On Almost Nilpotent-by-Abelian Lie Algebras

Kevin Bowman

Department of Mathematics and Statistics
University of Central Lancashire
Preston, Lancashire, England, PR1 2HE

and

David A. Towers

Department of Mathematics
University of Lancaster
Lancaster, England, LA1 4YL

Submitted by Hans Schneider

ABSTRACT

We examine Lie algebras all of whose proper subalgebras are nilpotent-by-abelian but which themselves are not nilpotent-by-abelian. We study the existence and structure of these algebras.

Let C be a class of Lie algebras other than abelian. A Lie algebra L is said to be almost C if all of the subalgebras of L except L itself belong to C. Note that some authors have used the terminology minimal non-C rather than almost C. If L is simple and every proper subalgebra is abelian, then we say L is simple semiabelian. (We reserve the phrase "L is almost abelian" for a different class of algebras.)

Simple semiabelian Lie algebras have been studied by Gein in [8] and [7], Farnsteiner in [5] and [6], Elduque in [2], and Varea in [18]. Almost nilpotent Lie algebras have been studied by Stitzinger in [12], Gein and Kuznecov in [9], Towers in [15], and Farnsteiner in [4]. Almost supersolvable Lie algebras have been studied by Towers in [17] and Elduque and Varea in [3]. Finally, almost solvable Lie algebras have been studied by Towers in [17].

Let \mathcal{X} and \mathcal{Y} be two classes of Lie algebras (not necessarily different). We say a Lie algebra L is \mathcal{X}-by-\mathcal{Y} if L has an ideal $H \in \mathcal{X}$ such that $L/H \in \mathcal{Y}$. The aim of this paper is to study the almost nilpotent-by-abelian Lie algebras.

© Elsevier Science Inc., 1996 0024-3795/96/$15.00
655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(95)00097-B
Throughout this paper \(L \) will denote a finite-dimensional Lie algebra over a field \(F \). Vector space direct sums will be denoted by \(\oplus \). We denote the subspace (respectively subalgebra) of \(L \) generated by \(x_1, \ldots, x_n \in L \) by \(\bigoplus_{i=1}^{n} Fx_i \) (respectively by \(\langle x_1, \ldots, x_n \rangle \)). The Frattini subalgebra of \(L \), denoted by \(F(L) \), is the intersection of all the maximal subalgebras of \(L \), and the Frattini ideal of \(L \), denoted by \(\phi(L) \), is the largest ideal of \(L \) contained in the Frattini subalgebra of \(L \). If \(\phi(L) = 0 \), we say \(L \) is \(\phi \)-free.

If \(U \) and \(V \) are subsets of \(L \), we shall write \(C_U(V) \) for \(\{ x \in U : xu = 0 \text{ for all } u \in V \} \). The center of \(L \) will be denoted by \(Z(L) \). Let \(x \in L \); then the adjoint mapping of \(x \) will be denoted by \(\text{ad}_Lx \). The derived algebra of \(L \) will be denoted by \(L^2 \). We shall denote the finite field with \(q \) elements by \(F_q \). Standard results in the theory of Lie algebras are taken from [10].

It is easy to see the following

Lemma 1. Let \(L \) be any Lie algebra. Then \(L \) is nilpotent-by-abelian if and only if \(L^2 \) is nilpotent.

It follows from standard Lie theory that there are no solvable almost nilpotent-by-abelian Lie algebras over fields of characteristic zero. We can now easily show

Theorem 2. Let \(L \) be any Lie algebra over a field \(F \) of characteristic zero. Then the following are equivalent:

(i) \(L \) is almost nilpotent-by-abelian;
(ii) \(L \) is simple semiabelian or else \(L = \text{sl}_2(F) \).

Proof. Let \(L \) be almost nilpotent-by-abelian. By Levi's theorem and the above remarks we see that \(L \) must be simple and every proper subalgebra solvable. Consequently, by Theorem 2.2 of [17] and the remarks following it, we have that \(L \) is simple semiabelian or \(\text{sl}_2(F) \). It is easy to see that the converse is true. \(\square \)

We note that if \(F \) is algebraically closed of characteristic zero, then there are no simple semiabelian algebras, and if \(F \) is the real field, then there is only one: the three-dimensional nonsplit simple algebra (see [4]). For examples of simple semiabelian Lie algebras over more general fields see [11].

