
 

  

 

 

 

 

 

 

 

 
 

 
Introduction 
 

LC8 is a highly conserved homodimeric protein that assembles in 
the molecular motor dynein by binding dynein intermediate chain IC 

[ -3]. LC8 also interacts with diverse proteins, some of which are 

associated with active transport within the cell. For example with 
Egalitarian, a protein essential for establishing and maintaining 
polarity during oogenesis and embryogenesis in Drosophila [4], 
mutations that disrupt its binding to LC8 result in failure of 
accumulation of oocyte-specific markers. Another interaction is with 
Dazl which is required for mRNA localization in male germ cell 
development in mammals, and whose distribution is microtubule-
dependent [5]. With Swallow, LC8 binding is required for dynein-
dependent transport of bicoid mRNA to the oocyte anterior cortex 
[6]. These processes depend on the association with a microtubule-
based motor suggesting a role for LC8 in active transport along 
dynein and fostering the hypothesis that LC8 acts as a dynein cargo 
adaptor [6, 7] linking proteins to dynein for transport along 
microtubules. However, crystal structures of LC8 bound to Swallow 
and IC peptides show that both partners bind the same symmetrical 

grooves at the LC8 dimer interface [ , 8, 9]. Moreover, LC8 in both 

cases binds two chains of the same protein [2, 0] arguing against the 

one groove one peptide model [ ]; therefore, LC8 cannot 

simultaneously bind to dynein IC and non dynein partners, suggesting 
that all identified LC8 partners cannot be cargo transported by dynein 
by binding LC8 as commonly thought. Rather, nature chose one 
protein to do the same function in dynein IC as in all these other 
systems and as such LC8 is a hub protein with a common mode of 

action in various systems [ 2, 3]. Table  lists the LC8 binding 

partners for which, there is either experimental evidence of  binding  
or a clear recognition sequence. Most binding  partners  were  initially  

  
 
 
 
 
 

 

identified by yeast two-hybrid screens, and subsequently verified by 
GST pull-down assays. These binding partners have diverse roles in 
the cell, and varying subcellular localization including the cell nucleus, 
and for many, their activity is regulated by LC8 binding. Other 
binding partners identified by pepscan/proteomics or other 

biochemical analyses not listed in Table  include: Kidney ischemia 

development protein (Kid- ), Protein 4, MORC family CW-type 

zinc finger protein 3 (MORC3), Phototropin, DNA 
methyltransferase 3A (DNMT3A), Spindle and centriole-associated 

protein  (Spice ), Echinoderm microtubule-associated protein-like 3 

(EML3), Human papillomavirus type 8 protein E4, Heatshock 
cognate protein (Hsc73), microtubule-associated protein 4 (MAP4), 
Microtubule affinity regulating kinase 3 (Mark3), Serine/threonine-
protein kinase Nek9, Guanine nucleotide-binding protein subunit 

beta-2-like  (RACK ), Flagellar radial spoke protein 3 (RSP3), and 

African swine fever virus (p54) [ 4-2 ]. 

We propose that a common role for LC8 in these systems is to 
bind partially disordered protein partners that have propensity to 
dimerize, and to promote their dimerization and/or higher order 
structural organization. The challenge in testing this hypothesis is in 
identifying methods suitable for characterization of large disordered 
proteins with heterogeneous dynamics that change not only in 
structure upon binding LC8 but also in their self-association. This 
review highlights our successes of combining several low resolution 
spectroscopy techniques, thermodynamics, and high resolution NMR 
spectroscopy in characterization not only of the initial and final 
structures but also of the process of complex formation. 

 
LC8-promoted IC self-association 

 
The first observation that suggests structural changes in IC upon 

LC8 binding is the CD-detected increase in helical structure. Spectra 
of primarily disordered free IC and LC8-bound IC were compared 
after subtracting the LC8 contribution from the LC8-bound IC 
spectrum [3]. The latter is justified considering that structures of free  
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Table 1. Le8 binding proteins and their functional role.

Binding Partner

Adenovirus protease (Adenain)

ASCIZ

Bassoon

BCL-2-interacting mediator (Bim)

Chica

Cip-interacting zinc finger protein I

(Cizl).

