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Let X be a Banach space. We prove that, for a large class of Ba-

nach or quasi-Banach spaces E of X-valued sequences, the sets E −⋃
q∈Γ �q(X), whereΓ is any subset of (0, ∞], and E− c0(X) contain

closed infinite-dimensional subspaces of E (if non-empty, of course).

This result is applied in several particular cases and it is also shown

that the same technique can be used to improve a result on the ex-

istence of spaces formed by norm-attaining linear operators.

© 2010 Elsevier Inc.

0. Introduction

A subset A of a Banach or quasi-Banach space E is μ-lineable (spaceable) if A ∪ {0} contains a μ-

dimensional (closed infinite-dimensional) linear subspace of E. The last few years have witnessed the

appearance of lots of papers concerning lineability and spaceability (see, for example, [1–3,10,13]).

The aim of this paper is to explore a technique to prove lineability and spaceability that can be applied

in several different settings. It is our opinion that this technique was first used in the context of

lineability/spaceability in the preprint [4], of which this paper is an improved version.

Let c denote the cardinality of the set of real numbersR. In [10] it is proved that �p−�q is c-lineable
for every p > q � 1. With the help of [7] this result can be substantially improved in the sense that
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�p − ⋃
1�q<p �q is spaceable for every p > 1. In this paper we address the following questions: What

about the non-locally convex range 0 < p < 1? Can these results be generalized to sequence spaces

other than �p?
As to the first question, it is worth recalling that the structure of quasi-Banach spaces (or, more

generally, metrizable complete tvs, called F-spaces) is quite different from the structure of Banach

spaces. For our purposes, the consequence is that the extension of lineability/spaceability arguments

from Banach to quasi-Banach spaces is not straightforward in general. For example, in [14, Section 6]

it is essentially proved (with a different terminology) that if Y is a closed infinite-codimensional linear

subspace of the Banach space X , then X − Y is spaceable. A counterexample due to Kalton [5, Theorem

1.1] shows that this result is not valid for quasi-Banach spaces (there exists a quasi-Banach spaceK with

an1-dimensional subspace that is contained in all closed infinite-dimensional subspaces ofK). Besides,

the search for closed infinite-dimensional subspaces of quasi-Banach spaces is a quite delicate issue.

Even fundamental facts are unknown, for example the following problem is still open (cf. [6, Problem

3.1]): Does every (infinite-dimensional) quasi-Banach space have a proper closed infinite-dimensional

subspace? Nevertheless we solve the first question in the positive: as a particular case of our results

we get that �p − ⋃
0<q<p �q is spaceable for every p > 0 (cf. Corollary 1.6).

As to the secondquestion,we identify a large class of vector-valued sequence spaces, called invariant

sequence spaces (cf. Definition 1.1), such that if E is an invariant Banach or quasi-Banach space of X-

valued sequences, where X is a Banach space, then the sets E − ⋃
q∈Γ �q(X), where Γ is any subset of

(0, ∞], and E − c0(X) are spaceable whenever they are non-empty (cf. Theorem 1.3). Several classical

sequence spaces are invariant sequence spaces (cf. Example 1.2).

In order to make clear that the technique we use can be useful in a variety of other situations, we

finish the paper with an application to the c-lineability of sets of norm-attaining linear operators (cf.

Proposition 2.1).

From now on all Banach and quasi-Banach spaces are considered over a fixed scalar field K which

can be either R or C.

1. Sequence spaces

In this section we introduce a quite general class of scalar-valued or vector-valued sequence spaces

and prove that certain of their remarkable subsets have spaceable complements.

Definition 1.1. Let X �= {0} be a Banach space.

(a) Given x ∈ XN, by x0 we mean the zerofree version of x, that is: if x has only finitely many non-

zero coordinates, then x0 = 0; otherwise, x0 = (xj)
∞
j=1 where xj is the jth non-zero coordinate

of x.

(b) By an invariant sequence space over X we mean an infinite-dimensional

Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions:

(b1) For x ∈ XN such that x0 �= 0, x ∈ E if and only if x0 ∈ E, and in this case ‖x‖E � K‖x0‖E for

some constant K depending only on E.

(b2) ‖xj‖X � ‖x‖E for every x = (xj)
∞
j=1 ∈ E and every j ∈ N.

An invariant sequence space is an invariant sequence space over some Banach space X .

