1Þ

" #
Note that the difference of the two penalty terms is positive since the classifier C is more complex than the selective classifier
C�. Using
MDLðCjDÞ �MDLðC�jDÞ ¼ log N=2 � ðjCj � jC�jÞ � ðLLðCjDÞ � LLðC�jDÞÞ
and
HbP ðAkjpCðAkÞÞ � HbP ðAkjpC� ðAkÞÞ ¼ HbP ðAk;Ai;pC� ðAkÞÞ � HbP ðAi; pC� ðAkÞÞ þ HbP ðAk;pC� ðAkÞÞ � HbP ðpC� ðAkÞÞ

¼ HbP ðAijAk; pC� ðAkÞÞ � HbP ðAijpC� ðAkÞÞ
for each attribute Ak 2 cCðAiÞ, where pCðAkÞ ¼ fAig [ pC� ðAkÞ, we now straightforwardly obtain the proposition’s
inequality. h

By definition we have that the MDL function prefers the selective classifier C� over C if and only if C� has a smaller MDL
score than C, that is, if and only if MDLðC�jDÞ < MDLðCjDÞ for the dataset D under consideration. The difference
log N=2 � ðjCj � jC�jÞ of the penalty terms for the classifier C and the selective classifier C� is greater than zero since C has
a complexer structure than C�. The difference LLðCjDÞ � LLðC�jDÞ of the two log-likelihood terms also is greater than 0 be-
cause the classifier C captures the observed joint probability distribution at least as accurately as the selective classifier
C�. The proposition now indicates under which condition the additional complexity of C is no longer counterbalanced by
its increased log-likelihood.

We study the condition stated in the proposition in some closer detail. We observe that the condition basically pertains to
the strengths of the relationships of the attribute Ai with the other attributes. Informally speaking, the stronger the relation-
ships of Ai with its neighbouring attributes in C, the more the observation of a value assignment to these attributes can con-
tribute to resolving the uncertainty as to the value of Ai. The stronger the relationships of Ai with its neighbouring attributes,
therefore, the more likely the inequality stated in the proposition does not hold and the full classifier is preferred over the
selective one. The next corollary now quantifies the maximal amount of irredundancy the attribute can have with its neigh-
bours before it is effectively removed by the MDL function.

Corollary 1. Let C; C� and Ai be as in Proposition 2. The selective classifier C� is preferred over the full classifier C if only if
� the attribute Ai is redundant at level 0 for the variables in its set of parents pCðAiÞ in C within the allowed amount of noise
nðAi; pCðAiÞ;£;NÞ < log N=ð2 � NÞ � ðjXðAiÞj � 1Þ � ðjXðpCðAiÞÞj � 1Þ; and

� the attribute Ai is redundant for each child attribute Ak 2 cCðAiÞ given Ak’s other parents in C within the allowed amount of noise
nðAi;Ak;£;NÞ < log N=ð2 � NÞ � ðjXðAkÞj � 1Þ � jXðpC� ðAkÞÞj � ðjXðAiÞj � 1Þ.

From the property stated in the corollary, we conclude that, upon feature selection, an attribute is removed by the MDL
function only if it is redundant at level 0 for all other variables, within an amount of noise that is dependent of the structure of
the classifier. For Naive Bayes classifiers, the function will thus serve to remove attributes that are redundant for the class
variable C at level 0, since in such a restricted classifier the attributes are assumed to be mutually independent given C. For
more complex Bayesian network classifiers, however, attributes that are redundant for the class variable at various levels
will not be removed unless these attributes are redundant for all other attributes as well. We conclude that the MDL function
is not very well suited for the task of identifying and removing attributes that are redundant for the class variable.

5.2. The feature-subsection behaviour of the MDL-FS function

In this section, we study the feature-selection behaviour of the MDL-FS function in detail. Before doing so, we relate the
function to the MDL function and show under which conditions the two functions exhibit the same behaviour.

We have argued in Section 4 that the MDL-FS function is closely related to the MDL function and differs from this function
mainly in that it captures, in addition to the joint probability distribution over the set of all variables, also the joint distri-
bution over just the attributes. We now show that upon comparing classifiers over the same set of variables, the two
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functions exhibit the same preference behaviour as long as the MDL-FS function uses auxiliary networks that have the same
log-likelihood given the data.

Proposition 3. Let C and C0 be two Bayesian network classifiers over A [ fCg. Let S and S0 be two Bayesian networks over A with
LLðSjDÞ ¼ LLðS0jDÞ. Then,
MDLðCjDÞ �MDLðC0jDÞ ¼MDL-FSðC;SjDÞ �MDL-FSðC0;S0jDÞ
Proof. The property stated in the proposition follows directly from the definitions of the two functions. h

The condition described in the previous proposition hardly ever occurs in a practical setting. Especially in view of feature
selection, will it hardly ever be the case that classifiers are compared using (different) auxiliary networks of the same log-
likelihood. The importance of the proposition therefore lies mainly in the observation that, with a fixed auxiliary network
over a fixed set of attributes, the MDL-FS function will always prefer the same classifier as the MDL function. More specif-
ically, the two functions will exhibit the same preference behaviour if the MDL-FS function uses an empty auxiliary network.

We now turn to the feature-selection behaviour of the MDL-FS function in a more practical setting where classifiers are
compared using auxiliary networks of possibly different log-likelihood. To informally review some of the function’s proper-
ties, we begin by studying the MDL-FS score of a Bayesian network classifier C over A [ fCg and an auxiliary Bayesian net-
work S over A. We rewrite this score as a sum of terms for the class variable and for each attribute Ai separately:
MDL-FSðC;SjDÞ ¼ N � ½HbP ðCÞ þ log N=ð2 � NÞ � ðjXðCÞj � 1Þ� þ N �
X
Ai2A

½HbP ðAijpCðAiÞÞ � HbP ðAijpSðAiÞÞ

þ log N=ð2 � NÞ � ðjXðAiÞj � 1Þ � jXðpCðAiÞÞj�
where pCðAiÞ and pSðAiÞ are the sets of parents of Ai in the networks C and S, respectively. We observe that strong relation-
ships between the attribute Ai and its parents in the classifier C, that is, HbP ðAijpCðAiÞÞ going to 0, would decrease the score,
while strong relationships between Ai and its parents in S, that is, HbP ðAijpSðAiÞÞ going to 0, would increase the score. In view
of feature subset selection, therefore, the stronger the relationships of the attribute Ai with its parents in the classifier and
the weaker the relationships with its parents in the auxiliary network, the less likely the attribute is to be removed. To study
the differences in strength of these relationships in more detail, we express the difference HbP ðAijpSðAiÞÞ � HbP ðAijpCðAiÞÞ in
terms of the amounts of irredundancy that the attribute Ai has with its parents in the two networks. Let
pC\SðAiÞ ¼ pCðAiÞ \ pSðAiÞ be the set of parents of Ai in both the classifier and the auxiliary network. Then,
HbP ðAijpSðAiÞÞ � HbP ðAijpCðAiÞÞ ¼ ðHbP ðAijpC\SðAiÞÞ � HbP ðAijpCðAiÞÞÞ � ðHbP ðAijpC\SðAiÞÞ � HbP ðAijpSðAiÞÞÞ
The two terms capturing the amount of irredundancy for attribute Ai both are positive. The amount of irredundancy
HbP ðAijpC\SðAiÞÞ � HbP ðAijpCðAiÞÞ describes how ‘‘far” the attribute Ai is from being redundant for the set of variables
pCðAiÞ n pSðAiÞ given pC\SðAiÞ; note that the set pCðAiÞ n pSðAiÞ includes the class variable and all attributes that are parents
of Ai in C but not in S. The closer to 0 this term is, the larger the MDL-FS score will be and the more likely the attribute will
be removed upon feature subset selection. The term HbP ðAijpC\SðAiÞÞ � HbP ðAijpSðAiÞÞ, on the other hand, indicates how ‘‘far” the
attribute Ai is from being redundant for the set of variables pSðAiÞ n pCðAiÞ given pC\SðAiÞÞ; note that the set pSðAiÞ n pCðAiÞ in-
cludes all attributes that are parents of Ai in S but not in C. The closer to 0 this term is, the smaller the MDL-FS score will be
and the less likely the attribute is to be removed. We conclude that the difference HbP ðAijpSðAiÞÞ � HbP ðAijpCðAiÞÞ represents the
amount of irredundancy of the attribute Ai for the class variable and its exclusive parent attributes in the classifier given its
parent attributes in the auxiliary network.