We now turn to the case of characteristic \(p > 0 \). This situation is quite different from the characteristic zero case owing to the existence of solvable almost nilpotent-by-abelian algebras. A great many results that hold for solvable algebras over fields of characteristic zero hold for solvable algebras
with nilpotent derived algebra over arbitrary fields. This makes solvable almost nilpotent-by-abelian algebras extremely useful in trying to extend such results by using them as minimal counterexamples. As we shall see, they form a very interesting class of algebras.

Obvious examples of solvable almost nilpotent-by-abelian algebras are solvable almost supersolvable algebras. In fact, there is a very close relationship between these two classes of algebras, and so we include the relevant structure of the latter type. This was given by Elduque and Varea in [3] as Theorem 1.2. Note that the notation has been altered slightly.

Theorem 3. Let L be a solvable, ϕ-free Lie algebra over an arbitrary field F such that the derived algebra, L^2, is not nilpotent. Then L is almost supersolvable if and only if F has characteristic $p > 0$ and one of the following holds:

(i) $L = (\bigoplus_{i=0}^{p-1} Fe_i) \oplus Fs \oplus Fx$ with $e_i x = (\alpha + i)e_i$, where α is some fixed scalar in F, $e_is = e_{i+1}$ (indices modulo p), $sx = s$, and all other products zero, with the condition $F = \{t^p - t : t \in F\}$. Moreover, two such algebras, corresponding to scalars α and $\bar{\alpha}$, are isomorphic if and only if $\alpha - \bar{\alpha} \in F^p$.

(ii) $L = (\bigoplus_{i=0}^{p-1} Fe_i) \oplus Fc \oplus Fs \oplus Fx$ with $e_i c = e_i$, $e_is = e_{i+1}$ for $i = 0, \ldots, p-2$, $e_{p-1}s = 0$, $e_ix = ie_{i-1}$ for $i = 0, 1, \ldots, p-1$ and $e_{-1} = 0$, $sx = c$, and all other products zero. Also, F is a perfect field whenever $p = 2$.

We now give the structure of certain solvable almost nilpotent-by-abelian algebras.

Theorem 4. Let L be solvable and ϕ-free. Then L is almost nilpotent-by-abelian if and only if F has characteristic $p > 0$ and $L = A \oplus B$ is a semidirect sum, where A is the unique minimal ideal of L, $\dim A \geq 2$, $A^2 = 0$, and either $B = M \oplus Fx$ is a semidirect sum, where $M \subseteq B$ is a minimal ideal of B such that $M^2 = 0$ (type I), or B is the three-dimensional Heisenberg algebra (type II). Moreover, if $p \geq 3$ then $\dim A$ is divisible by p.

Proof. \Rightarrow: Suppose that L is ϕ-free and almost nilpotent-by-abelian. Then clearly we have $\text{char } F = p > 0$ by remarks following Lemma 1. Since L is ϕ-free, it follows from Theorem 7.3 of [14] that we have

$$L = (A_1 \oplus \cdots \oplus A_n) \oplus B,$$

where A_i is a minimal abelian ideal of L for $1 \leq i \leq n$ and B is a subalgebra of L. In particular, each A_i is an irreducible B-module and $B^2A_i \in \{A_i, 0\}$.
for $1 \leq i \leq n$. Note that B^2 is nilpotent and that

$$L^2 = \sum_{i=1}^{n} A_i B + B^2 \subset \sum_{i=1}^{n} A_i + B^2.$$

Consequently, the assumption $B^2 A_i = 0$ for $1 \leq i \leq n$ implies that L^2 is nilpotent, a contradiction. We may thus assume that $A_1 B^2 = A_1$. This entails that $(A_1 + B)^2 = A_1 + B^2$ is not nilpotent. As a result $A_1 + B$ is not nilpotent-by-abelian and therefore coincides with L. Hence $L = A \oplus B$, and A is the unique minimal ideal of L, because it is self-centralizing.

Now let M be any maximal ideal of B that contains B^2. Then $A + M$ is an ideal of L strictly contained in L, and so $(A + M)^2$ is nilpotent. Now let $N(L)$ denote the nilradical of L. Then

$$M^2 \subseteq (A + M)^2 \subseteq N(L) = A$$

by Theorem 7.4 of [14], and so $M^2 = 0$. Since $B^2 \subseteq M$ and B is solvable, M has codimension one in B. Thus $B = M \oplus Fx$.

