The forbidden subgraph characterization of directed vertex graphs

B.S. Panda*

Department of Computer Science, I.P.C. Unit, B.I.T.S. Pilani, Rajasthan, 333 031, India

Received 8 February 1996; revised 7 October 1997; accepted 16 February 1998

Abstract

A graph is called a directed vertex (DV) graph if it is the intersection graph of a family of directed paths in a directed tree, i.e., a tree in which each edge is oriented, with one or more vertices of indegree zero. In this paper we present the forbidden subgraph characterization of DV graphs. © 1999 Elsevier Science B.V. All rights reserved

Keywords: Perfect graph; Chordal graph; Intersection graph; Directed vertex graph; Forbidden subgraph

1. Introduction

A class \(\mathcal{S} \) of graphs is said to admit a forbidden subgraph characterization if there exists a class \(\mathcal{F}_\mathcal{S} = \{ H \mid H \notin \mathcal{S} \text{ but } H - v \in \mathcal{S} \text{ for every } v \in V(H) \} \) such that \(G \in \mathcal{S} \) iff \(G \) does not contain any member of \(\mathcal{F}_\mathcal{S} \) as an induced subgraph. If \(\mathcal{S} \) admits forbidden subgraph characterization, then \(\mathcal{F}_\mathcal{S} \) is called the class of minimal forbidden subgraphs. It is well known that a class \(\mathcal{S} \) admits forbidden subgraph characterization iff \(\mathcal{S} \) is closed under vertex-induced subgraphs. For many classes of graphs, it follows from the definition that the class is closed under vertex-induced subgraphs; in such cases, there must be a forbidden subgraph characterization. However, finding the explicit forbidden subgraph characterization can be difficult. An old and well-known example of this phenomenon is the class of planar graphs.

Let \(F \) be a finite family of non-empty sets. An undirected graph \(G \) is an intersection graph for \(F \) if there is a one-to-one correspondence between the vertices of \(G \) and the sets in \(F \) such that two vertices in \(G \) are adjacent iff the corresponding sets have non-empty intersection. If \(F \) is a family of paths in an undirected tree \(T \), then \(G \) is called an undirected vertex (UV) or a path graph. If \(F \) is a family of directed paths in a directed tree \(T \), i.e., a tree in which each edge is oriented, then \(G \) is called a directed

* E-mail: bspanda@bits.soft.net.

0012-365X/99/$ – see front matter © 1999 Elsevier Science B.V. All rights reserved
PII: S0012-365X(98)00127-7
vertex (DV) or a directed path graph. Note that a directed tree may have more than one vertex of indegree zero. A rooted directed tree is a directed tree having exactly one vertex of indegree zero. If \(F \) is a family of directed paths in a rooted directed tree, then \(G \) is called a rooted directed vertex (RDV) graph.

A graph \(G \) is chordal if every cycle in \(G \) of length at least four has a chord, i.e. an edge joining two non-consecutive vertices of the cycle. In fact, Walter [18], Gavril [6], and Buneman [2] have shown that \(G \) is a chordal graph iff \(G \) is the intersection graph of a family of subtrees of a tree. So DV, RDV and UV graphs are subclasses of chordal graphs. A graph \(G \) is called perfect if the chromatic number equals the clique number of each of its induced subgraphs (see [1,9]). It is well known [9] that the class of chordal graphs is a subclass of perfect graphs. Polynomial recognition algorithms for DV, RDV, UV, and chordal graphs are known; whereas, the problem of designing a polynomial recognition algorithm for perfect graphs is still open (see [1,9]). Chordal graphs can be recognized in linear time (see [15,17]). Gavril [8] found the first polynomial time algorithm to recognize UV graphs. Schaffer [16] found a better algorithm, based on the work of Monma and Wei [11], to recognize UV graphs. Gavril [7] first reported a polynomial algorithm to recognize RDV graphs. This was improved to linear time by Deitz [3]. DV graphs can also be recognized in polynomial time (see [11]).

Since the classes of chordal graphs, DV graphs, RDV graphs, UV graphs and perfect graphs are closed under vertex-induced subgraphs, they admit a forbidden subgraph characterization. In fact, Berge’s strong perfect graph conjecture (see [1,9]) says that odd holes (odd cycle of length at least five) and odd antiholes (complement of odd holes) are the only forbidden subgraphs for perfect graphs, which is yet to be settled. Renz [13] posed the problem of finding the forbidden subgraph characterization of UV graphs. The problem of finding the forbidden subgraph characterization for DV graphs, RDV graphs, and UV graphs are open.

In this paper, we solve the problem of finding the forbidden subgraph characterization of DV graphs.

2. Definitions and preliminaries

Throughout the paper we use ‘iff’ for if and only if, ‘w.r.t.’ for with respect to, ‘s.t.’ for such that, and ‘wlg’ for without loss of generality. Throughout the discussion our graph is assumed to be connected.