Dazl

Dynein intermediate chain (IC)

Egalitarian

Estrogen receptor (ESRl)

Gephyrin

Guanylate kinase-associated protein

(GKAP)

lonotropic glutamate receptot N­

merhyl-Dvaspartate-like I A

(GRINLlA)

Kibra

Lyssavirus phosphoprotein

Myosin Va

Neuronal nitric oxide synthase (nNos)

Nuclear respiratory factor I (NRF-l)

Nupl59

p21-activated kinase -I (Pakl)

1'53 BPI

Pilin

PTHmRNA

Rabies virus P protein

RasGRP3

Swallow

Syntaphilin.

Translocate promoter region (TpR)

Trichorhinophalangeal syndrome I
(TRpSI)

Function

Cleaves viral precursor proteins

DNA damage response/developmental

transcription factor

Organization of the cytomatrix at nerve

terminals

Apoptosis

Mitotic spindle adaptor protein

May regulate subcellular location of
CIp/WAFI

Male germ cell development

Subunit of the cytoplasmic dynein motor

complex

mRNA localization

Nuclear hormone receptor involved in

regulation of gene expression

Postsynaptic scaffolding protein

Trafficking of the postsynaptic densitiy-95
complex

Subunit of DNA-directed RNA polymerase

II

Transcriptional coactivator of estrogen

receptor I (ESRl)

Viral infection

Transport of cellular cargo along actin

filaments

Catalyzes production of nitric oxide

Transcription regulation

Nuclear transport

Nuclear transport/cancer development

DNA repair

Required for virulence by bacterial

pathogens

Calcium homeostasis

Viral transcription and replication.

An exchange factor for Ras-like small

GTPases

Localization ofbicoid mRNA

Controls mobility of axonal mitochondria

through static interaction with

microrubules.

Nucleoporin, role in cell division and

mitotic spindle checkpoint signaling

Repressor of GATA-regulated genes [63J

Functional role of Le8

Subcellular localization [391

Subcellular localization [13,40-42]

Regulates axonal trafficking and synaptic levels of Bassoon [431

Inhibits proapoptotic activity [44]

Required for spindle orientation and asymmetric cortical localization of

dyne in [45J

Regulates cell cycle progression of cancer cells [46]

Subcellular localization [5]

Promotes IC self-association and stability [3, 22, 24]

Subcellular localization [4]

facilitates estrogen-induced ER transactivation and anchorage-independent

growth of breasr cancer cells [47]

Subcellular localization [48]

Subcellular localization [49]

Subcellular localizarion-[Sfl]

Essential fot estrogen receptor transactivation in breast cancer cells [51]

Rolc in mechanism of virus-induced pathogenesis [52J

Promotes assembly of the coiled-coil domain [35-37]

Inhibitor [53J

Subcellular localization [54]

Dirncrizcs and stabilizes the Nup82-Nspl-NupI59 nucleoporin [55, 56]

Proposed to modulate nuclear localization and/or activiry [57]

Subcellular localization [II]

Possible role in host defense mechanism [58]

Mediates interaction with microtubules in the parathyroid gland [59J

Subcellular localization [60]

Subcellular localization [61J

Promotes self-association of the coiled-coil domain [6, 10]

Stabilizes helical coiled-coil domain within the microtubule binding region

that could enhance synraphilin-microrubule docking interactions [34J.

Proper chromosome segregation [62]

Suppresses transcriptional repression activity [63J



and IC-bound LC8 are virtually identical [8]. The increase in helical 
structure was assigned to a segment C-terminal of the LC8 site, both 
by CD experiments performed on IC constructs of different lengths, 
and by limited proteolysis followed by mass spectrometry to identify 
fragments of IC that are protected upon LC8 binding [22]. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
The helical structure is only stabilized in the presence of LC8 as 

no evidence of a CD-detected helical structure is observed in free IC 

(Figure a). The specific residues involved in self association were 

originally mapped to 222-228 due to their propensity to form helical 
structure in the absence of LC8 as observed by sequential amide-

amide NOEs in 3D edited 5N NOESY spectra (Figure ) and their 
3Cα and 3C secondary chemical shifts [2]. Self-association of IC in 

this region is also supported by co-immunoprecipitation experiments 

which show a minor population of dimer (or higher oligomer) in IC 
constructs that include residues 200-250 [23]. NMR dynamics 
measurements of this domain show evidence of residual structure at 
the nanosecond-picosecond timescale with the highest order 
corresponding to residues 222-232 (high positive heteronuclear 

NOEs, Figure c).  