We now begin by studying the feature-selection behaviour of the MDL-FS function for complete Bayesian network clas-
sifiers using complete auxiliary networks. To pertain to the same joint proposal distributions like the full classifier and aux-
iliary network, we again extend the selective networks with the deleted attributes by means of nodes without incident arcs.

Proposition 4. Let C and C� as in Proposition 2. In addition, let S be an auxiliary network over the attributes A and let pSðAiÞ be
the set of parents and cSðAiÞ be the set of children of Ai in S. Let S� be the selective auxiliary network that is obtained from S by
deleting the incident arcs of Ai. Then,
MDL-FSðC�;S�jDÞ < MDL-FSðC;SjDÞ
if and only if
½HbP ðAijpSðAiÞÞ � HbP ðAijpCðAiÞÞ � log N=2 � ðjXðAiÞj � 1Þ � ðjXðpCðAiÞÞj � 1Þ� þ
X

Ak2cCðAiÞ
½HbP ðAijpC� ðAkÞÞ � HbP ðAijAk; pC� ðAkÞÞ

� log N=ð2 � NÞ � ðjXðAkÞj � 1Þ � jXðpC� ðAkÞÞj � ðjXðAiÞj � 1Þ�

<
X

A0k2cSðAiÞ

½HbP ðAijpS� ðA
0
kÞÞ � HbP ðAijA0k;pS� ðA

0
kÞÞ�
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where pC� ðAkÞ, with pCðAkÞ ¼ fAig [ pC� ðAkÞ, and pS� ðAkÞ, with pSðA
0
kÞ ¼ fAig [ pS� ðA

0
kÞ, are the parents sets of Ak and A0k in C� and

S� graphical structures, respectively.

Proof. These proofs are similar with the one from Proposition 2. To investigate the difference between the two MDL-FS
scores, we study the differences of the log-likelihood terms of the classifiers, the log-likelihood terms of the auxiliary net-
works and of the penalty terms separately. Since we modify only locally the Bayesian structures, the difference in the
MDL-FS score will be reflected only by the locally modified parts. The difference of the two log-likelihood terms of the clas-
sifiers and of the auxiliary networks equals
LLðSjDÞ � LLðS�jDÞ ¼ �N � ðHbP ðAijpSðAiÞÞ � HbP ðAiÞÞ � N �
X

A0k2cSðAiÞ

ðHbP ðA0kjpSðA0kÞÞ � HbP ðA0kjpS� ðA0kÞÞÞ

We now have
MDL-FSðC;SjDÞ �MDL-FSðC�;S�jDÞ ¼ log N=2 � ðjCj � jC�jÞ � ðCALLðC;SjDÞ � CALLðC�;S�jDÞÞ
from which directly results the proposition’s inequality by substituting each child A0k 2 cSðAiÞ, where pSðA
0
kÞ ¼ fAig [ pS� ðA

0
kÞ,

in the equation
HbP ðA0kjpSðA0kÞÞ � HbP ðA0kjpS� ðA0kÞÞ ¼ HbP ðAijA0k; pS� ðA
0
kÞÞ � HbP ðAijpS� ðA

0
kÞÞ
and each child Ak 2 cCðAiÞ. h

By definition we have that the MDL-FS function prefers C over C� if and only if C has a smaller MDL-FS score than C�, that
is, if and only if MDL-FSðC;SjDÞ �MDL-FSðC�;S�jDÞ < 0 for the dataset D. Again the difference between the penalty terms is
greater than zero because the full Bayesian network classifier is more complex than the selective one. When Ai does not have
any children in C, the difference between the two conditional auxiliary log-likelihoods is equal with the Ai’s term in the con-
ditional auxiliary log-likelihood of the fully connected classifier, N � ðHbP ðAijpCðAiÞÞ � HbP ðAijpSðAiÞÞÞ. When Ai has children (e.g.
Ak) in C, we add a term that indicates the amount of irredundancy of Ai for Ak given Ak’s parents in C except for Ai; when Ai has
children (e.g. A0k) in S, we subtract a term that indicates the amount of irredundancy of Ai for A0k given A0k’s parents in S except
for Ai. Thus, the difference of conditional auxiliary log-likelihoods increases with the strength of the relationships between
the attribute and the other variables in the classifier, and decreases with its strength of the relationship between the attri-
bute and the other attributes in the auxiliary network.

Informally speaking, the stronger one or more of the relationships between Ai and the other variables A n fAig in the clas-
sifier are and the weaker the relationships of Ai in the auxiliary network are, the more the full classifier is preferred over the
selective classifier with the MDL-FS function. It is interesting to note that the feature-selection behaviour of the MDL-FS
function can be derived directly from the function itself as we have presented in the first part of this section. Thus only
the parents sets of an attribute in the classifier and in the auxiliary structure determine the amount of (ir)redundancy an
attribute has. The children of an attribute compare the amount of irredundancy the attribute has for them given the other
parents of these children in the classifier with the amount of irredundancy the attribute has for their children given the other
parents of these children in the auxiliary structure. As a consequence, the feature selection properties in removing or not a
redundant attribute with the MDL-FS function is correlated to the complexity of the parents set of the attribute in the clas-
sifier and in the auxiliary structure, and not to the attribute’s children sets.

From these observations, we conclude that the MDL-FS function is more suited for the task of feature selection since it can
serve to identify and remove redundant attributes at various levels. Whereas with the MDL function we can eliminate only
the attributes that are redundant at level 0 for all other variables from the dataset, fCg [ A n fAig, and thus it can be only used
for Naive Bayes classifiers, the MDL-FS function can be used to eliminate redundant attributes at various levels from more
complex classifiers. In the following, we practically illustrate the use of the MDL-FS score in reducing redundant attributes at
various levels from Bayesian network classifiers of interest. It should be noted that the level of redundancy for which the MDL-
FS function reduces attributes depends on the complexity of the auxiliary structure. We also note that the MDL-FS function elim-
inates only redundant attributes at level 0 for the class variable and for the attributes when an empty network is used for the
auxiliary structure. To illustrate that, in fact, the MDL-FS function, unlike the MDL score, removes attributes redundant at
level jAj � 1 from full Bayesian network classifiers with a complete Bayesian auxiliary structure, upon feature selection,
we consider again the classification problem from Example 1.

Example 2. Let us consider the dataset D from Example 1 by copying it 128 times – then N ¼ 4096 – and A ¼ fA1; . . . ;A8g.
Let’s consider a complete Bayesian network classifier C and a selective one C� as before. Let’s consider a complete Bayesian
network S and a selective one S� as before. Suppose that Ai � A5, where A5 is redundant for C at all levels. Since
HbP ðA5jC;A n fA5gÞ ¼ HbP ðA5jA n fA5gÞ, from the above proposition, the selective Bayesian classifier C� is preferred to the full
Bayesian classifier C when we use MDL-FS. Thus, A5 is correctly removed from the classifier.

When we use MDL, since A5 � A7 and, then, HbP ðA5jC;A n fA5gÞ ¼ HbP ðA5jA7Þ ¼ 0, the full Bayesian classifier C is preferred to
the selective Bayesian classifier C� because �HbP ðA5Þ ¼ �1 < � logð4096Þ=ð2 � 4096Þ � ðjXðA5Þj � 1Þ � ð28 � 1Þ 	 �0:37.
Although A5 is redundant for C at all levels, we have that A5 is wrongly kept in the classifier. Furthermore, an arc between
A5 and A7 will be always considered by any algorithm for constructing Bayesian network classifiers by maximising the
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log-likelihood term, because HbP ðA5jA7; SÞ ¼ 0, for any subset of attributes S # A n fA5;A7g; thus, an arc between A5 and A7 will
represent the most powerful dependence in the Bayesian network classifier. But, since the MDL-FS score uses an auxiliary
structure that includes also this arc, MDL-FS eliminates the influence of A5 from the classifier, whereas the MDL score
wrongly keeps it in the classifier. Similar conclusions we draw for A6 – when the set of parents includes fA1;A2;A4g, A3 –
when the set of parents includes A2, and A8 - when the set of parents includes A2.