For a graph \(G = (V,E) \), let \(N(v) = \{w \mid vw \in E(G)\} \) denote the set of neighbours of \(v \) and let \(N[v] = N(v) \cup \{v\} \). A subset \(C \) of \(V(G) \) is called a clique if the induced subgraph \(G[C] \) is a maximal complete subgraph of \(G \). Let \(C(G) \) be the set of all cliques of \(G \), and for each \(v \in V(G) \), \(C_v(G) \) denote the set of all cliques of \(G \) containing \(v \). A vertex \(v \) is a simplicial vertex of \(G \) if \(N[v] \) is a clique of \(G \). An ordering \(\alpha = (v_1, v_2, \ldots, v_n) \) is a perfect elimination ordering (PEO) of \(G \) if \(v_i \) is a simplicial vertex of \(G_i = G[\{v_i, v_{i+1}, \ldots, v_n\}] \), for all \(i, 1 \leq i \leq n \).
As DV graphs are subclasses of chordal graphs, we first present some known results about chordal graphs.

Theorem 2.1 (Deitz [4], Lekkerkerker and Boland [10]). A chordal graph has a simplicial vertex. Moreover, if G is non-complete, then G has two non-adjacent simplicial vertices.

Theorem 2.2 (Fulkerson and Gross [5], Rose [14]). G is chordal iff G has a PEO. Moreover, any simplicial vertex can be the starting vertex of some PEO of G.

Though in the definition of DV graphs the tree is arbitrary, there exists a tree satisfying a nice property, which is given in the following theorem:

Theorem 2.3 (Monma and Wei [11], Clique Tree Theorem). A graph $G = (V,E)$ is a DV graph iff there exists a directed tree T with vertex set $C(G)$ s.t. for each $v \in V(G)$, $T[C_v(G)]$ is a directed path in T.

A tree satisfying Theorem 2.3 is called a **clique tree** for the graph it characterizes. In Fig. 1, a DV graph G and clique tree T for G are given.

Next, we present the characterization of DV graphs due to Monma and Wei [11]. To this end, we need to introduce some new concepts.

If $G - C$ is disconnected by a clique C into components $H_i = (V_i, E_i)$, $1 \leq i \leq r$, then C is said to be a **separating clique** and $G_i = G[V_i \cup C]$, $1 \leq i \leq r$, $r \geq 2$, is said to be a **separated graph of G w.r.t. C**. Let C be a separating clique of G. Cliques which intersect C but not equal to C are called **relevant cliques** w.r.t. C.

In the following definitions, only relevant cliques are considered.

Let C_1 and C_2 be two cliques of G. We say (1) C_1 and C_2 are **unattached**, denoted $C_1 \perp C_2$, if $C_1 \cap C \cap C_2 = \emptyset$; otherwise, they are **attached**. (2) C_1 dominates C_2,

$$
C = \{1, 2, 3, 4\} \\
C_1 = \{1, 3, 8\} \\
C_2 = \{3, 4, 5\} \\
C_3 = \{2, 4, 6\} \\
C_4 = \{1, 2, 7\}
$$

Fig. 1. A DV graph G and its clique tree T.

[Diagram of DV graph G and clique tree T]
denoted $C_1 \geq C_2$, if $C_1 \cap C \supseteq C_2 \cap C$, (3) C_1 properly dominates C_2, denoted $C_1 > C_2$, if $C_1 \cap C \supseteq C_2 \cap C$, (4) C_1 and C_2 are congruent, denoted $C_1 \sim C_2$, if they are attached and $C_1 \cap C = C_2 \cap C$, and (5) C_1 and C_2 are antipodal, denoted $C_1 \Leftrightarrow C_2$, if they are attached and neither dominates the other.

Let G_1 and G_2 be two separated graphs of G w.r.t. C. We say (1) G_1 and G_2 are unattached, denoted $G_1 \not\supseteq G_2$, if $C_1 \not\supseteq C_2$ for every clique C_1 in G_1 and for every clique C_2 in G_2; otherwise, they are attached, (2) G_1 dominates G_2, denoted $G_1 \supseteq G_2$, if they are attached and for every clique C_1 in G_1, $C_1 \supseteq C_2$ for all cliques C_2 in G_2 or $C_1 \not\supseteq C_2$ for all cliques C_2 in G_2, (3) G_1 properly dominates G_2, denoted $G_1 > G_2$, if $G_1 \supseteq G_2$ but not $G_2 \supseteq G_1$, (4) G_1 and G_2 are congruent, denoted $G_1 \sim G_2$, if G_1 dominates G_2 and G_2 dominates G_1; in this case, $C_1 \sim C_2$ for all C_1 in G_1 and for all C_2 in G_2, and (5) G_1 and G_2 are antipodal, denoted $G_1 \Leftrightarrow G_2$, if they are attached and neither dominates the other.

Consider the graph $G = (V, E)$ separated by the clique $C = \{a, b, c, d\}$ into G_1 through G_5 as shown in Fig. 2. We have $G_3 \Leftrightarrow G_i$, for $i = 1, 2, 4, 5$, $G_4 \sim G_5$, $G_2 > G_1$, and $G_i \not\supseteq G_j$, for $i = 1, 2$ and for $j = 4, 5$.

The relation 'congruent to' is an equivalence relation on S_G, the set of all separated graphs w.r.t. C. The equivalence classes are called congruence classes. For graph theoretic concepts not defined here and for a rich collection of results about various subclasses of chordal graphs, we refer to Golumbic [9].