LC8 binding coupled to IC self-association distant from LC8 site 
was confirmed by fluorescence quenching which involved inserting 
fluorescence labels in the monomeric free IC at different sites, one site 
at a time, followed by adding LC8 and monitoring the effect on the 
fluorescence signal intensity [24]. If a probe is present within the self-
association domain, the expectation is that there will be significant 
self-quenching upon LC8 binding, while no change in intensity is 
expected when the probes are placed outside the self-association 

domain (Figure 2). The absence of quenching with residue 54 and 

the observed quenching with residue 2 9 clearly show that the self-

association domain is separated from the 26- 38 LC8 recognition 

sequence by a long disordered linker that ends around residue 2 9. 

NMR studies to identify the exact boundaries of the self 
association domain without the destabilizing effects of the 
fluorescence probes were only made possible after a break-through in 
sample preparation methods that allowed production of a long chain 
of IC that includes both the LC8 site and the self-association site at 
conditions suitable for NMR. This involved design of a construct 
with a shorter linker, the use of fresh samples for every titration, and 

the discovery that a small amount of denaturant, 0.  M GdnCl, is 

sufficient to break up the dimer to form a fully monomeric protein at 
NMR concentrations. Figure 2c shows spectral overlays of fully 
monomeric IC (green), dimeric IC (black) and LC8 bound to a 

monomeric IC (red). Binding of IC to LC8 in 0.  M GdnCl is 

confirmed by the observation that the same peaks that broaden upon 
LC8 binding also broaden in the presence of GdnCl. Only the peaks 
that shift are assigned to those that change conformation from 
monomer to dimer. The rest of the peaks either do not change or 
disappear. This method unambiguously assigns the self-association 
sequence to correspond to residues 220-232 [24]. 

Similar fluorescence and NMR studies were performed on IC 
bound to Roadblock (LC7) [24], another dimeric dynein light chain 
that, interestingly, binds IC at a site that includes the self-association 
domain promoted by LC8 [25]. Both the crystal structure and 
increased fluorescence intensity indicate that any IC-IC contacts in the 

vicinity of residue 2 9 are not likely when LC7 is bound. Therefore, 

while LC8 and to a lesser extent the LC8-like light chain Tctex , 

which binds at residues 0- 23, promote IC self-association at 

residues 220-232, LC7 binds at residues 220-258 and forces 
unpacking of the self-association domain. Binding studies with the 
self-associated bivalent IC engineered with a disulfide cross-link at 

residue 2 9, immediately preceding the self-association domain, show 

6-fold binding enhancement to LC8 relative to the monovalent IC. In 
contrast, LC7, which binds IC at a site of a similar distance from LC8 
as the disulfide cross-link, does not provide any discernable binding 
enhancement of IC to LC8. The gain from bivalency in this case is 
offset by the accompanying negative interactions associated with the 

loss of IC self-association within the 222–23  segment. 

 
LC8-promoted Swallow self-association 

 
Genetic experiments on Drosophila ovaries show that the 

distribution of bcd mRNA during oogenesis and early embryogenesis 
depends on the interaction of LC8 with Swallow. Sequence analysis 
predicts a dimeric coiled-coil domain in the center of the 548 amino  

Figure 1. Identification of residual structure in IC. (a) Temperature-
dependent far UV CD spectra of IC198-237 in the 5−25 °C temperature 
range, indicate that this segment is predominantly unfolded. (b) Strip plots 
from 3D 1H-15N NOESY-HSQC experiments recorded at 5 °C showing 
sequential amide-amide NOE connectivities (horizontal lines). A complete 
set of strong amide-amide NOEs for residues 223−228 is only observed at 
5 °C suggesting formation of a nascent helix at this temperature. (c) 
Steady-state heteronuclear NOEs recorded at 5 °C indicate ordered 
structure for this segment at the nanosecond-picosecond timescale with 
the highest order corresponding to residues 222-232 (high positive 
heteronuclear NOEs). NOE values (y-axis) were determined as the ratios of 
the peak intensities measured from spectra recorded with and without 
proton saturation. Figures were adapted from [2]. 
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acid sequence, followed by a recognition sequence for LC8. A 
Swallow mutant lacking the coiled-coil domain and the LC8 
recognition motif shows no localization of bcd mRNA [6]. Initial 
evidence for LC8-promoted structural changes was based on 
biophysical characterization of a Swallow construct containing the 
predicted coiled-coil domain and the LC8 site which shows that this 
domain is primarily monomeric at room temperature and that LC8 

binding is required for its self-association and stability [ 0]. 