Let $C = C_M(x)$. Since $B^2 \neq 0$, C is properly contained in M. Let $I \subset M$ be an ideal of B that is properly contained in M. Then $A + I$ is an ideal of L, and so is $AI = A(A + I)$. According to Lemma 1.4 of [16] we have $C_L(A) = A$, implying $AI = A$ whenever $I \neq 0$.

Consider a proper ideal $0 \neq D \subset M$ of B. Then we have that $AD = A$ and that $Dx = DB \subset M$ is an ideal of B. Moreover, since $A + D + Fx$ is a proper subalgebra of L, $A + Dx = (A + D + Fx)^2$ is nilpotent. Consequently, $A(Dx) \neq A$, whence $Dx = 0$.

Hence C is the unique largest ideal of B strictly contained in M. Now either $C = 0$ or $C \neq 0$.

Suppose that $C \neq 0$. Let c_1, \ldots, c_r be a basis for C and let $y \in M \setminus C$. Put $s_1 = y$, $s_2 = yx$, $s_3 = (yx)x$, $s_4 = ((yx)x)x$, and so on. Now there exists an $n \geq 1$ such that $c_1, \ldots, c_r, s_1, \ldots, s_n$ are linearly independent but $c_1, \ldots, c_r, s_1, \ldots, s_n, s_{n+1}$ are linearly dependent. Write

$$s_{n+1} = s_n x = c + \sum_{i=1}^{n} \lambda_i s_i$$

where $c = \sum_{i=1}^{r} \mu_i c_i$. Now $\langle c, s_1, \ldots, s_n \rangle = Fc \oplus (\bigoplus_{i=1}^{n} Fs_i)$ is an ideal of B, by construction and because $Fc \oplus (\bigoplus_{i=1}^{n} Fs_i) \subseteq M$. If $c = 0$ then $\bigoplus_{i=1}^{n} Fs_i \subset M$. But $(\bigoplus_{i=1}^{n} Fs_i)x \neq 0$, since $s_1 x \neq 0$, which is a contradiction. Thus $c \neq 0$. Moreover $[Fc \oplus (\bigoplus_{i=1}^{n} Fs_i)]x \neq 0$ and so $Fc \oplus (\bigoplus_{i=1}^{n} Fs_i) = M$. Hence $r = 1$ and $C = Fc$.

We now claim that $\phi(B) = C$. First note that $\phi(B)$ is a nilpotent ideal of B strictly contained in every maximal subalgebra of B, by Theorem 6.1.
of [14]. So in particular $\phi(B) \subseteq M$. Since the only ideals of B strictly contained in M are C and 0, we must have $\phi(B) \subseteq C$. Moreover, $C \subseteq Z(B)$ and $0 \neq B^2 \subseteq M$, so $C \subseteq B^2$. Now $Z(B) \cap B^2 \subseteq \phi(B)$ and so $C \subseteq \phi(B)$. Hence $\phi(B) = C$ as claimed.

Assume first that $n = 1$. If $\lambda_1 \neq 0$, then $F(c + \lambda_1 s_1)$ is an ideal of B and
\[(c + \lambda_1 s_1)x = cx + \lambda_1 s_1 x = \lambda_1 (c + \lambda_1 s_1),\]
which belongs to $F(c + \lambda_1 s_1)$. But $Fc \neq F(c + \lambda_1 s_1) \subseteq M$, which is a contradiction. If $\lambda_1 = 0$, then $s_1 x = c$, and in this case B is the three-dimensional Heisenberg algebra.

Assume now that $n \geq 2$. If $\lambda_1 \neq 0$ then
\[K = \left(\bigoplus_{i=2}^{n} F s_i \right) \oplus F(c + \lambda_1 s_1) \oplus Fx\]
is a maximal subalgebra of B. Thus $Fc \subseteq K$, since $Fc = \phi(B)$. But $Fc \subseteq K$ if and only if $\lambda_1 = 0$, which is a contradiction. If $\lambda_1 = 0$, then
\[s_{n+1} = s_{n} x = c + \lambda_2 s_2 + \cdots + \lambda_n s_n.\]
Now let $K = \left(\bigoplus_{i=2}^{n} F s_i \right) \oplus Fc \oplus Fx$. Then K is a subalgebra of B. Moreover
\[KB = K(M + Fx) \subseteq K,\]
and so K is an ideal of B. Thus K^2 is an ideal of B. Now $K^2 \subseteq M$, since $s_1 \notin K^2$; thus $K^2 x = 0$ and so $K^2 = Fc$ or $K^2 = 0$. But clearly $K^2 \neq 0$, since $c \in K^2$ and $c \neq 0$; thus $K^2 = Fc$. However, $A + K$ is an ideal of L, and so AK is an ideal of L contained in A. As A is self-centralizing, we have $AK \neq 0$, whence $AK = A$. Now $A + K \subseteq L$, and so $(A + K)^2$ is nilpotent, and
\[(A + K)^2 = A + K^2 = A + Fc.\]
Also $Ac = A$ (by a similar argument to that above), and so we have
\[(A + Fc)^2 = Ac = A.\]
Thus $A + Fc$, and hence $A + K^2$, is not nilpotent, which is a contradiction.