We conclude that when the MDL score is employed none of the attributes will be removed from C. When the MDL-FS
score is employed, the remaining attributes A1, A2 and A4 are irredundant for the class variable at level jAj � 1 and are not
removed from the classifier. Then, the fully connected classifier has the same conditional auxiliary log-likelihood as the
optimal classifier and the same number of attributes. We have that the conditional auxiliary log-likelihood when a complete
network is used for the auxiliary network is equal to the conditional entropy HbP ðCjA1;A2;A4Þ ¼ 0.
6. Learning Bayesian network classifiers with MDL-FS in practice

In the previous section we have investigated general properties of the feature-selection behaviour of the two functions. In
this section we use the MDL-FS function in a more practical setting for constructing selective Naive Bayes and TAN classifiers
from data using tree structured auxiliary networks of maximum log-likelihood.

Finding an appropriate subset of attributes for inclusion in a classifier amounts to searching the space of all possible selec-
tive classifiers, given some predefined measure of quality. Since this search space is infeasible large, often a heuristic algo-
rithm is employed for its traversal. Various different algorithms have been proposed to this end. These algorithms essentially
take one of two approaches [6,31,32,42]. Within the filter approach [6,33,34,36], feature subset selection is performed in a
preprocessing step; within the wrapper approach [31,32], feature selection is merged with the learning algorithm. The dif-
ference between the two approaches in practice often lies in whether or not the algorithms employ the same measure for
the selection of attributes and for measuring performance. In this paper, we will present our fundamental results from both
a wrapper and a filter perspective. All algorithms used in this paper are characterised by their starting point(s) in the search
space, by the search operator(s) they apply, and by their stopping criterion [5]. Possible starting points in the space of selec-
tive classifiers are the empty classifier that is built from the empty set of attributes and the full classifier that includes all attri-
butes. If the starting point for the search is the empty classifier, then the algorithm typically applies the operator of adding a
single attribute; the algorithm is said to perform forward selection [32,30]. If the starting point is the full classifier, on the
other hand, the algorithm typically applies the operator of removing a single attribute; it then is said to perform backward
elimination [13,33,36]. The stopping criterion that is commonly employed with the various algorithms, is to stop the traversal
of the search space as soon as application of the search operators does no longer result in classifiers of improved quality. We
will return to these algorithmic issues in Section 7 where we discuss our experimental results. The MDL or MDL-FS function,
for example, are used for comparing the qualities of the classifiers that are supplemented by tree-structured auxiliary net-
works of maximum log-likelihood. As soon as the algorithm cannot construct a new classifier that improves upon the MDL
(or MDL-FS) score of the currently best classifier, the algorithm is halted. In the following, we investigate the feature-selec-
tion behaviour of the MDL-FS function in this context.

In this section, we show how to construct selective Naive Bayes and TAN classifiers with the MDL and MDL-FS function
and with several other feature selection algorithms implemented in Section 7.

6.1. Learning selective Naive Bayes and TAN classifiers with MDL

Learning a Naive Bayes classifier over a given set of attributes is straightforward as the classifier’s graphical structure is
uniquely defined. At the beginning of the learning process, we compute the conditional entropies for each attribute given the
class variable. Such an algorithm has a time complexity of Oðn � NÞ. Learning a selective Naive Bayes classifier, on the other
hand, amounts to selecting a graphical structure from among exponentially many alternatives. We recall that the forward-
selection algorithm for this purpose starts with the empty Naive Bayes classifier and iteratively adds single attributes that
upon removal serve to maximally decrease the MDL score of the classifier. The algorithm stops as soon as adding a single
attribute can no longer decrease the classifier’s score [32].

As we already have stated in Section 5.1 in Proposition 2, the MDL function tends to eliminate from a Naive Bayes clas-
sifier only attributes redundant at level 0. Since a Naive Bayes classifier cannot express the information contributed by an
attribute at a level higher than level 0, we may look upon an attribute’s contribution at level 0 as an approximation of its
contribution at level jAj � 1. Thus, the redundant attributes for the class variable at level 0 are correctly removed from a Na-
ive Bayes classifier.

Learning a TAN classifier over a given set of attributes is more involved than learning a Naive Bayes classifier, because the
graphical structure of the TAN classifier is not unique. A well-known search algorithm for learning TAN classifiers [11] starts
with a Naive Bayes classifier and iteratively inserts undirected edges between pairs of attributes, under the constraint of
acyclicity; the selection of the edges to be inserted is based upon the conditional mutual information of two attributes given
the class variable. The algorithm stops adding edges as soon as the undirected graphical structure over the attributes con-
stitutes a tree. After randomly selecting a root for the tree, the edges in the structure are oriented from the root towards the
leaves. The resulting TAN classifier is guaranteed to have maximum log-likelihood given the data. In the sequel, we assume a
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TAN classifier to be of maximum log-likelihood unless explicitly stated otherwise. The time complexity of this algorithm is
Oðn3 � NÞ and is given by the preprocessing step, where the conditional mutual information between each pair of attributes is
computed [11].

The forward-selection algorithm for constructing a selective TAN classifier now starts with the empty TAN classifier and
iteratively adds single attributes. In each iteration, it computes a TAN classifier over the selected set of attributes by means of
the algorithm described above. The MDL function again is used for selecting the attributes to be added as well as for a stop-
ping criterion: the algorithm stops as soon as adding a single attribute cannot result in a TAN classifier of higher score.

In contrast with Naive Bayes classifiers, TAN classifiers can express information at level 1: they can model the relationship
of an attribute with the class variable conditional on a single other attribute. Although similar, Proposition 2 from Section 5.1
does not cover this case; when deleting an attribute from a TAN classifier, the resulting classifier is a not necessarily a TAN.
Therefore, we need to construct a TAN classifier of maximum log-likelihood over the given (sub)set of attributes. In general,
the MDL score wrongly keeps the attributes redundant for the class variable at level 1. Because of the lack of space we refer
to [43] for the formal proof.

6.2. Learning selective Naive Bayes classifiers with MDL-FS

Previously, we argued that to be able to exploit the underlying idea of the MDL-FS function, a more complex auxiliary
network than the empty structure needs to be used. The auxiliary network should not have a structure too complex, how-
ever, because of the number of instances and the computational effort it requires for its construction. The use of tree-struc-
tured auxiliary networks is motivated by the efficient ðOðn3 � NÞ learning algorithm from Chow and Liu [44], that is guaranteed
to result in a tree-structured network of maximum log-likelihood.

The forward-selection algorithm for learning selective Naive Bayes classifiers starts with the empty Naive Bayes classifier
and auxiliary network. The algorithm iteratively adds single attributes, where in each iteration it computes a Naive Bayes
classifier and a maximum log-likelihood tree over the selected set of attributes. The MDL-FS function is used for selecting
the attributes to be added as well as for a stopping criterion: the algorithm stops as soon as adding a single attribute cannot
result in a classifier of smaller score. We observe that this algorithm has also a time complexity of Oðn3 � NÞwhich is given by
the preprocessing step, where the conditional mutual information between each pair of attributes is computed [11], and the
searching process, where a tree of maximum log-likelihood over the remaining set of attributes is computed each step.

Even though a Naive Bayes classifier can only express the information contributed by an attribute at level 0 for the class
variable, a tree structured Bayesian network over A as auxiliary structure can express the attribute’s dependency at level 0
with other attributes from A. We now may look upon the attribute’s contribution in the auxiliary structure as an approxima-
tion of its contribution at level 1; furthermore we may look upon this as an approximation of its contribution at level jAj � 1.
Then, the attribute Ai should not be removed from the Naive Bayes classifier. We note that, for identifying redundancy at a
higher level, an auxiliary network of higher complexity is required. To conclude, we illustrate the basic idea by means of an
example.

Example 3. We consider again the classification problem from Example 1. We note A ¼ fA1; . . . ;A8g. Let us consider a Naive
Bayes classifier C and a selective Naive Bayes classifier C� as before. Associated to these classifiers are a tree-structured
Bayesian network S and a selective tree-structured Bayesian network S� as before.