For a separated subgraph G_i, let $W(G_i) = \{v \in C \mid$ there is a vertex $w \in (V(G_i) - C)$ s.t. $vw \in E(G_i)\}$. Let G be a chordal graph, and G_i, $1 \leq i \leq r$, $r \geq 2$ be the separated graphs of G w.r.t. some separating clique C of G. Relevant cliques of G_i which contain $W(G_i)$ are called principal cliques of G_i.

The existence of a principal clique of any separated graph of a chordal graph is assured by the following result due to Panda and Mohanty [12].

Proposition 2.4 (Panda and Mohanty [12]). Every separated graph G_i of a chordal graph G has a principal clique.

The following result characterizes the antipodality of two separated graphs of a chordal graph.

Lemma 2.5. Two separated graphs G_1 and G_2 of a chordal graph G are antipodal iff (1) $G_1 \Leftrightarrow G_2$, or (2) $G_1 > G_2'$, $G_2 > G_1'$, for some cliques C_1, C_1' in G_1 and C_2, C_2' in G_2. (The cliques C_1 and C_2 in condition (2) are principal cliques of G_1 and G_2, respectively.)

Proof. Sufficiency follows from the definition of antipodality of separated graphs.

Necessity: Assume that $G_1 \Leftrightarrow G_2$. So, $W(G_1) \cap W(G_2) \neq \emptyset$. Let C_i be a principal clique of G_i, $i = 1, 2$.

Case 1: $W(G_1) = W(G_2)$.
Fig. 2. Example of the separation of G into G_1, G_2, G_3, G_4 and G_5 by $C = \{a, b, c, d\}$.

Then each of G_1 and G_2 has at least two relevant cliques. Again, G_i, $1 \leq i \leq 2$ has a relevant non-principal clique; otherwise, one separated graph dominates the other. Let C_i' be some relevant non-principal clique of G_i, $1 \leq i \leq 2$. Now C_1, C_1', C_2, and C_2' satisfy condition (2).

Case 2: $W(G_1)$ and $W(G_2)$ are comparable but $W(G_1) \neq W(G_2)$.

Wlg, $W(G_1) \subset W(G_2)$. So, $C_2 > C_1$. Since $G_1 \leftrightarrow G_2$, there exists a relevant clique C_i' of G_2 s.t. C_i' is attached to C_1 but does not dominate C_1; otherwise, $G_2 > G_1$. So, either $C_1 > C_2'$ or $C_1 \leftrightarrow C_2'$. If $C_1 \leftrightarrow C_2'$, then condition (1) holds. If $C_1 > C_2'$, then condition (2) holds.

Case 3: $W(G_1)$ and $W(G_2)$ are incomparable.

Then C_1 and C_2 are incomparable. Now, C_1 and C_2 are attached and neither dominates the other. So, $C_1 \leftrightarrow C_2$. So, condition (1) holds.

This completes the proof of the necessity. ☐
The proof of the following corollary follows from the proof of the necessity of Lemma 2.5.

Corollary 2.6. Let $G_1 \leftrightarrow G_2$ and C_1 and C_2 be some principal cliques of G_1 and G_2, respectively. Then the following are true.

1. If $W(G_1) = W(G_2)$, then there exists a relevant non-principal clique C_i' of G_i, $i \leq i \leq 2$, s.t. $C_1 > C_2'$, and $C_2 > C_1'$.
2. If $W(G_1) \subseteq W(G_2)$, then there exists a relevant non-principal clique C'_2 of G_2 s.t. either $C_1 > C'_2$ or $C_1 \leftrightarrow C'_2$.
3. If $W(G_1)$ and $W(G_2)$ are incomparable, then $C_1 \leftrightarrow C_2$.

Our main result depends on the following characterization of DV graphs due to Monna and Wei [11].

Theorem 2.7 (Monna and Wei [11], Separator Theorem). Assume that C separates $G = (V, E)$ into separated graphs $G_i = G[V_i \cup C], 1 \leq i \leq r, r \geq 2$. G is a DV graph iff

1. each G_i is DV, and
2. the G_is can be two colored s.t. no antipodal pairs have the same color.

Let $H_i, 1 \leq i \leq r, r \geq 2$ be the separated graphs of a chordal graph H w.r.t. a separating clique C of H. Define the *antipodal graph* $\mathcal{A}(H, C)$ of H as follows. $V(\mathcal{A}) = \{H_i\}_{i=1}^r$ and $E(\mathcal{A}) = \{H_iH_j s.t. H_i \leftrightarrow H_j\}$.

A separated graph G_i is said to be a *strong separated graph* if there exists an induced odd cycle $\alpha = G_1, G_2, \ldots, G_j, \ldots, G_{2k+1}, k > 1$, in $\mathcal{A}(G, C)$ s.t. G_i dominates G_j for all j except $j = i - 1$ and $j = i + 1$ (operations on the indices are under modulo $(2k + 1)$).

Lemma 2.8. Let $\alpha = G_1, G_2, \ldots, G_{2k+1}, k > 1$ be a chordless odd cycle of $\mathcal{A}(G, C)$, where G is a chordal graph. Then the following conditions hold.