Several classical sequence spaces are invariant sequence spaces:

Example 1.2.

(a) GivenaBanachspaceX , it is obvious that for every0 < p � ∞,�p(X) (absolutelyp-summableX-

valued sequences),�up(X) (unconditionallyp-summableX-valued sequences) and�wp (X) (weakly

p-summable X-valued sequences) are invariant sequence spaces over X with their respective



G. Botelho et al. / Linear Algebra and its Applications 434 (2011) 1255–1260 1257

usual norms (p-norms if 0 < p < 1). In particular, �p, 0 < p � ∞, are invariant sequence

spaces (over K).

(b) It is easy to see that Lorentz spaces �p,q, 0 < p < ∞, 0 < q < ∞ (see, e.g., [12, 13.9.1]) are

invariant sequence spaces (overK): indeed, given 0 �= x0 ∈ �p,q, the non-increasing rearrange-

ment of x coincides with that of x0. So ‖x‖p,q = ‖x0‖p,q < ∞.

(c) Let M be an Orlicz function and �M be the corresponding Orlicz sequence space (see, e.g., [8,

4.a.1]). The condition M(0) = 0 makes clear that �M is an invariant sequence space (over K).

For the same reason, its closed subspace hM is an invariant sequence space as well.

(d) Given 0 < p � s � ∞ and a Banach space X , by �m(s;p) (X) we mean the Banach (p-Banach if

0 < p < 1) space of all mixed (s, p)-summable sequences on X (see, e.g., [12, 16.4]). It is not

difficult to see that �m(s;p) (X) is an invariant sequence space over X .

Now we can prove our main result. Given an invariant sequence space E over a Banach space X ,

regarding both E and �p(X) as subsets of XN, we can talk about the difference E − �p(X) and related

ones.

Theorem 1.3. Let E be an invariant sequence space over a Banach space X. Then

(a) For every Γ ⊆ (0, ∞], E − ⋃
q∈Γ �q(X) is either empty or spaceable.

(b) E − c0(X) is either empty or spaceable.

Proof. Put A = ⋃
q∈Γ �q(X) in (a) and A = c0(X) in (b). Assume that E − A is non-empty and choose

x ∈ E − A. Since E is an invariant sequence space, x0 ∈ E, and obviously x0 /∈ A. Writing x0 = (xj)
∞
j=1

we have that x0 ∈ E − A and xj �= 0 for every j. Split N into countably many infinite pairwise disjoint

subsets (Ni)
∞
i=1. For every i ∈ N set Ni = {i1 < i2 < · · · } and define

yi =
∞∑
j=1

xjeij ∈ XN.

Observe that y0i = x0 for every i. So 0 �= y0i ∈ E for every i. Hence each yi ∈ E because E is an invariant

sequence space. Let us see that yi /∈ A: in (a) this occurs because ‖yi‖r = ‖x0‖r = ‖x‖r for every

0 < r � ∞ and in (b) because ‖xj‖X � 0. Let K be the constant of condition 1.1(b1) and define s̃ = 1

if E is a Banach space and s̃ = s if E is an s-Banach space, 0 < s < 1. For (ai)
∞
i=1 ∈ �s̃,

∞∑
i=1

‖aiyi‖s̃
E =

∞∑
i=1

|ai|s̃‖yi‖s̃
E � Ks̃

∞∑
i=1

|ai|s̃
∥∥∥y0i

∥∥∥s̃
E

= Ks̃
∥∥∥x0∥∥∥s̃

E

∞∑
i=1

|ai|s̃ = Ks̃
∥∥∥x0∥∥∥s̃

E

∥∥(ai)∞i=1

∥∥s̃
s̃ < ∞.

Thus
∑∞

i=1 ‖aiyi‖E < ∞ if E is a Banach space and
∑∞

i=1 ‖aiyi‖s
E < ∞ if E is an s-Banach space,

0 < s < 1. In both cases the series
∑∞

i=1 aiyi converges in E, hence the operator

T : �s̃ −→ E, T
(
(ai)

∞
i=1

) =
∞∑
i=1

aiyi

is well defined. It is easy to see that T is linear and injective. Thus T (�s̃) is a closed infinite-dimensional

subspace of E. We just have to show that T (�s̃)−{0} ⊆ E − A. Let z = (zn)
∞
n=1 ∈ T (�s̃), z �= 0. There

are sequences
(
a
(k)
i

)∞
i=1

∈ �s̃, k ∈ N, such that z = limk→∞ T

((
a
(k)
i

)∞
i=1

)
in E. Note that, for each

k ∈ N,
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T

((
a
(k)
i

)∞
i=1

)
=

∞∑
i=1

a
(k)
i yi =

∞∑
i=1

a
(k)
i

∞∑
j=1

xjeij =
∞∑
i=1

∞∑
j=1

a
(k)
i xjeij .