We have that A5 and A7, where A5 � A7, are redundant for the class variable C at level 0 and higher. From Corollary 1, with
the MDL score, A5 is removed from C. With the MDL-FS score, the selective classifier C� is preferred over the full classifier C,
and A5 is effectively removed. We note that A5 is removed regardless of the strengths of its relationships with the other
attributes. A similar observation holds for the attribute A7 � A5.

We further recall from Example 1 that the attributes A1 and A4 are redundant for the class variable at level 0 but
irredundant at higher levels than 1. A full Naive Bayes classifier over A [ fCg only includes the prior probability distribution
PðCÞ and the conditional probability distributions PðA1jCÞ and PðA4jCÞ. The XOR operator that captures the combined
influence of A1 and A4 on C cannot be modeled by a Naive Bayes classifier. Although these attributes cannot bias the
classification as it does not contribute any information to the class variable C at level 0, it adds to the complexity of the
classifier and therefore they are correctly removed by the MDL and MDL-FS functions.

Suppose that Ai � A8, which is redundant for C given A2 and irredundant at level 0. Then Aj � A2 since A8 � A2 and then
the mutual information of A8 and A2 is maximal. The MDL-FS function prefers the selective classifier C� over the selective
classifier C; the attribute Ai is thus removed from the classifier. Unlike the MDL-FS score, the MDL function prefers C over C�
whenever HbP ðA2Þ � HbP ðA2jCÞ > nðA2; CÞ. For N ¼ 32, for example, we find that nðA2; CÞ < log 32=ð2 � 32Þ � ðjXðA2Þj
�1Þ � ðjXðCÞj � 1Þ 	 0:08. We further have that HbP ðA2Þ � HbP ðA2jCÞ 	 0:16. We conclude that the full classifier C therefore is
always preferred over the selective classifier C� and the attribute A2 is not removed. Similar observations hold for the
attribute A3 that is strongly connected to A2.

With MDL-FS, after eliminating the redundant attributes at level 0 and 1, there are only two left: A2 and A6. Suppose that
Ai � A2, where A2 is irredundant for C at level 0 and higher, and Aj � A6. The MDL-FS function now prefers the full classifier C
over the selective classifier C� because, for N ¼ 32, for example, we have that HbP ðA2jA6Þ � HbP ðA2jCÞ ¼ 0:87� 0:69 >
nðA2; CÞ ¼ 0:08. The attribute A2 is thus not removed from the classifier. Similar observations hold for the attribute A6 that is
irredundant for C at level 0 up to 3.
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The selective Naive Bayes classifier yielded for the example dataset by the MDL-FS function is shown in Fig. 2 on the left.
The conditional auxiliary log-likelihood of this Naive Bayes classifier is proportional with CALLðC;SjDÞ=N 	 0:47. This score is
higher than the conditional auxiliary log-likelihood of the selective Naive Bayes classifier selected by the MDL score �0.02.
With a tree-structured auxiliary network of maximum log-likelihood, therefore, the MDL-FS function serves to remove
attributes that are redundant at level 0 and/or at level 1 upon feature selection. We observe that the conditional auxiliary
log-likelihood of the selective Naive Bayesian selected by the MDL-FS score is higher than the conditional entropy of the class
variable given the attribute set A; the conditional auxiliary log-likelihood of the Naive Bayes classifiers when considering a
tree-structured auxiliary network of maximum log-likelihood is positive when the auxiliary network has a higher score than
the Naive Bayes classifiers.
6.3. Learning selective TAN classifiers with MDL-FS

Learning a TAN classifier over a given set of variables with the MDL-FS function amounts to constructing both a classifier
and an auxiliary network from the available data. Upon learning a selective TAN classifier with the MDL-FS score, moreover,
learning the two networks is performed iteratively. In this section, we focus again on the use of tree-structured auxiliary
networks with the MDL-FS function. In addition to the use of tree-structured networks of maximum log-likelihood as in
the previous section, we also study the use of the attribute tree of the constructed TAN classifier for its associated auxiliary
network. Note that using the attribute tree of a TAN classifier with the MDL-FS function serves to substantially reduce the
computational effort involved in the learning task. We observe that this algorithm has also a time complexity of Oðn3 � NÞ as
the algorithm for constructing TANs with the MDL score.

In the following, we investigate the ability of the MDL-FS function to identify and remove, from a TAN classifier, redun-
dant attributes at different levels. We study the use of maximum log-likelihood tree-structured auxiliary networks for this
purpose and establish the condition under which the MDL-FS function with such a network removes an attribute from a clas-
sifier. Although similar, the following property is not a direct consequence of Proposition 4; when deleting an attribute from
a TAN classifier, now, the selective classifier is also a TAN classifier of maximum log-likelihood which might be different from
the selective classifier obtained from the full TAN by deleting the given attribute and its incident arcs. Similar observations
hold also for the selective tree structure auxiliary network. The following observations pertains to an attribute that is either
an internal node or a leaf in the attribute tree of the TAN classifier and in the auxiliary tree under consideration. Similar
observations also hold for the attribute that constitutes the root of the tree.

We illustrate the basic idea by means of an example.

Example 4. Again, we consider the classification problem from Example 1. We note A ¼ fA1; . . . ;A8g. Let us consider a full
TAN classifier C over A [ fCg, its associated tree-structured auxiliary structure S, and a selective TAN classifier C� over
ðA n fAigÞ [ fCg and its associated tree structure auxiliary network S� as before. We now compare the MDL-FS score of C and
S, with the MDL-FS score of C� and S�.

Since the conditional mutual information of A5 and A7 given C is maximal and both variables do not have strong
relationships with other attributes, any full TAN classifier of maximum log-likelihood will include an edge between the two
attributes. Similar observations hold for the auxiliary network. Since A5 � A7, A7 perfectly replaces A5 in the classifier; we
assume, without loss of generality, that A5 does not have any children. From the equivalence of the two attributes, we now
observe that HbP ðA5jA7;CÞ ¼ 0. We find that any TAN classifier C that contains both A5 and A7 has a lower MDL score than the

selective classifiers that are constructed from C by removing A5 or A7. Recall that A5 and A7 are redundant for C at all levels.
However, any TAN classifier C that contains both A5 and A7 has a higher MDL-FS score than the selective TAN classifiers that
are constructed from C by removing A5 or A7. These two attributes will therefore be correctly removed. Similar observations
hold for the attributes A3, and A8 which are redundant for C at level 1 and higher.

The attributes A1; A2; A4 and A6 again are identified as being irredundant at level 1 and therefore are correctly kept in the
classifier by both scoring functions.

With a tree-structured auxiliary network of maximum log-likelihood, therefore, the MDL-FS function serves to remove
from TAN classifiers attributes that are redundant at level 1 upon feature selection. A selective TAN classifier yielded for the
Fig. 2. The selective Naive Bayes classifier and its associated tree structured auxiliary network (left), the selective TAN classifier and its tree-structured
auxiliary network (middle) and the selective TAN classifier and its complete auxiliary network (right), constructed with the MDL-FS function.
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example dataset by the MDL-FS function is shown in Fig. 2 in the middle. We observe that the conditional auxiliary log-
likelihood of this classifier is proportional with CALLðC;SjDÞ=N ¼ 0:75. This score is lower than the conditional entropy of the
selective Naive Bayesian classifier obtained by the MDL score 0.84 but higher than the conditional entropy of the class
variable given the minimum set of irredundant attributes fA1;A2;A4g that is 0.

We observe that the MDL-FS function, when using a tree-structured auxiliary structure, tends to eliminate attributes
redundant at level 1 within the allowed noise modeled by the penalty term, log N=ð2 � NÞðjCj � jC�jÞ, from a TAN classifier.
Since we look upon the attribute’s contribution at level 1 as an approximation of its contribution at level jAj � 1, then Ai

is correctly removed from the classifier. To the attributes that are redundant for the class variable at a level higher than level
1, a similar analysis applies as the previous one. We note that, for identifying redundancy at a higher level, an auxiliary net-
work of higher complexity is required.