1. If G_i dominates some G_j, then G_i is a strong separated graph.
2. There exist at most two strong separated graphs in α. Moreover, if there are two, then they appear consecutively in α.

Proof. (i) Wlg, $i = 1$. Now $G_1 > G_j$. We claim that $G_1 > G_m, 3 \leq m \leq 2k$. We prove this by contradiction. Assume that G_1 does not dominate some G_r seeking to establish a contradiction to the fact that α is a chordless cycle. Wlg, $3 \leq r \leq j - 1$; otherwise, one can reverse the cycle indices. Let $r_1, 3 \leq r_1 \leq j - 1$ be the largest index s.t. G_1 does not dominate G_{r_1}. Since $G_{r_1+1} \leftrightarrow G_{r_1}$ and G_1 dominates G_{r_1+1}, G_1 is attached to G_{r_1}. If G_{r_1} dominates G_1, then G_{r_1} also dominates G_{r_1+1}, as G_1 dominates G_{r_1+1} (the relation ‘domination’ is a transitive relation on the set of separated graphs), contradicting the fact that $G_{r_1+1} \leftrightarrow G_{r_1}$. So G_{r_1} does not dominate G_1. Since, by assumption G_1 does not dominate $G_{r_1}, G_1 \not\leftrightarrow G_{r_1}$. Hence α is not a chordless cycle, which is a contradiction. So Lemma 2.8(i) holds.
(ii) The proof is by contradiction. Assume that there are three strong separated graphs, say \(G_i, G_j, G_k \) seeking to establish a contradiction of the fact that \(\alpha \) is a chordless cycle. Since \(k > 1 \), wlg we assume that \(G_i \) is not antipodal to \(G_j \). So \(G_i \sim G_j \) and \(G_i \) and \(G_k \) do not occur consecutively in \(\alpha \). Then the separated graphs \(G_i, G_{i+1}, \ldots, G_{j-1} \) form a cycle. This contradicts the fact that \(\alpha \) is a chordless cycle. So there are at most two strong separated graphs. Again, if two such separated graphs exist, then they must occur consecutively in \(\alpha \); otherwise, using a similar analysis it can be shown that \(\alpha \) is not a chordless cycle.

3. Forbidden subgraph characterization of DV graphs

In this section we present the forbidden subgraph characterization of DV graphs. Let \(\mathcal{C} \) be the class of DV graphs. A forbidden subgraph for DV-graphs is said to be a critical non-DV graph. Let \(G \in \mathcal{C} \). Then \(G \) has at least three cliques. If \(G \) is not chordal, then it must be isomorphic to \(C_n, n \geq 4 \). So assume that \(G \) is a chordal graph. \(G \) has a separating clique as it has more than two cliques. Let \(C \) separate \(G \) into \(G_i \), \(i < r, r > 2 \).

The following lemma gives the structure of \(\mathcal{A}(G, C) \).

Lemma 3.1. \(\mathcal{A}(G, C) \) is isomorphic to \(C_{2k+1} \) for some \(k \geq 1 \).

Proof. Since \(G \in \mathcal{C} \), each \(G_i \) is a DV graph. So by Theorem 2.7, the \(G_i \)'s cannot be 2-coloured in such a way that antipodal pairs receive different colors. So \(\mathcal{A}(G, C) \) is not bipartite and hence contains an odd cycle. Since a graph containing an odd cycle also contains an induced odd cycle, \(\mathcal{A}(G, C) \) contains an induced odd cycle, say \(C_{2k+1} = G_1, G_2, \ldots, G_{2k+1} \), for some \(k \geq 1 \). Now the separated graphs \(G_1, G_2, \ldots, G_{2k+1} \) violate the condition of Theorem 2.7. Since \(G \in \mathcal{C} \), \(\mathcal{A}(G, C) \) is isomorphic to \(C_{2k+1} \).

Next, we classify the odd cycle of \(\mathcal{A}(G, C) \) into three types and tackle each type separately. To this end, the indices are modulo \(2k + 1 \).

Let \(\alpha = G_1, G_2, \ldots, G_{2k+1}, k \geq 1 \), be the induced odd cycle of \(\mathcal{A}(G, C) \). \(\alpha \) is said to be a comparable cycle if there exists \(i \) s.t. \(W(G_i) = W(G_{i+1}) \). \(\alpha \) is said to be a semicomparable cycle if it is not a comparable cycle and there exists \(i \) s.t. either \(W(G_{i+1}) \) or \(W(G_{i-1}) \) is properly contained in \(W(G_i) \). If \(\alpha \) is neither, it is said to be a noncomparable cycle.

We present below a series of lemmas which will be used in the main result.

Lemma 3.2. Let \(G \) be a chordal graph having an antipodal pair \((G_1, G_2) \) w.r.t. some separating clique \(C \). If \(W(G_1) \) is a proper subset of \(W(G_2) \) and \(G_2 \) is a DV-graph, then \(G \) contains a subgraph isomorphic to one of the graphs in Fig. 3.
Proof. Assume that \(G_1 \iff G_2 \), and \(W(G_1) \subset W(G_2) \). So by Corollary 2.6(2), there exists a relevant non-principal clique \(C_2' \) of \(G_2 \) s.t. either \(C_1 \iff C_2' \) or \(C_1 > C_2' \), where \(C_1 \) is a principal clique of \(G_1 \).