Our LC8-promoted dimerization model is further supported by 
the following: CD data show that a Swallow construct corresponding 
to residues 206-297, Swa(206-297), is more stable when bound to 
LC8; the melting temperatures of free and LC8-bound Swa(206-297) 

are 5˚C and 45˚C, respectively (Figure 3). Swa(206-297) is more 

likely to covalently cross-link upon LC8 binding [ 0]. Coexpression of 

LC8 with Swa(206-297) significantly increases its expression and 
solubility suggesting binding is coupled to folding. More importantly, 
mutational design based on a hypothetical helical coiled-coil wheel, 
strongly supports formation of a coiled-coil by the observation that 

destabilizing and stabilizing mutations at the interface result in 
monomer (SwaMONOMER) or dimer (SwaDIMER), respectively [26].  

For high resolution structural analyses of SwaDIMER, we tested its 
stability in different buffers at high protein concentrations. Ten 
buffer conditions were tested before identifying a buffer condition 
that gives only a dimer peak (Figure 3a). SwaDIMER has similar CD-
detected structure to the LC8-bound SwaWT and similar unfolding 
profiles (Figure 3b and c), and therefore is a suitable model for the 
LC8-induced Swallow dimer [26]. Structural determination of 
SwaDIMER involved both X-ray crystallography and NMR. Well 
diffracting crystals were obtained in the X-ray studies but the 
structure could not be solved by molecular replacement techniques 
due to the absence of homologous sequences in the protein data bank. 
Multi-wavelength anomalous dispersion phasing was also not possible 
due to aggregation of the protein upon incorporation of Se-Met into 
Swallow and the inability of finding buffer conditions that will 
eliminate aggregation, leaving out NMR as the only option for high 
resolution structural determination. 

 

Figure 2. Identification of self-association domain in IC promoted by LC8 binding. (a) A model of LC8-induced IC self-association. Primarily monomeric IC (red) is 
in equilibrium with a small population of dimer. The latter binds LC8 (green) with a higher affinity resulting in a complex of dimer IC and LC8. Fluorescence 
labels inserted at sequence positions 154 or 219 are shown in red stars. (b) Fluorescence quenching upon LC8 binding is only observed when the label is 
inserted at position 219, confirming that these two chains in the presence of LC8 become in close proximity around residue 219 (green spectrum). For 
comparison, no quenching is observed when the label is placed at position 154 indicating that the IC segment around 154 remains disordered and is not part of 
the self-association domain. Experiments were done on a construct of IC corresponding to residues 92-260, IC92-260, that includes the LC8 recognition 
sequence and the putative self-association domain. (c) 1H-15N HSQC overlay spectra for a domain of IC that is fully monomeric (green), dimeric (black) and LC8 
added to the monomeric form (red). The spectrum on the left shows no change in chemical shifts between dimer and monomer (perfect overlay of green and 
black) for these specific residues indicating that they are not at the IC dimer interface. Peaks 124, 131, and 133 disappear in the LC8-bound state confirming 
binding. The spectra in the center and right show chemical shift differences between monomer and dimer for residues 223 and 229, with a shift towards dimer 
in the LC8-bound state (red arrow). Experiments were done on a construct of IC containing residues 123-260 with linker residues 143-198 deleted. Figures b 
and c were adapted from [24]. 
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NMR studies of the Swallow dimer 
 
The elongated structure of a coiled-coil protein in general results 

in fast transverse relaxation and subsequently broadened signals due to 
non-isotropic tumbling. For Swallow, which is predicted to form a 
coiled-coil, experimentation with different temperatures showed that 
at 40 ˚C, spectra were significantly improved due to faster tumbling 

and reduced relaxation rates. Furthermore, the limited resolution was 
also significantly improved by using a high field of 900 MHz that 
allowed determination of almost complete resonance assignments 
(Figure 4).  