The attributes that are redundant for the class variable at a level higher than level 1 tend not to be removed from the
classifier. To study if such an attribute should indeed be removed, we now consider an attribute Ai that is redundant for
the class variable C at level 0 yet irredundant at level 1. If it is redundant at the highest level jAj � 1, then the attribute should
not contribute to the classification. In fact, it may bias the classification by its contribution to the class variable at level 1 if it
is not removed. We note, however, that the MDL-FS function tends not to remove the attribute. If, on the other hand, the
attribute Ai is irredundant at level jAj � 1, then it should in essence contribute to the classification at this level. We recall,
however, that a TAN classifier can only express the information contributed by an attribute at levels 0 and 1. If we may look
upon the attribute’s contribution at levels 0 and 1 as an approximation of its contribution at level jAj � 1, then Ai should not
be removed from the classifier. The MDL-FS function indeed tends to not remove it.

We would like to note that, in practical applications, generally good feature-selection results are obtained with the MDL
function for Naive Bayes classifiers [32]. Apparently, the function’s ability to identify and remove attributes that are redun-
dant for the class variable at level 0 suffices to yield relatively simple classifiers of good accuracy. However, the MDL-FS score
is reducing even more redundant attributes – that are attributes redundant at level 1 – since the contribution of these attri-
butes are captured by the tree-structured auxiliary network. Thus, we consider that MDL-FS is more suited for the task of
constructing selective Naive classifier from data with the reduction of redundant attributes at chosen levels.

6.4. Related work

After the crisp theoretical definitions of ‘‘useful” and ‘‘not useful” attributes for the class variable given a set of attributes
based on the associated conditional probability, for practical use, Tsamardinos and Aliferis [6] and Koller and Sahami [33]
propose heuristics where they consider only the relationships between two attributes given the class variable at the time.
Koller and Sahami [33] propose an approximative iterative algorithm that uses the cross-entropy measure of two attributes
given the class variable to find an approximative Markov Blanket and therefore the feature selection is independent on the
selected family of Bayesian network classifiers. The cross-entropy of Ai and Aj given C, using the conditional entropy is
HPðCjAi;AjÞ � HPðCjAiÞ, which is equivalent with the amount of irredundancy of C for Ai given Aj from Section 3. This algorithm
iteratively deletes the attribute with the smallest cross-entropy for the class variable given one other attribute from the data-
set until some stopping criteria is met (e.g. some predefined number of attributes are deleted or the cross-entropy of the
remaining attributes is larger than a threshold c). Using Example 1, Koller and Sahami’s algorithm deletes, in a random order,
the attributes A5 and A7 – they are redundant for C and for the other attributes; A8 and A3 – they are conditionally indepen-
dent for C given A2; and A1 and A4 – they are redundant for C given A2. Since this algorithm deletes attributes only by looking
at its redundancy for C given another attribute, the algorithm fails to identify that A1 and A4 are important for the classifi-
cation task. Recall that the MDL-FS score for both selective Naive Bayes and TAN classifiers using a tree auxiliary structure of
maximum log-likelihood correctly identifies the attributes A1; A4; A2 and A6 as ‘‘useful” for the classification task.

Since Tsamardinos and Aliferis’s, Yu and Liu [45]’s and Pena et al. [8] heuristics also consider the interactions between
attributes one at a time in an iterative algorithm similar with Koller and Sahami’s algorithm, they have similar properties.
Thus, they will also wrongly delete the attributes A1 and A4 from our example.

Another popular algorithm for feature selection is RELIEF [46,47]. This heuristic and its later developments, Gadat and
Younes [48] and Sun [49], attributes a weight (gain) to each feature according with its importance for the classification task.
The early developments of RELIEF evaluates the importance of an attribute according to the class variable and therefore the
attributes that are conditionally independent given the class variable, like A8 and A3 from our examples, will be all deemed
important for the classification task and thus wrongly kept in the classifier. An advantage of RELIEF is that it can handle miss-
ing instances. The later versions of RELIEF overcomes (some) of these problems by analysing the contribution of an attribute
in the context of the class variable and also the other features in the dataset.

Fleuret [50] related the conditional probability definition to the notion of conditional mutual information. In his heuristic,
he iteratively adds attributes that have high conditional mutual information scores with the class variable given each of the
attributes that are already picked. Note that, in our example, the attributes A2 and A6 will be the first to be picked by the
algorithm. However, the attributes A1 and A4 are again not picked because the conditional mutual information of A2 and
C given A1, and A4 respectively, are low.

In fact (conditional) mutual information and its variants are rather popular methods for feature selection used in many
recent papers. Huang et al. [51], for example, introduce some parameters to learn from data when attributes are relevant or
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irredundant for the class variable. Recall that we use the MDL’s penalty term to deal with noisy datasets. Since the (condi-
tional) mutual information, however, only considers the relationship between two attributes and the class variable at a time,
the more complex relationships between three and more attributes cannot be captured. For example, the interaction be-
tween the three relevant attributes for the class variable A1; A2 and A4 is not captured and the attributes A1 and A4 are
wrongly deleted. Liu et al. [34] extends the work of Huang et al. [51] by expanding the concept of mutual information be-
tween a feature and the class variable given the rest of the features in the classifier. However, their proposed heuristics, at
first, select attributes relevant only for the class variable, and therefore, again, for our example, the attributes A1 and A4 that
are irredundant for the classification task but redundant for C at level 0 are eliminated.

In the sequel, one can use Pearson’s correlation to study the paired correlation between two variables [42]. We now
briefly review the concept of redundancy build upon Pearson’s correlation coefficient used by Hall [30] and Liang et al.
[52]. Informally speaking, he defines a subset of attributes Sc to be important for the classification task if each attribute from
Sc is correlated to the class variable and not correlated to any other attribute from Sc . He measures the correlation between
two variables using the difference between the entropy of a variable and the conditional entropy between the variable given
the other variables. Upon applying Hall’s concept of redundancy to our example, we find that the correlations between A1

and C, between A4 and C, and between A1 and A4 are considered. Since the relationship between the attributes A1 and A4

on the one hand and the class variable C on the other hand is not considered, the two attributes A1 and A4 would be deemed
irrelevant for the classification task.

Our approach differs from previous work in the sense that we work with the conditional probability distribution directly
and include the conditional log-likelihoods in an MDL-based function. As a consequence, the impact of these methods as
compared with MDL-FS score for feature selection task is very different although they use similar definitions based on con-
ditional entropy of the class variable given a set of attributes to denote ‘‘useful” and ‘‘not useful” set of attributes. The anal-
ysis is in favour for our method. Informally speaking, the previous algorithms will require that an attribute is irredundant for
the class variable given all other attributes from the selected set. In our example, the previous algorithms will fail to identify
the attributes A4 and A1 as important for the classification task because these attributes are redundant for the class variable
given A2 and thus their relevancy for the class variable at level 1 given each other is overlooked. In the previous sections we
have shown that the MDL-FS score overcomes this drawback by: capturing first the strongest relationships between attri-
butes and the class variable and evaluating a sum of terms that indicates the amount of irredundancy a set of attributes
has for the class variable.

Other interesting approaches, but somehow incomparable with our algorithm since they use both labelled and unlabelled
records are the algorithms that uses a mixture between supervised and unsupervised learning [53,54].
7. Experimental results

In the following, we study the feature-selection behaviour of the MDL and MDL-FS functions in a practical setting by con-
structing selective Naive Bayes and TAN classifiers from various different datasets using both functions. Then, we compare
them with three other popular methods from feature selection literature: a wrapper method which uses the accuracy mea-
sure for training and testing the selective classifiers [32], Koller and Sahami’s [33] and Hall’s [30] filter methods.

For our experimental study, we use 15 datasets: 13 from the UCI Irvine repository and two artificially generated datasets.
The characteristics of some of these UCI datasets are thoroughly analyzed in literature. For example, the chess dataset, Hall
[30] obtains accurate selective Naive Bayes classifiers over just 3 out of 36 attributes. From the mushrooms dataset simple
logic rules can be extracted that contain only a small number of attributes (e.g. rules with only 2, 3 or 4 out of 22 attributes
might have an accuracy between 98% and 100%). For the splice dataset, Domingos and Pazzani [24] point out that the most
accurate classifiers were Naive Bayes. The oesoca dataset was generated from a hand-crafted Bayesian network in the field of
esophageal cancer. The artificial dataset was generated by copying the 32 instances of Example 1, 100 times, resulting in a
dataset with 3200 instances. We used the method of Fayyad and Irani to discretize any continuous attributes in the various
datasets [55] and we eliminate any incomplete instances.