Case 1: \(C_1 > C_2' \).

Since \(G_2 \) is a DV graph, there exists a clique tree \(T \) for \(G_2 \). Let \(T^* \) be the tree obtained from \(T \) by ignoring the direction. So, \(T^* \) is a clique tree for the chordal graph \(G_2 \). Since \(C_2 \cap C \cap C'_2 \neq \emptyset \), there exists a path, say, \(P = C, C_2, C_3, \ldots, C_n, C'_2 \) from \(C \) to \(C'_2 \) in \(T^* \). Wlg, assume that \(C_i \geq C_1, 2 \leq i \leq n \); otherwise, we can take \(C'_2 = C_i \), where \(i \) is the smallest index s.t. \(2 < i \leq n \) and \(C_1 > C_i \). By Theorem 2.3, \(C_{i+1} \cap C \subseteq C_i \cap C, 2 \leq i \leq n - 1 \), as \(P \) is a path in \(T^* \). As \(|C_1 \cap C| \geq 2 \) and \(C_2 > C_1 \),
\[|C| \geq 4. \] Let \(G' = G'[\{C, C_2, \ldots, C_{n+1}\}] \), where \(C_{n+1} = C_2 \). Then \(G' \) is a chordal graph. So by Theorem 2.1, \(G' \) contains at least two simplicial vertices. Since \(C \) and \(C_{n+1} \) are the only end vertices of the clique tree \(Q \) of \(G' \), there exist simplicial vertices \(z \) and \(v_1 \) s.t. \(z \in C_2' - C_n \), and \(v_1 \in C - C_2 \). Let \(x \in C_2' \cap C_1 \). Take \(y \in (C \cap C_1') - C_2' \). Then \(\{x, y\} \subseteq W(G_1) \cap W(G_2) \), \(xz \in E(G) \) but \(yz \notin E(G) \). Let \(v_2 \in W(G_2) - W(G_1) \) and \(x_1 \in C_1 - C \). Since \(C_1 > C_2' \), \(zv_2 \notin E(G) \). Let \(P = z, v_n, v_{n-1}, \ldots, v_2 \) be a shortest \(z - v_2 \) path in \(G_2 - (C - v_2) \). Then \(G'[\{v_1, v_2, \ldots, v_n, x, y, x_1, z\}] \) is isomorphic to \(H'_1 \), as \((v_1, v_2, \ldots, v_n, x, y, x_1, z)(\cdots)(v_1, v_2, \ldots, v_n, a, b, c, d) \) is an isomorphism.

Case 2: \(C_1 \iff C_2' \).

Then, let \(x_1 \in C_2' \cap C_1 \cap C, x_2 \in (C_1 \cap C) - C_2', x_3 \in (C_2' \cap C) - C_2, x_4 \in C - C_2, x_5 \in C_1 - C, x_6 \in (C_2' \cap C_2) - C, \) and \(x_7 \in C_2' - C_2 \). Now, \(G'[\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}] \) is isomorphic to \(H'_2 \), as \((x_1, x_2, x_3, x_4, x_5, x_6, x_7)(\cdots)(a, b, e, d, c, f, g) \) is an isomorphism. □

A separating clique \(C \) of \(G \) is said to be a **maximal separating clique** if \(G \) has maximum number of separated graphs w.r.t. \(C \).

Lemma 3.3. Let \(\mathcal{A}(G, C) \) be isomorphic to an odd cycle \(\alpha = G_1, G_2, G_3, \) and \(C \) be a maximal separating clique. If \(W(G_1) \subseteq W(G_2) \), then \(W(G_2) \) and \(W(G_3) \) are incomparable.

Proof. The proof is by contradiction. Assume that \(W(G_2) \) and \(W(G_3) \) are comparable seeking a contradiction of the fact that \(C \) is a maximal separating clique.

First assume that \(W(G_3) \subseteq W(G_2) \). Since \(G_3 \not\subseteq G_2 \), \(G_2 \) has a non-principal clique \(C_2' \), otherwise, \(G_2 \geq G_3 \). Let \(C_i \) be a principal clique of \(G_i, 1 \leq i \leq 3 \). Let \(x_1 \in C_1 - C, x_2 \in C_2' - C_2, x_3 \in C - C_2, \) and \(x_4 \in C_1 - C \). Now, \(x_1, x_2, x_3, \) and \(x_4 \) lie in four different components of \(G - C_2 \). This contradicts the fact that \(C \) is a maximal separating clique. So \(W(G_3) \) is not a subset of \(W(G_2) \).