Secondary structure propensities were determined from the Cα, 

and Cβ chemical shifts using the programs SSP [27] and TALOS 

which in addition predicts φ and ψ torsion angle restraints [28] 
(Figure 5). The high helical propensity is confirmed by analysis of 
short and medium range NOEs that shows a long helix across the 
length of the chain. Dynamics data show that the protein is ordered 
except for few residues at both termini, and transverse relaxation rates 
R2 in particular, which report on conformational exchange in 
millisecond to microsecond time scale, show significant heterogeneity 
along the length of the chain suggesting some deviation from a 
standard coiled-coil structure (Figure 5) [26]. Circular dichroism 
spectroscopy differentiates between single and supercoiled helices on 
the basis of the ratio of ellipticity at 222 and 208 nm. While both 
SwaDIMER and SwaWT show double minima at 208 and 222 nm 

characteristic of an α–helical conformation, SwaDIMER has a higher 

[θ222]/[θ208] ratio (close to ), characteristic of supercoiling and 

further supporting the prediction of a coiled-coil structure (Figure 
5d). 

The challenge in solving a dimeric structure by NMR lies in the 
symmetrical nature of the dimer, which results in the same chemical 
shifts for the same proton from each chain. A single chemical shift for 
the same proton from each chain makes differentiating between intra 
monomer NOEs, those NOEs that are within each monomer, and 
inter monomer NOEs, the NOEs that are between the subunits across 
the dimer interface quite challenging. Since this is a coiled-coil, the 
interface is significantly long compared to globular dimers, and long-
range NOEs are limited to those inter monomer NOEs across the 
interface. In dimeric coiled-coils, the major contributors to inter 
monomer NOEs are expected to involve residues at the a and d 
positions of the heptad repeats, as these positions are occupied by 
hydrophobic amino acids packed in a “ knob to holes” manner to 

form a supercoiled α -helix.  

Since 3C and 5N edited NOESYs show both inter and intra 

monomer NOEs, to determine which of the NOEs are inter 

monomer NOEs only, a 3D ω - 3C/ 5N-filtered, 3C-separated 

NOESY-HSQC spectrum was collected on a sample that has one 

chain labeled with 3C and 5N and the other chain unlabeled. Sample 

preparation requires mixing equimolar amounts of 3C- and 5N-

labeled and unlabeled protein in denaturing buffer to dissociate the 
dimer, and then followed by reconstitution by dialysis in renaturing 
buffer before protein concentration. The resulting sample is a mixture 
of 25% unlabeled/unlabeled, 25% labeled/labeled and 50% 
labeled/unlabeled. Data in this experiment will only be observed for 
the 50% labeled/unlabeled. Approximately 25 inter monomer NOEs 

were observed from which 3 were unambiguously assigned to those 

positions along the length of the predicted coiled coil, confirming that 
SwaDIMER is indeed a coiled-coil [26]. A full structure awaits complete 
structural determination that requires assignment of a large number of 
inter and intra monomer NOEs. 

 
The process for LC8-promoted dimer formation 

 
For both IC and Swallow, there is a minor population of a dimer 

which, as discussed below, binds LC8 significantly tighter than the 
major monomer population due to the bivalency effect and by mass 
action shifts the equilibrium to the dimer resulting in a complex that 
is a dimer (Figures 2 and 6). With the primarily monomeric IC, LC8  