In our study, we used the 15 datasets for learning several Naive Bayes classifiers and TAN classifiers, with different algo-
rithms and different scoring functions. In each experiment, we split each dataset randomly into a training set and a test set at
a 2:1 ratio; the training set was used to construct the classifier and the test set was used to establish the performance of the
constructed classifier. We observe that in this case the training and test sets will be at different size. Thus, to fairly measure
the conditional auxiliary log-likelihood, we divide it by the size of the training set. Furthermore, we construct auxiliary net-
works of the same complexities for all methods on the selected attributes in order to compute the conditional auxiliary log-
likelihood values. We repeated each experiment 50 times, each time splitting the dataset anew in a training set and a test set
to be able to compare the mean scores.

Prior to learning the classifiers, we established from the training set the numbers of redundant attributes at the levels 0
and 1. We report the averages and associated standard deviations obtained over all runs in percentage in Table 2. Recall that
in Example 1, four attributes are redundant for the class variable at level 0 – they are A1; A4; A5 and A7 – and four attributes
are redundant for the class variable at level 1 given one other variable – they are A3; A5; A7 and A8. However, when we split
the artificial dataset in training and test set as described before, there is noise inherent to this process. We observe that most
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attributes are deemed irredundant for C except the copies A5 and A7 that are redundant for C at level 1 regardless of the split-
ting in training sets.

In our first experiment, we constructed from each dataset a full Naive Bayes classifier and a full TAN classifier. The basic
idea of this experiment was to establish baseline performances to compare the selective classifiers resulting from the other
experiments against. Table 2 summarizes the results from the first experiment; it reports for each dataset the accuracy and
the conditional auxiliary log-likelihood divided by the size of the training set of constructed classifiers with the algorithms
described in previous sections. We would expect the performance of the TAN classifier constructed from a specific dataset
which has interactions between attributes, to be higher than that of the corresponding Naive Bayes classifier, since a TAN
classifier takes them into consideration while a Naive Bayes classifier does not. For mushrooms and pima the difference in
accuracy of NB and TAN is not significant. Domingos and Pazzani [24] show that the improvement in accuracy classification
by using a more complex Bayesian network classifier than the Naive Bayes classifier is not necessary to be significant. For the
splice, credit and german datasets we find that the accuracy of the Naive Bayes classifier exceeds that of the TAN classifier. The
lower accuracy of these TAN classifiers can be explained by the negative effect of the relationships between redundant attri-
butes over the classification task. The accuracies of the selective TANs generated from the credit database in Table 3 are about
the accuracy of the full NB. For the other 10 datasets, we found statistical significantly higher accuracies for TAN than for
Naive Bayes classifiers.

Furthermore, for all databases, we found significantly higher conditional auxiliary log-likelihoods for TAN than for Naive
Bayes classifiers. Recall that a TAN classifier has equal or higher log-likelihood than a Naive Bayesian classifier over the same
attributes set; thus, it has equal or higher conditional auxiliary log-likelihood with the same auxiliary network. We observe
that, for all but three datasets, splice, car and nursery, the conditional auxiliary log-likelihoods of the full TAN classifiers are
positive but the ones of the Naive Bayes classifiers are negative. Then, the attributes are strongly connected to each other
given the classifier since the conditional auxiliary log-likelihoods of TANs are higher than of NBs. But the attributes are
weakly connected between them in the absence of the class variable – since a low log-likelihood for the auxiliary structure
dominates the log-likelihood of the classifier.

For the second experiment, Table 3 reports the percentages of selected attributes and the classification accuracies of the
selective Naive Bayes and TAN classifiers constructed with five feature selection methods. We use an forward algorithm to
optimize the MDL and MDL-FS functions, two popular feature-selection specific scores, the accuracy method for evaluating a
specific classifier [56,32] and Hall [30]’s algorithms described in the previous section. The fifth method is the backward elimi
method of Koller and Sahami [33]’s. The disadvantage of the forward elimination and backward elimination is that they can
stuck in the local optimum. We have also run experiments with a standard genetic algorithm [57] that overcomes this dis-
advantage. However, due to the lack of space and because of the similar results with forward elimination for most of the
datasets, we do not show these results except for some interesting cases.

According with the definition of the wrapper and filter approach [32,6], the MDL and MDL-FS algorithms are wrappers when
the performance measure is the conditional auxiliary log-likelihood, and they becomes filters when the performance measure
is the classification accuracy. Whereas, if the accuracy measure is used instead of the MDL score, the resulting algorithm is a
wrapper when the algorithm evaluates selective NB and TAN classifiers over the test set using the accuracy measure, and a filter
when the algorithm evaluates the performance of the specific classifiers with the conditional auxiliary log-likelihood.

We observe that, upon constructing a selective Naive Bayes classifier, with the MDL-FS function, more selective classifiers
were obtained than with the MDL function. The more selective behaviour was expected of the MDL-FS function as it removes
not just attributes that are redundant at level 0, but also many attributes that are redundant for the class variable at level 1.
We observe that indeed, for the artificial dataset, in addition to the four attributes redundant at level 0, attributes redundant
at level 1 for the class variable – these are A3 and A8 – were removed. In the sequel, upon constructing a TAN classifier with
Table 2
The characteristics of the five datasets.

data inst nr attrib % red attr NB TAN

l ¼ 0 l ¼ 1 % acc CALL % acc CALL

oesoca 10,000 25 0
 0 0
 0 71
 1 �1:63
 0:02 74
 0 1:46
 0:01
artif 3200 8 0
 0 75
 0 81
 4 �1:64
 0:02 100
 0 0:84
 0:01
chess 3196 36 2
 1 1
 1 88
 1 �3:11
 0:04 92
 1 0:89
 0:01
mush 5644 22 5
 0 14
 0 100
 0 �6:23
 0:03 100
 0 2:77
 0:02
splice 3000 60 0
 0 0
 0 96
 1 �0:20
 0:05 95
 1 3:43
 0:06
spam 4601 57 4
 0 4
 0 91
 1 �3:78
 0:04 92
 0 2:33
 0:03
adult 32,561 14 7
 0 14
 0 83
 0 �1:70
 1:88 84
 0 0:25
 0:26
car 1728 6 0
 0 0
 0 85
 2 0:68
 0:02 94
 1 0:91
 0:02
nursery 12,960 8 0
 0 0
 0 91
 0 1:29
 0 94
 0 1:46
 0:01
conn 67,557 42 0
 0 0
 0 72
 0 �6:63
 0 77
 0 0:39
 0
german 1000 20 30
 0 30
 0 74
 2 �0:96
 0:05 68
 3 0:51
 0:03
votes 435 16 0
 0 0
 0 97
 0 �0:94
 0:0 98
 0 1:34
 0:0
spect 267 23 0
 0 0
 0 79
 4 �3:42
 0:17 81
 4 0:59
 0:06
pima 768 8 37:5
 0 37:5
 0 78
 2 �0:03
 0:03 78
 2 0:34
 0:02
credit 690 15 6
 0 13
 0 86
 2 �1:53
 0:07 78
 3 1:04
 0:05



Table 3
The feature-selection results obtained for Naive Bayes and TAN classifiers.

data MDL-FS MDL Acc K&S Hall

% sel % acc CALL % sel % acc CALL % sel % acc CALL % sel % acc CALL % sel % acc CALL