Similarly, if \(W(G_2) \subseteq W(G_3) \), then \(G - C_3 \) will have four components, where \(C_3 \) is any principal clique of \(G_3 \). This contradicts the fact that \(C \) is a maximal separating clique of \(G \). □

Lemma 3.4. Let \(\mathcal{A}(G, C') \) be isomorphic to a semicomparable odd cycle of length three for every maximal separating clique \(C' \) of \(G \). Then there exists a separating clique \(C \) of \(G \) s.t. \(\mathcal{A}(G, C) \) is isomorphic to a semicomparable odd cycle \(\alpha = G_1, G_2, G_3 \) s.t. \(W(G_1) \subseteq W(G_2) \), and \(C_1 \iff C_3 \), where \(C_i \) is a principal clique of \(G_i \) for \(i = 1, 3 \).

Proof. Choose a maximal separating clique \(C \) s.t. \(\mathcal{A}(G, C) \) is isomorphic to a semicomparable odd cycle \(\alpha = G_1, G_2, G_3 \) s.t. \(W(G_1) \subseteq W(G_2) \) and \(G_3 \) has minimum number of cliques. Let \(C_1 \) and \(C_3 \) be some principal cliques of \(G_1 \) and \(G_3 \), respectively. We will prove that \(C_1 \iff C_3 \). The proof is by contradiction. Since \(W(G_1) \subseteq W(G_2) \), by Lemma 3.3, \(W(G_3) \) is not a subset of \(W(G_1) \). So assume that \(W(G_1) \subseteq W(G_3) \)
seeking a contradiction to the choice of C. Since $G_1 \gg G_3$ and $W(G_1) \subset W(G_3)$, by Corollary 2.6(2), there exists a relevant non-principal clique C'_1 of G_3 s.t. either $C_1 \gg C'_1$ or $C_1 > C'_1$. Now, C_2 is a maximal separating clique of G. Let $x_1 \in C_1 - C$, $x_2 \in C_2 - C$, and $x_3 \in C'_1 - C_3$. Let G'_1, G'_2, G'_3 be the three separated graphs of G w.r.t. C_3 s.t. $x_1 \in W(G'_1), x_2 \in W(G'_2)$, and $x_3 \in W(G'_3)$. Now, $\alpha' = G'_1, G'_2, G'_3$ is a semicomparable odd cycle s.t. $W(G'_1) \subset W(G'_2)$ and G'_1 has fewer cliques than G_3. This contradicts the choice of C. Hence $W(G_1)$ is not a subset of $W(G_3)$.

Since $G_1 \gg G_3$ and $W(G_1)$ and $W(G_3)$ are not comparable, by Corollary 2.6(3), $C_1 \gg C_3$. □

Lemma 3.5. Let G be a critical non-DV graph and $\mathcal{A}(G, C)$ be isomorphic to a chordless odd cycle $\alpha = G_1, G_2, \ldots, G_{2k+1}$ for some $k \geq 1$. If $W(G_1) = W(G_2)$, then each of G_1 and G_2 has exactly two relevant cliques.

Proof. The proof is by contradiction. Assume w.l.g. that G_1 has more than two relevant cliques seeking a contradiction to the fact that G is a critical non-DV graph. Let C_i be a principal clique of G_i, $i = 1, 2$. Since $G_1 \gg G_2$, and $W(G_1) = W(G_2)$, by Corollary 2.6(1), there exists a non-principal clique C'_i of G_i, $i = 1, 2$ s.t. $C_1 \gg C'_1$, and $C_2 \gg C'_2$. Now G_1 is a DV graph. Let T_1 be a clique tree for G_1. Let $P = C, C^*_1(1), C^*_2(1), \ldots, C^*_r(1), C'_1$ be the path from C to C'_1 in T_1. Such a path exists in T_1, as $C \cap C^*_r(1) \cap C'_1 \neq \emptyset$. W.l.g., $C^*_1(1)$ is a principal clique of G_1, for $1 \leq j \leq r$; otherwise, we can take $C'_1 = C^*_1(1)$, where i is the smallest index s.t. $C^*_i(1)$ is not a principal clique of G_1. Let $G'_1 = G[\{C \cup C^*_1(1) \cup C'_1\}]$. Then clearly $G'_1 \gg G_2$ and $\alpha' = G'_1, G_2, \ldots, G_{2k+1}$ is an odd cycle of $G' = G'_1 \cup G_2 \cup \cdots \cup G_{2k+1}$. So G' is not a DV graph as $G'_1, G_2, \ldots, G_{2k+1}$ violate the condition (2) of Theorem 2.7. Since G' is a proper subgraph of G, this is a contradiction to the fact that G is a critical non-DV graph. □

Lemma 3.6. Let C be a maximal separating clique of a critical non-DV graph G s.t. $\mathcal{A}(G, C)$ is isomorphic to the cycle $\alpha = G_1, G_2, \ldots, G_3$. If $W(G_1) = W(G_2)$, then no clique of G_1 is antipodal to any clique of G_2.

Proof. Let C_i be a principal clique of G_i, $i = 1, 2$. Since $G_1 \gg G_2$, and $W(G_1) = W(G_2)$, by Corollary 2.6(1), there exists a non-principal clique C'_i of G_i, $i = 1, 2$ s.t. $C_1 > C'_1$, and $C_2 > C'_2$. Now by Lemma 3.5, C_i and C'_i are the only relevant cliques of G_i for $i = 1, 2$. Since $W(G_1) \subseteq W(G_2)$, by Lemma 3.3, $W(G_3)$ and $W(G_2)$ are incomparable.