Fix r ∈ N such that zr �= 0. Since N = ⋃∞
j=1 Nj , there are (unique)m, t ∈ N such that emt

= er . Thus,

for each k ∈ N, the rth coordinate of T

((
a
(k)
i

)∞
i=1

)
is the number a

(k)
m xt . Condition 1.1(b2) assures

that convergence in E implies coordinatewise convergence, so

zr = lim
k→∞ a(k)

m xt = xt · lim
k→∞ a(k)

m .

It follows that xt �= 0. Hence limk→∞ |a(k)
m | = ‖zr‖X‖xt‖X

�= 0. For j, k ∈ N, the mjth coordinate of

T

((
a
(k)
i

)∞
i=1

)
is a

(k)
m xj. Defining αm = ‖zr‖X‖xt‖X

�= 0,

lim
k→∞ ‖a(k)

m xj‖X = lim
k→∞ |a(k)

m |‖xj‖X = ‖xj‖X · lim
k→∞ |a(k)

m | = αm

∥∥xj∥∥X

for every j ∈ N. On the other hand, coordinatewise convergence gives limk→∞ ‖a(k)
m xj‖X = ‖zmj

‖X ,

so ‖zmj
‖X = αm‖xj‖X for each j ∈ N. Observe that m, which depends on r, is fixed, so the natural

numbers (mj)
∞
j=1 are pairwise distinct (remember that Nm = {m1 < m2 < · · · }).

(a) As x0 /∈ A, we have ‖x0‖q = ∞ for all q ∈ Γ . Note that

‖z‖q
q =

∞∑
n=1

‖zn‖q
X �

∞∑
j=1

∥∥∥zmj

∥∥∥q
X

=
∞∑
j=1

αq
m · ∥∥xj∥∥qX = αq

m ·
∥∥∥x0∥∥∥q

q
= ∞

for every q in Γ , q �= ∞. Besides, if q = ∞, then

‖z‖∞ = sup
n

‖zn‖X � sup
j

‖zmj
‖X = αm · sup

j

‖xj‖X = αm‖x0‖∞ = ∞,

proving that z /∈ ⋃
q∈Γ �q(X).

(b) As x0 /∈ A, we have ‖xj‖X � 0. Since (‖zmj
‖X)

∞
j=1 is a subsequence of (‖zn‖X)

∞
n=1 , ‖zmj

‖X =
αm‖xj‖X for every j and αm �= 0, it is clear that ‖zn‖X � 0. Thus z /∈ c0(X).

Therefore z /∈ A in both cases, so T (�s̃) − {0} ⊆ E − A. �

We list a few consequences.

Whenwewrite F ⊂ Ewemean that E contains F as a linear subspace and E �= F . We are not asking

neither E to contain an isomorphic copy of F nor the inclusion F ↪→ E to be continuous.

Corollary 1.4. Let E be an invariant sequence space over K.

(a) If 0 < p � ∞ and �p ⊂ E, then E − �p is spaceable.

(b) If c0 ⊂ E, then E − c0 is spaceable.

From the results due to Kitson and Timoney [7] we derive that �up(X) − �p(X) for p � 1, and

�p −⋃
0<q<p �q for p > 1, are spaceable. However, as is made clear in [7, Remark 2.2], their results are

restricted to Fréchet spaces (see the Introduction). Next we extend the spaceability of �up(X) − �p(X)

and �p − ⋃
0<q<p �q to the non-locally convex case:

Corollary 1.5. �m(s;p) (X) − �p(X) and �up(X) − �p(X) are spaceable for 0 < p � s < ∞ and every

infinite-dimensional Banach space X. Hence �wp (X) − �p(X) is spaceable as well.
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Proof. By [9, Proposition 1.2(1)] we have that �m(∞;p) (X) = �p(X) ⊆ �m(s;p) (X), and by [9, Theorem

2.1], �m(s;p) (X) �= �p(X). On the other hand, the identity operator on any infinite-dimensional Banach

space fails to be absolutely p-summing for every 0 < p < ∞ (the case 1 � p < ∞ is well known, and

the case 0 < p < 1 follows from the fact that p-summing operators are q-summing whenever p � q).