NB
oesoca 26
 2 69
 1 0:97
 0:01 72
 2 72
 1 �0:31
 0:14 43
 9 72
 1 0:37
 0:25 24
 1 70
 1 0:83
 0:03 24
 1 68
 1 0:90
 0:01
artif 25
 0 87
 1 0:47
 0:01 50
 0 81
 1 �0:48
 0:01 12:5
 0 88
 1 0:29
 0:01 26
 0 87
 2 0:43
 0:03 25
 0 87
 1 0:46
 0:01
chess 13
 2 94
 0 0:41
 0:01 58
 3 88
 1 �1:50
 0:22 14
 1 95
 1 0:40
 0:01 11
 0 90
 1 0:36
 0:01 8
 0 91
 1 0:38
 0:08
mush 5
 0 98
 0 0:86
 0:01 92
 3 100
 0 �6:08
 0:14 14
 0 100
 0 0:23
 0:01 37
 1 100
 0 �2:41
 0:07 9
 1 100
 0 0:52
 0:01
splice 22
 1 96
 1 1:59
 0:03 47
 2 96
 0 1:25
 0:05 19
 4 95
 1 1:40
 0:06 29
 1 96
 1 1:46
 0:05 10
 1 94
 1 1:25
 0:02
spam 22
 1 93
 0 0:88
 0:02 96
 0 90
 1 �3:74
 0:06 25
 5 93
 1 0:30
 0:20 18
 1 91
 1 �0:11
 0:07 25
 2 80
 1 �1:13
 0:16
adult 32
 4 85
 0 0:36
 0 83
 0 83
 0 �3:23
 0:01 40
 6 85
 1 0:07
 0:17 36
 1 83
 0 0:11
 0:05 36
 1 83
 0 0:11
 0:03
car 81
 6 85
 2 0:65
 0:04 82
 5 85
 2 0:68
 0:02 68
 34 80
 7 0:50
 0:28 83
 0 86
 2 0:68
 0:02 83
 0 86
 1 0:68
 0:02
nursery 87
 2 90
 1 1:28
 0 87:5
 0 90
 0 1:28
 0 99
 4 90
 1 1:29
 0:01 37:5
 0 88
 0 1:23
 0 37:5
 0 88
 0 1:23
 0
german 10
 1 72
 2 0:12
 0:01 44
 9 75
 0 �0:02
 0:15 19
 10 74
 3 0:01
 0:07 35
 0 67
 0 0:05
 0 11
 2 70
 2 0:10
 0:01
conn 9:5
 0 70
 2 0:16
 0 86
 2 72
 0 �6:26
 0 65
 4 73
 0 0:23
 0 2
 0 66
 0 0:01
 0 2
 0 66
 0 0:01
 0
votes 14
 0 97
 1 0:87
 0:03 87:5
 0 93
 3 �0:59
 0:19 12
 5 97
 2 0:95
 0:16 56
 6 92
 3 0:13
 0:07 57
 5 92
 3 0:12
 0:24
spect 14:5
 3 77
 4 0:20
 0:03 85
 9 79
 4 �2:48
 0:55 7
 4 78
 3 0:07
 0:04 13
 4 77
 5 0:03
 0:07 13
 4 77
 5 0:03
 0:08
pima 37
 3 76
 2 0:26
 0:02 62:5
 0 78
 2 �0:03
 0:03 45
 14 78
 3 0:34
 0:06 41
 6 78
 2 0:22
 0:06 41
 6 78
 2 0:22
 0:06
credit 25
 5 86
 2 0:53
 0:03 58
 6 87
 2 �1:15
 0:33 18
 8 86
 2 0:44
 0:13 26
 3 86
 2 0:49
 0:07 26
 2 86
 2 0:49
 0:09

TAN
oesoca 47
 5 73
 1 1:24
 0:05 98
 2 74
 1 1:45
 0:02 64
 6 75
 1 1:32
 0:03 24
 1 71
 1 1:08
 0:02 24
 1 68
 1 1:00
 0:01
artif 50
 0 100
 0 0:76
 0:01 75
 0 100
 1 0:84
 0:01 12:5
 0 100
 1 0:30
 0:01 26
 0 88
 1 0:49
 0:03 25
 0 88
 1 0:46
 0:01
chess 42
 4 93
 1 0:86
 0:02 97
 1 92
 1 0:90
 0:02 14
 0 95
 0 0:68
 0:01 11
 0 90
 1 0:63
 0:01 8
 0 91
 1 0:61
 0:01
mush 51
 4 100
 0 2:56
 0:05 94
 2 100
 2 2:77
 0:03 14
 0 100
 0 0:98
 0:01 37
 1 100
 0 1:86
 0:05 9
 1 100
 0 0:95
 0
splice 14
 1 94
 1 1:75
 0:05 34
 1 96
 0 2:47
 0:04 19
 4 95
 1 1:76
 0:15 29
 1 96
 1 2:30
 0:04 10
 1 94
 1 1:40
 0:02
spam 59
 4 93
 0 2:01
 0:08 95
 1 92
 1 2:34
 0:04 27
 4 93
 1 1:14
 0:10 18
 1 91
 1 1:30
 0:05 25
 2 83
 1 0:44
 0:03
adult 38
 4 84
 1 0:39
 0:02 85
 2 85
 0 0:51
 0 54
 7 86
 0 0:45
 0:02 36
 1 83
 0 0:37
 0:01 36
 1 83
 0 0:37
 0:01
car 33
 0 77
 1 0:53
 0:01 33
 0 77
 1 0:53
 0:01 77
 31 88
 10 0:72
 0:32 83
 0 93
 1 0:89
 0:02 83
 0 93
 1 0:90
 0:02
nursery 39
 4 89
 0 1:35
 0:01 40
 6 89
 1 1:35
 0:02 100
 2 93
 1 1:45
 0:01 37:5
 0 88
 0 1:34
 0 37:5
 0 89
 0 1:34
 0
german 5
 0 69
 2 0:10
 0:01 5
 1 69
 2 0:10
 0:01 18
 10 74
 4 0:10
 0:07 35
 0 67
 0 0:05
 0 11
 2 70
 2 0:12
 0:02
conn 53
 0 76
 0 0:35
 0 100
 0 76
 0 0:38
 0 90
 4 76
 0 0:38
 0:01 2
 0 66
 0 0:01
 0 2
 0 66
 0 0:01
 0
votes 9
 0 97
 2 0:85
 0:03 93
 4 93
 3 1:34
 0:07 12
 3 97
 1 0:83
 0:04 56
 6 94
 3 1:09
 0:07 57
 5 94
 3 1:10
 0:06
spect 6
 3 79
 4 0:14
 0:05 100
 0 83
 4 0:57
 0:04 7
 3 79
 4 0:06
 0:04 13
 4 78
 4 0:16
 0:05 13
 4 79
 4 0:16
 0:05
pima 15
 7 74
 2 0:20
 0:03 62
 0 78
 2 0:34
 0:02 44
 11 77
 3 0:28
 0:03 41
 6 77
 2 0:30
 0:03 41
 6 77
 2 0:30
 0:03
credit 23
 4 85
 2 0:58
 0:03 51
 5 86
 2 0:64
 0:03 17
 7 86
 2 0:50
 0:05 26
 3 84
 3 0:61
 0:05 26
 2 84
 2 0:58
 0:04
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the MDL function, hardly any attributes were removed. We recall that the MDL function tends to remove redundant attri-
butes only if they are very weakly related with the other attributes. From the feature-selection results obtained, we thus
have that, apparently, most redundant attributes show a relatively strong relationship with one or more other attributes.
It is interesting to note that, for the artificial dataset, the redundant attributes at level 0, A5 and A7 are not included in
the TAN classifier scored with MDL even though they are copies of each other because the use of the forward selection meth-
od. However, when backward elimination and genetic algorithms are used, the (selective) TAN classifier that includes these
two irrelevant features are preferred over the selective TAN classifiers that do not include them. When selective TANs are
generated using the MDL-FS score redundant attributes at level 0 and 1 were indeed eliminated; the resulting TAN classifier
is presented in Fig. 2 in the middle. We note that, although with the MDL-FS function far more selective classifiers were
yielded, the accuracies obtained are approximately the same as with the MDL function. In the sequel, the selective TAN
and NB classifiers have similar accuracy as the full TAN and NB, respectively, for all datasets except the car dataset. When
running the genetic algorithms with MDL and MDL-FS score, we notice that the accuracy improves when the number of
eliminated attributes decreases suggesting that the feature selection is not useful for this dataset. There are also datasets
(i.e., artif, chess and spam for NB) where the selective classifiers have better performance than the full classifiers.