Let C_3 be a maximal clique of G_3. Let $x_1 \in C'_1 - C_3$, $x_2 \in (C'_1 \cap C_1) - C$, $y_1 \in C'_2 - C_3$, $y_2 \in (C'_2 \cap C_2) - C$, $z_1 \in C_3 - C$, and $z_2 \in W(G_1) - W(G_2)$.

We prove that C'_1 is not antipodal to C'_2. The proof is by contradiction. Assume that $C'_1 \gg C'_2$, seeking a contradiction to the fact that G is a critical non-DV graph.

Case 1: $C'_1 \gg C'_2$, $i = 1, 2$.

Then, let $z_3 \in (C'_1 \cap C'_2) - C$, $z_4 \in W(G_2) \cap W(G_3)$, $z_5 \in (C'_1 \cap C) - C'_2$, and $z_6 \in (C'_2 \cap C) - C'_1$. Now, $G[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4\}]$ is isomorphic to A_2 of Fig. 5 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4) \leftrightarrow (h, c, e, d, g, f, a, b)$ is an isomorphism. Since $\{z_5, z_6\} \subseteq V(G) - V(A_2)$,
A_2 is a subgraph of G. Again, A_2 is a non-DV graph because the separated graphs of A_2 w.r.t. $C = \{a, b, f\}$ violate the condition (2) of Theorem 2.7. So, we get a contradiction.

Case 2: Exactly one of C_1' and C_2' is attached to C_3.

Wlg, C_1' is attached to C_3. Let $z_3 \in (C_1' \cap C_2' \cap C)$, $z_4 \in (C_1' \cap C_3)$, and $z_5 \in (C_2' \cap C) - C_1'$. Now, $G[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4, z_5\}]$ is isomorphic to A_2 of Fig. 5 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_4, z_5) \leftrightarrow (e, d, g, f, h, c, a, b)$ is an isomorphism. Since, $z_3 \in V(G) - V(A_2)$, A_2 is a proper induced subgraph of G. Again, as in case 1, A_2 is a non-DV graph. So, we get a contradiction.

Case 3: At least one of C_1' and C_2' is attached to C_3.

Subcase 3.1: $C_1' \cap C_3$ and $C_2' \cap C_3$ are comparable.

Wlg, $C_1' \cap C_3 \subseteq C_2' \cap C_3$ and $C_1' \cap C_3 \neq \emptyset$. Let $z_3 \in (C_1' \cap C_2' \cap C)$, $z_4 \in (C_1' \cap C) - C_2'$ and $z_5 \in (C_2' \cap C) - C_1'$. Then, $z_4 \in C_3$.

If $z_5 \in C_3$, then $G[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4, z_5\}]$ is isomorphic to A_2 of Fig. 5 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_4, z_5) \leftrightarrow (g, f, e, d, h, c, b, a)$ is an isomorphism. As in case 1, A_2 is a non-DV graph. Since $z_3 \in V(G) - V(A_2)$, A_2 is a proper induced subgraph of G. So, we have a contradiction.

If $z_5 \notin C_3$, then $G[\{x_1, y_1, z_1, z_2, z_3, z_4, z_5\}]$ is isomorphic to the graph A_5 of Fig. 5 as $(x_1, y_1, z_1, z_2, z_3, z_4, z_5) \leftrightarrow (e, g, c, a, b, d)$ is an isomorphism. Since $x_2 \in V(G) - V(A_5)$, A_5 is a proper induced subgraph of G. Again, A_5 is a non-DV graph because the separated graphs of A_5 w.r.t. $C = \{a, b, c\}$ violate condition (2) of Theorem 2.7. So, we get a contradiction.

Subcase 3.2: $C_1' \cap C_3$ and $C_2' \cap C_3$ are incomparable.

Let $z_4 \in (C_1' \cap C_3) - C_2'$ and $z_5 \in (C_2' \cap C_3) - C_1'$. If $(C_1' \cap C_2' \cap C)$ is not a subset of $(C_3 \cap C)$, then let $z_6 \in (C_1' \cap C_2' \cap C) - C_3$. Now, $G[\{x_1, y_1, z_1, z_2, z_3, z_4, z_5, z_6\}]$ is isomorphic to A_7 as $(x_1, y_1, z_1, z_2, z_3, z_4, z_5, z_6) \leftrightarrow (f, e, d, c, b, a)$ is an isomorphism. Since $x_2 \in V(G) - V(A_7)$, A_7 is a proper induced subgraph of G. Again, A_7 is a non-DV graph because the separated graphs of A_7 w.r.t. $C = \{a, b, c\}$ violate condition (2) of Theorem 2.7. So, we get a contradiction.

If $(C_1' \cap C_2' \cap C) \subseteq (C_3 \cap C)$, then let $z_7 \in (C_2' \cap C) - C_3$. Then, z_7 belongs to at most one of C_1' and C_2'.