Figure 3. Association state and stability of Swallow dimer used as a model 
for the LC8-bound SwaWT. (a) Elution profiles of SwaDIMER in different buffer 
conditions shown as overlays of the refractive index (RI) and light 
scattering at two different angles (red and green). At pH 8.0 in 20mM Tris 
buffer and 10 mM NaCl, the protein is about 70% dimer, 30% trimer (top), 
while at pH 5.6 in 20 mM MES and 10 mM NaCl, the protein is fully 
dimeric (bottom). The MALLS-determined molecular mass of SwaDIMER is 20 
kDa, consistent with the theoretical value of 18 kDa expected for a dimer. 
The mass determined for the trimer is 30 kDa. (b) Thermal denaturation 
curves of SwaWT (blue), LC8 (yellow), their computed sum (green), and a 
1:2 mixture of Swa/LC8 (red). The computed sum represents the 
hypothetical curve if there is no interaction (green curve, Sum). SwaWT 
unfolding is multiphasic:  The first step is protein concentration dependent 
and corresponds to dimer dissociation at less than 20 ˚C (blue Swa curve). 
In the Mix, the first transition is replaced with a plateau indicating that 
dimeric association is stabilized. (c) Thermal unfolding profiles of SwaDIMER 
monitored at 222 nm showing that the protein does not start to unfold till 
after 60 ˚C. Figures b is adapted from [10]. 
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Figure 4. Effect of temperature and field strength on spectral quality. 1H-15N HSQC spectra collected at 600 MHz at increasing temperature in the range of 10-40 
˚C. Spectra collected at 40 ˚C and 950 MHz show significant improvement in resolution. Assignments spectrum collected at 950 MHz is adapted from [26].  
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binds with an affinity of 9.8 M. Self-associated bivalent IC, which is 
populated to varying extents in different species, is modeled in our 

studies with an engineered disulfide cross-link at residue 2 9 (8  

residues apart from the LC8 recognition sequence). For the 

engineered 2 9C cross-linked dimer, LC8 binding affinity was 

enhanced 6-fold to .7 M [24]. This increase in binding affinity is 

primarily contributed from the change in entropy (H˚ of - 4.0 to -

4.3, and -TS˚ of 7.2 to 6.4 kcal/mol). Thus, observed increases in 

binding affinity apparently arise from entropic processes.  
With Swallow, the self-associated form was engineered by 

introducing mutations that stabilize the coiled-coil rather than by 
disulfide cross-linking as with IC. Since Swallow is a mixture of 
monomer and dimer, for comparison of the energetics of binding 
between the dimer and monomer, we also produced the pure 
monomer by destabilizing the interface of the predicted coiled-coil. 
Both SwaDIMER and SwaMONOMER mutants contain the LC8 recognition 
site and the predicted self-association coiled-coil site. Both proteins 

are expected to adopt the same -strand structure at the LC8/Swa 
interface, and to differ in their structure distant from the LC8 binding 
sequence. SwaDIMER is a bivalent binding partner with two aligned 
recognition sequences for LC8, while SwaMONOMER is a disordered 

monovalent chain with one LC8 recognition motif (Figure 6). A 7-

residue linker separates the end of the coiled-coil (residue 270) [26] 

from the beginning of the LC8 site (residue 287) [ ]. The dimer 

binds with an enhancement of 7-fold. As with IC, the enhancement is 

primarily of entropic origin (G˚ of - .  kcal/mol, TS˚ of - .2 

kcal/mol, and H and Cp of 0) [26] as expected from a 
bivalency effect [29]. A model showing LC8 interactions with 
SwaMONOMER, SwaDIMER and SwaWT (Figure 6) demonstrates that 
changes in solvent accessibility distant from the LC8-Swallow 
interface only occurs with SwaWT.  

In summary, for both IC and Swallow, the common process that 
explains how LC8 binding promotes dimer formation is that LC8 
binds the dimeric low population and by mass action shifts the 
population of the bound to fully dimeric. 

 
Summary and outlook 

 
NMR is reviewed here as instrumental for characterization of 

proteins with high degree of disorder, high degree of heterogeneity, 
and that self-associate upon binding to LC8. A combination of 
proper constructs design, spectroscopy techniques such as circular 
dichroism to measure stability, fluorescence quenching to measure 
interactions at low protein concentrations are highly complementary 
to NMR especially for samples for which the large size and low 
concentration are necessary for their function. Thermodynamic 
measurements to elucidate entropic contributions, static light 
scattering to assess sample heterogeneity and innovative methods to 
probe self-association domains without solving a full structure, are 
collectively utilized in this work and underscore the importance of 
multidisciplinary approaches in solving complex biological problems. 