The conditional auxiliary log-likelihood values for the selective Naive Bayes are positive for the MDL-FS function and neg-
ative for the MDL function (except again for car and nursery datasets) indicating that the attributes that are weakly correlated
with the class variable and strongly correlated with the other attributes in the classifier are eliminated. In opposition, the
conditional auxiliary log-likelihoods for the selective TAN and the MDL-FS function are lower than for the MDL function. This
is the effect of balancing between the model and the representation of the MDL(-FS) score. From Section 4 we recall that the
conditional auxiliary log-likelihood score increases when the complexity of the classifier increases but also the cost to rep-
resent (compress) this TAN increases. We note that the feature-selection behaviour of the two functions is relatively robust
as the standard deviation of the average accuracies is quite small. Higher standard deviations of the conditional auxiliary log-
likelihoods were obtained for the MDL scoring than for the MDL-FS function, showing that the latest function models the
conditional auxiliary log-likelihood better than the earlier one.

The accuracy method is a wrapper method since it evaluates the accuracy itself in constructing selective classifiers. There-
fore, it is also by far the slowest method. The other feature selection algorithms tested here are filters and do not win from
the accuracy method on the accuracy score, but are much faster. The exception is the car dataset where the forward-selection
algorithm gets stuck in a local optimum. Alternatively, the genetic algorithm generates less selective TANs which keep
96%
 7 of the attributes with the high accuracy 94%
 1 and less selective NB keeping 90%
 10 of attributes but with
the accuracy of 85%
 2. For most of the datasets the accuracy method is slightly better than those of the MDL-FS and
MDL scores. The exception is again the car dataset where the MDL-FS score is too selective whereas the MDL score is stuck
in a local optima. However, the accuracy algorithm is computationally very expensive since we have to compute each step
the accuracy over the training set. Recall that the other quality measures used in this section calculates the required prob-
abilities from the training set only once and store them for later use. The amount of evaluation also increases with the com-
plexity of the classifiers we construct. The conditional auxiliary log-likelihoods of this function are, for most datasets, slightly
worse than the conditional auxiliary log-likelihoods for our MDL-FS function. However, we observe that the standard devi-
ations are considerable higher for this function than for the MDL-FS score because various classifiers can have good accura-
cies but their conditional auxiliary log-likelihood can be rather large. For example, for the artificial dataset, all TAN classifiers
which contain the attributes A1; A2 and A4 and an arc between A1 and A4 have the accuracy 1 (e.g. full TAN classifiers and the
selective TAN obtained with the MDL-FS function) whereas their conditional auxiliary log-likelihood can vary. For the arti-
ficial dataset, the greedy algorithm might fail in learning the complex relationship between attributes (e.g. the XOR relation
between A1 and A4). However, for the same dataset, the TAN classifier obtained using backward elimination is the one illus-
trated in Fig. 2 on the right; in Section 5, we showed that we need a more complex auxiliary network than the tree structured
one to learn this classifier with the MDL-FS score.

Koller and Sahami’s approximative method depends heavily on the threshold c over which an attribute is considered use-
ful for the classification task. The higher the threshold c the more selective is this method, but the performance of the selec-
tive Naive Bayesian classifier can be diminished. In this paper, we present results with c ¼ 0:05; for all datasets the selection
is very strong and the accuracies are comparable with the full Naive Bayesian classifiers. Hall’s and Koller and Sahami’s algo-
rithms, on average, for Naive Bayes classifiers, have a comparable performance regarding the number of selected attributes
and the classification accuracy with the algorithm using the MDL-FS function. However, the conditional auxiliary log-like-
lihood, on average, even though it is positive, is considerable smaller than the conditional auxiliary log-likelihood obtained
using the MDL-FS score. When we compare these algorithms with the other algorithms for constructing TAN classifiers, we
find they are very selective, with slightly worse accuracies, but with much worse conditional auxiliary log-likelihoods. The
exception is, again, the car dataset for which the MDL-FS method is too selective and considerably diminishes accuracy. It is
interesting to note that the TAN classifier constructed over the attributes selected with the MDL-FS score on NBs from the car
dataset has the same performance as Hall’s and Koller and Sahami’s algorithms. For the artificial dataset, both algorithms
select on average only two attributes A2 and A6, as when the MDL-FS score for Naive Bayesian classifiers is used. As we have
showed in the previous section, neither of these two methods, however, are able to identify the XOR relationship between A1

and A4.
To conclude our experimental section, in Table 4, we compare the performance of the five discussed algorithms and the

non-selective Bayesian network classifier (full BNC) for Naive Bayes and TAN classifiers using three methods. We first mea-



Table 4
Three measures to compare the performance of the five scoring methods and the non-selective (full) Bayesian network classifier (BNC) for Naive Bayes and TAN
classifiers.

alg Mean Nr. wins MDL-FS Rank

% sel % acc CALL % sel % acc CALL % sel % acc CALL

NB Full BNC 100 85 �1.99 15–0 4–8 13–1 6.0 2.13 5.2
MDL-FS 28 85 0.63 2.2 3 1.33
MDL 72 84 �1.45 15–0 5–7 13–0 4.73 2.53 4.53
Acc 33 86 0.46 9–6 2–8 11–4 2.73 1.93 2.8
K&S 32 84 0.23 9–6 7–4 14–0 2.6 3.2 2.93
Hall 27 83 0.36 8–6 9–3 14–0 2.07 3.73 2.8

TAN Full BNC 100 87 1.24 15–0 4–8 1–14 5.73 2.27 1.47
MDL-FS 29 85 0.89 2.33 3.07 3.93
MDL 72 86 1.1 13–0 3–7 0–12 4.4 2.33 1.87
Acc 38 87 0.73 10–5 1–10 7–7 3 2.13 4.2
K&S 32 84 0.83 7–8 10–3 9–6 2.47 4.13 4.07
Hall 27 84 0.65 6–8 7–3 9–5 2 3.8 4.4
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sure the mean and standard deviation of all datasets for: (i) the number of selected attributes, (ii) the accuracy and (iii) the
conditional auxiliary log-likelihood (CALL). For the second comparison method, we count the number of significant wins–
losses of the MDL-FS function when compared with the other five methods using the Wilcox tests with a p-value of 0.05.
The last comparison uses a ranking scheme of the discussed scoring methods for the 15 tested datasets. We observe that
the MDL-FS has the best conditional auxiliary log-likelihood score for Naive Bayes and it is second best for TANs. It is the
second most selective methods (on average only Hall’s method reduces more attributes). The accuracies of the MDL-FS meth-
od are comparable with the accuracies of the other algorithms.
8. Conclusions

In this paper, we have studied the feature-selection behaviour of the MDL-FS function, an MDL kind of function, for learn-
ing Bayesian network classifiers from data. We define the concept of redundant and irredundant attributes for the class var-
iable given sets of attributes; based on the cardinality of these attributes, we have different levels of redundancy and
irredundancy. Based on the observation that the poor feature-selection behaviour of the MDL function is due to the use
of the joint probability distribution over a classifier’s variables, we have analysed an MDL-based function that captures
the conditional distribution instead of the joint probability from the standard MDL. Since computing conditional log-likeli-
hood is generally acknowledged to be hard, we associate to each Bayesian network classifier an auxiliary network to model
also the distribution over the attributes set. We have argued, both theoretically and experimentally, that the MDL-FS func-
tion is better tailored to the task of feature selection for more complicated Bayesian network classifiers than the Naive Bayes
classifier than the MDL score: with the MDL-FS function, classifiers are yielded that have a performance comparable to the
ones found with the MDL function, yet include fewer attributes. We performed many experiments that compare our method
with popular methods from feature selection literature; in many cases, with the MDL-FS score, we have obtained better and/
or more selective classifiers. Explanations for the empirical performance of the generated selective Bayesian network clas-
sifiers are consistent with the theoretical findings of the paper. Our selective MDL-FS method can be used to provide im-
proved insight into the domains being modeled, since less features are used. Furthermore, for classifying a new instance,
fewer feature values need to be obtained which is very useful as well. Finally, the paper has contributed to an additional
understanding of feature selection in terms of explaining different methods for discriminating the relevant features for
the classification task using various scores and machine learning algorithms.
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