If $C = 0$ then M is a minimal ideal of B, since any ideal of B properly contained in M is contained in $C = 0$.

Also, since A is self-centralizing, it is a faithful B-module and we have an embedding $D \hookrightarrow \text{End}_F(A)$. Thus, $(\dim A)^2 \geq \dim B \geq 2$, proving that $\dim A \geq 2$.

Finally, suppose that \(p \geq 3 \). We have that \(A \) is a faithful irreducible module for the solvable algebra \(B \). Let \(\overline{F} \) be the algebraic closure of \(F \), and put \(\overline{B} = B \otimes_F \overline{F} \), \(\overline{A} = A \otimes_F \overline{F} \). Then \(\overline{B} \) is an \(\overline{A} \)-module and decomposes into weight spaces \(\overline{A} = \bigoplus_{\alpha} \overline{A}_\alpha(\overline{B}^2) \) relative to \(\overline{B}^2 \), since \(\overline{B}^2 \) is nilpotent. Moreover, each weight space is an \(\overline{B} \)-submodule, because \(\overline{B}^2 \) operates nilpotently on \(\overline{B} \). Now suppose that \(\overline{A}_0(\overline{B}^2) \neq 0 \). Then this implies that the Fitting null component of \(A \) relative to \(B^2 \), \(A_0(B^2) \), is nonzero. Thus, since \(A_0(B^2) \) is a \(B \)-submodule of \(A \), we have \(A = A_0(B^2) \). However, \(B^2 \) operates on \(A \) by nilpotent transformations. Thus, by the Engel-Jacobson theorem, \(B^2A = 0 \), a contradiction. Thus \(\overline{A}_0(\overline{B}^2) = 0 \).

Now let \(V \) be a \(\overline{B} \)-composition factor of \(\overline{A}_\alpha(\overline{B}^2) \). If \(\dim_F V < p \), then Lie's theorem holds, and \(\overline{B} \) operates on \(V \) by upper triangular matrices. As a result, \(\overline{B}^2 \) acts on \(V \) by nilpotent transformations. Since \(\alpha(x) \) is the only eigenvalue of \(x \in \overline{B}^2 \) on \(V \), we obtain \(\alpha = 0 \). It now follows from Corollary 8.5 on p. 239 of [13] that \(p \) divides \(\dim_F V \). Consequently, \(p \) divides \(\dim_F \overline{A} = \dim_F A \).

\(\Leftarrow \): For the converse it suffices to show that every maximal subalgebra of \(L \) is such that its derived algebra is nilpotent.

Let \(K \subset L \) be a maximal subalgebra. Then either \(K = B \) or \(K = A + N \) for a maximal subalgebra \(N \subset B \). In particular, \(L \) is \(\phi \)-free. If \(L \) is of type I, then, using the fact that \(M \) is ad \(x \)-irreducible and \(M^2 = 0 \), we see that \(N \) is abelian. For type II this follows directly. Consequently, \(K^2 = B^2 \) or \(K^2 \subseteq A \), implying that \(K \) is nilpotent-by-abelian. That completes the proof.

We shall refer to the algebras described in the above theorem as type I and type II respectively.

It is well known that over algebraically closed fields, if \(L \) is a Lie algebra such that \(L^2 \) is nilpotent, then \(L \) is supersolvable (see for example [1]). Thus we have the following

Theorem 5. Let \(L \) be a solvable almost nilpotent-by-abelian algebra over an algebraically closed field \(F \).

If \(L/\phi(L) \) is of type I then \(L/\phi(L) \) is of type I of Theorem 3.

If \(L/\phi(L) \) is of type II then \(L/\phi(L) \) is of type II of Theorem 3.

Proof. This follows easily from seeing that \(L^2 \) is nilpotent if and only if \((L/\phi(L))^2 \) is nilpotent, by applying Theorem 2.5 of [1] and the above remarks.