So �up(X) �= �p(X). As �m(s;p) (X) and �up(X) are invariant sequence spaces over X , the first assertion

follows from Theorem 1.3. As �up(X) ⊆ �wp (X), the second assertion follows. �

Corollary 1.6. �p − ⋃
0<q<p �q is spaceable for every p > 0.

Proof. We know that �p is an invariant sequence space over K and it is well-known that �p −⋃
0<q<p �q �= ∅. The result follows from Theorem 1.3. �

Remark 1.7. Theorem 1.3 can be applied in a variety of other situations. For example, for Lorentz

spaces it applies to �q,r − �p for 0 < p < q and r > 0, and to �p,q − �p for 0 < p < q. We believe

that the usefulness of Theorem 1.3 is well established, so we refrain from giving further applications.

Although our results concern spaceability of complements of linear subspaces, the same technique

gives the spaceability of sets that are not related to linear subspaces at all. Rewriting the proof of

Theorem 1.3 we get:

Proposition 1.8. Let E be an invariant sequence space over the Banach space X. Let A ⊆ E be such that:

(i) For x ∈ E, x ∈ A if and only if x0 ∈ A.

(ii) If x = (xj)
∞
j=1 ∈ A and y = (yj)

∞
j=1 ∈ E is such that (‖yj‖X)

∞
j=1 is a multiple of a subsequence of

(‖xj‖X)
∞
j=1, then y ∈ A.

(iii) There is x ∈ E − A with x0 �= 0.

Then E − A is spaceable.

2. Norm-attaining operators

In this sectionwe show that the technique used in the previous section can be used in a completely

different context. Specifically, we extend a result from [11] concerning the lineability of the set of

norm-attaining operators.

Given Banach spaces E and F and x0 ∈ E such that ‖x0‖ = 1 (x0 is said to be a norm-one vector), a

continuous linear operator u : E −→ F attains its norm at x0 if ‖u(x0)‖F = ‖u‖L(E;F). By NAx0(E; F)
we mean the set of continuous linear operators from E to F that attain their norms at x0.

In [11, Proposition 6] it is proved that if F contains an isometric copy of �q for some 1 � q < ∞,
then NAx0(E; F) is ℵ0-lineable. We generalize this result showing that this set is c-lineable:

Proposition 2.1. Let E and F be Banach spaces so that F contains an isometric copy of �q for some

1 � q < ∞, and let x0 be a norm-one vector in E. Then NAx0(E; F) is c-lineable.
Proof. The beginning of the proof follows the lines of the proof of [11, Proposition 6]. It suffices to

prove the result for F = �q. Split N into countably many infinite pairwise disjoint subsets (Ak)
∞
k=1. For

each positive integer k, write Ak = {a(k)
1 < a

(k)
2 < · · · } and define

�(k)
q := {

x ∈ �q : xj = 0 if j /∈ Ak

}
.

Fix a non-zero operator u ∈ NAx0(E; F) and proceed as in the proof of [11, Proposition 6] to get

a sequence (u(k))∞k=1 of operators belonging to NAx0(E; �
(k)
q ) such that ‖u(k)(x)‖

�
(k)
q

= ‖u(x)‖�q
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for every k and every x ∈ E. By composing these operators with the inclusion �
(k)
q ↪→ �q we get

operators (and we keep the notation u(k) for the sake of simplicity) belonging to NAx0(E; �q). For
every (ak)

∞
k=1 ∈ �1,

∞∑
k=1

‖aku(k)‖L(E;�(k)
q )

=
∞∑
k=1

|ak|‖u(k)‖L(E;�(k)
q )

=
∞∑
k=1

|ak|‖u(k)(x0)‖�
(k)
q

= ‖u(x0)‖�q

∞∑
k=1

|ak| < ∞,

so the map

T : �1 −→ L(E; �q), T((ak)
∞
k=1) =

∞∑
k=1

aku
(k)

is well-defined. It is clear that T is linear and injective. Hence T(�1) is a c-dimensional subspace of �q.

Since the supports of the operators u(k) are pairwise disjoint, T(�1) ⊆ NAx0(E; �q). �
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