The detailed work with IC and Swallow provide fundamental 
insight into the role of this highly conserved, ubiquitous and essential 
protein and its role in protein-protein interaction networks. LC8 
interactions may be significant in regulating various cellular processes 
as LC8 itself can undergo regulatory switching. Phosphorylation of 
LC8 at Ser 88 is known to occur in vivo and results in abolishing or 

reducing binding to its partners [30, 3 ]. Phosphorylation of Ser 88 

at the dimer interface results in dissociation of the LC8 dimer, and 
subsequent dissociation from dynein [30]. Binding is lost because the 

monomer lacks the groove that is necessary for binding [32, 33]. 
Dimerization is required for activity and phosphorylation can regulate 
this activity by acting as a rheostat to promote dissociation but still 
allows for tighter binding ligands to bind y shifting the equilibrium 
towards dimer [30].  
 

 
 
 
 
 
 
 
 

 
 

Figure 5. Secondary structure propensities and dynamics of SwaDIMER (a) 
Secondary chemical shifts show high helical propensities as indicated in 
SSP scores per residue. (b) Plots of R2 showing different values across the 
chain indicating heterogeneous dynamics. (c) TALOS prediction shows high 
helical propensity across the chain and disorder at both termini. (d) Far-
UV CD spectra of SwaWT (green), and SwaDIMER (red) showing a small 
increase in negative ellipticity at 208 nm for the dimer, consistent with 
supercoiling. SwaMONOMER (blue) is predominantly unfolded. Figures a, b, 
and d are adapted from [26]. 
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IC and Swallow are emerging as elongated duplex proteins, 

containing a number of binding domains located at intervals along 
their length. We distinguish two types: short consensus domains that 
bind one or more proteins like LC8 and dimerization domains that 
bind the other duplex chain. We showed that LC8 binding promotes 
IC-IC or Swa-Swa dimerization domain binding (hence the 
dimerization hub hypothesis). Binding at any and/or all the domains 
leaves the rest of the N-terminal region of IC extended, disordered 
and presumably flexible, at least in vitro, with multiple attachment 
sites onto which other proteins assemble. This behavior appears to be 
common in assembly of protein complexes with high degree of 
intrinsic disorder. Similar work on other LC8 partners supports our 
interpretation of the LC8 role in general. With syntaphilin, LC8 
stabilizes a helical coiled-coil domain within the microtubule binding 
region that could enhance syntaphilin-microtubule docking 
interactions [34]. With myosin V, LC8 promotes assembly of the 

coiled-coil domain [35-37]. With Nup 59, LC8 may not be 

necessary for coiled-coil formation but five LC8 dimer molecules 

bind two chains of Nup 59 at positions N-terminal to a predicted 

coiled-coil, while a large part of the protein remain disordered and 
accessible for interactions with other proteins [38]. We refer to IC, 

Swallow, and potentially Nup 59 as Self-Interacting Tethering 

proteins, SIT, which self-associate and act as a tether with multiple 
attachment sites onto which other proteins assemble. While most 
partners are highly intrinsically disordered, such as Swallow, IC, and 

Nup 59, other partners have high level of ordered structures such as 

Gephyrin and nNOS, which contain domains with known crystal 
structures but also have some stretches of disordered regions. With all 
these partners, however, LC8 binds within a protein segment that is 
predicted to have high level of disorder and therefore is anticipated to 
play the same role in ordering specific domains for subsequent 
interactions as it does for fully disordered proteins.  

Figure 6. A model showing LC8 promoted Swallow dimerization. In the Swallow mutant egg chamber, bicoid mRNA fails to localize and is spread uniformly 
throughout the oocyte cytoplasm (blue). The Swallow mutant lacks the coiled-coil domain and the LC8 recognition motif. Full-length Swallow includes a 
putative RNA-binding domain at the N-terminus (green), a predicted α-helical coiled-coil region (residues 205−275) (white), and an LC8 recognition sequence 
(red). Predicted secondary structural elements [64] are shown as a cylinder for helix, arrow for strand and solid line for disorder. Bars indicate the helical 
coiled-coil domain and lines indicate disorder. A construct of SwaWT that included the coiled-coil and LC8 binding site (within dotted rectangle) is a mixture of 
high affinity dimer and a low affinity monomer. LC8 binding promotes dimer formation by binding to the dimeric low population and by mass action shifts the 
population of the bound to fully dimeric. LC8 and LC8/Swa structures are based on 3BRI and 3E2B pdb codes [8] and were generated using the program PyMOL 
[65]. Figure is adapted with modification from [26] . 
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