This raises the question whether algebras of type I and type II are always almost supersolvable. This is not the case. Clearly we could always take
a basis and multiplication as given in Theorem 3 but choose a field which does not allow the algebra to be almost supersolvable. For type I take the field \mathbb{F}_p. Then it is easily seen by Fermat's little theorem that $t^p - t + 1$ has no roots in \mathbb{F}_p.

More interestingly, we can construct algebras of type I which have a different basis and multiplication from those of Theorem 3(i). We now give such an example.

Let $L = (\bigoplus_{i=0}^{2} \mathbb{F}_3e_i) \oplus (\bigoplus_{i=1}^{2} \mathbb{F}_3s_i) \oplus \mathbb{F}_3x$ over the field \mathbb{F}_3. Put

$$e_i s_1 = -s_1 e_i = e_{i+1} \quad \text{(indices modulo 3)} \quad \text{for} \quad 0 \leq i \leq 2,$$

$$e_0 s_2 = -s_2 e_0 = 2e_0 + 2e_1 + e_2, \quad e_1 s_2 = -s_2 e_1 = e_0 + 2e_1 + 2e_2,$$

$$e_2 s_2 = -s_2 e_2 = 2e_0 + e_1 + 2e_2,$$

$$e_0 x = -xe_0 = e_0, \quad e_1 x = -xe_1 = 2e_0 + e_2,$$

$$e_2 x = -xe_2 = 2e_0 + e_1 + 2e_2,$$

$$s_1 x = -xs_1 = s_2, \quad s_2 x = -xs_2 = 2s_1,$$

and all other products zero. Then L is solvable ϕ-free almost nilpotent-by-abelian but not almost supersolvable.

Notice that in classifying all the algebras of type I we want to find all the non-equivalent irreducible representations of the algebra $(\bigoplus_{i=1}^{n} \mathbb{F}_s) \oplus \mathbb{F}x$ with multiplication as described in Theorem 4. Recall the following result of Jacobson, which can be found as Theorem 2 on p. 205 of [10].

Theorem 6. Every finite-dimensional Lie algebra over a field of characteristic $p > 0$ has a faithful finite-dimensional representation which is not completely reducible and a faithful finite-dimensional completely reducible representation.

This immediately gives us

Theorem 7. Let F be a field of characteristic $p > 0$. For each irreducible polynomial in $F[t]$ there exists an algebra of type I.

We now consider algebras of type II. If we choose L to have the same basis and multiplication as in Theorem 3(ii), then L will be almost nilpotent-by-abelian but not almost supersolvable precisely when our field F has characteristic two and is nonperfect [for example, $\mathbb{F}_2(t)$, the field of rational expressions in the indeterminate t over the field \mathbb{F}_2]. However, over fields other than characteristic two there are type II algebras which are not almost supersolvable, as the following example shows.
Let \(L = (\bigoplus_{i=0}^{2} \mathbb{F}_3 e_i) \oplus \mathbb{F}_3 s \oplus \mathbb{F}_3 c \oplus \mathbb{F}_3 x \) over the field \(\mathbb{F}_3 \), where

\[
\begin{align*}
e_i s &= -s e_i = e_{i+1} \quad \text{(indices modulo 3)} \quad \text{for} \quad 0 \leq i \leq 2, \\
e_i c &= -c e_i = e_i \quad \text{for} \quad 0 \leq i \leq 2, \\
e_0 x &= -x e_0 = e_0 + e_1 + e_2, \\
e_1 x &= -x e_1 = 2e_0 + e_1 + e_2, \\
e_2 x &= -x e_2 = e_0 + e_2,
\end{align*}
\]

and all other products zero. It can be checked that \(L \) is of type II. However, it is not almost supersolvable, since the minimum polynomial of \(\text{ad}_L x |_{(\bigoplus_{i=0}^{2} \mathbb{F}_3 e_i)} \) is \(t^3 + 1 \), which does not split over \(\mathbb{F}_3 \), and so \((\bigoplus_{i=0}^{2} \mathbb{F}_3 e_i) \oplus \mathbb{F}_3 x \) is a proper subalgebra of \(L \) which is not supersolvable.

In classifying all the algebras of type II we want to know all the irreducible representations of the three-dimensional Heisenberg algebra.

The authors are grateful to the referee for a number of helpful comments and simplifications to proofs and for strengthening Theorem 4.

REFERENCES

Received 28 June 1994; final manuscript accepted 23 January 1995