Assume that z_7 belongs to exactly one of C_1' and C_2'. Wlg, $z_7 \in C_2'$. Now, $G[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4, z_5\}]$ is isomorphic to A_2 of Fig. 3 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_4, z_7) \leftrightarrow (e, d, g, f, h, c, a, b)$ is an isomorphism. Since $z_5 \in V(G) - V(A_2)$, A_2 is a proper induced subgraph of G. Again, as in case 1, A_2 is a non-DV graph. So, we have a contradiction.

If $z_7 \notin C_1' \cup C_2'$, then $G[\{x_1, x_2, y_1, y_2, z_1, z_2, z_4, z_5\}]$ is isomorphic to $A_6(n = 3)$ as $(x_1, x_2, y_1, y_2, z_1, z_4, z_5, z_7) \leftrightarrow (a_0, v_1, a_1, v_1, a_2, a, b, v_2)$ is an isomorphism. Since $z_2 \in V(G) - V(A_6(n = 3))$, $A_6(n = 3)$ is a proper induced subgraph of G. Again, $A_6(n = 3)$ is non-DV graph because the separated graphs of $A_6(n = 3)$ w.r.t. $C = \{a, b, v_1, v_2\}$ violate condition (2) of Theorem 2.7. So, we get a contradiction.

So, our lemma is proved by contradiction. \qed
$V(A_1(k > 1)) = \{v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}, x_1\}$, $k > 1$ s.t. \{v_1, v_2, \ldots, v_{2k+1}\} is a K_{2k+1}, u_i is joined to v_{i-1} and v_i, $2 \leq i \leq 2k + 1$, u_1 is joined to each of $v_1, v_2, \ldots, v_{2k}, x_1$, and x_1 is joined to u_1 and v_1.

$V(A_2(k > 1)) = \{v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}\}$ s.t.
\{v_1, v_2, \ldots, v_{2k+1}\} is a clique of $A_1(k > 1)$ and \{u_1, u_2, \ldots, u_{2k+1}\} is an independent set of $A_2(k > 1)$ and u_i is adjacent to only v_i and v_{i+1}, for $1 \leq i \leq 2k - 1$, and u_{2k+1} is adjacent to v_{2k+1} and v_1.

$V(A_3(k > 1)) = \{v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}\}$ $k > 1$ s.t.
\{v_1, v_2, \ldots, v_{2k+1}\} is a K_{2k+1}, u_i is joined to v_{i-1} and v_i, $2 \leq i \leq 2k$, u_i is joined to each of v_i, $2 \leq i \leq 2k$, and u_{2k+1} is joined to each of v_1, \ldots, v_{2k-1}.

The graphs $A_1^{(2)}, A_2^{(2)}, A_3^{(2)}$, and $A_4^{(2)}$ are given in Fig. 4.

The following theorem characterizes DV graphs in terms of forbidden subgraphs.

Theorem 3.7. G is a DV graph iff it does not contain any of the graphs in Fig. 5 and any of the graphs $A_1(k > 1)$ to $A_4(k > 1)$ as an induced subgraph.

Proof. *Necessity:* The proof is by contrapositive, i.e., if G contains any of the graphs mentioned in Theorem 3.7 as an induced subgraph, then we will show that G is not a DV graph.

The separated graphs $G_1, G_2,$ and G_3 of A_1 w.r.t. the clique $C = \{a, b, c\}$ are pairwise antipodal. So these separated graphs cannot be two-colored in such a way that no antipodal pair receives the same color. So by Theorem 2.7, A_1 is not a DV graph. Again, it is straightforward to check using Theorem 2.7 recursively that every separated graphs of $A_1 - x$ w.r.t. every separating clique of $A_1 - x$ is a DV graph for every $x \in V(A_1)$ and the separated graphs of $A_1 - x$ can be two-colored in such a way that no antipodal pair receive the same color. So, by Theorem 2.7, $A_1 - x$ is a DV graph for every $x \in V(A_1)$. Hence, A_1 is critical non-DV graph. Using a similar analysis, it is a routine exercise to show that each of the graphs in Fig. 5 and each of the graphs $A_1(k > 1)$ to $A_4(k > 1)$ is a critical non-DV graph. Since the class of DV graphs is closed under vertex-induced subgraphs, no graph containing any of the graphs in Fig. 5 or any of the graph $A_1(k > 1)$ to $A_4(k > 1)$ as an induced subgraph is a DV graph.

* Sufficiency: The proof is by contrapositive, i.e, if G is not a DV graph, then we will show that G contains a subgraph isomorphic to one of the graphs mentioned in Theorem 3.7.

Assume that G is not a DV graph. Wlg, assume that G is a critical non-DV graph. If G is not chordal, then it must be isomorphic to C_n, $n \geq 4$, which is $A_{15}(n \geq 4)$ of Fig. 5. So, assume that G is a chordal graph. Let C be a maximal separating clique
of G. Since $G \in \mathcal{F}_6$, by Lemma 3.1, $\mathcal{A}(G, C)$ is isomorphic to an induced odd cycle $\alpha = G_1, G_2, \ldots, G_{2k+1}$.

Case 1: $k = 1$, i.e., $\alpha = G_1, G_2, G_3$.

Case 1.1: α is a comparable cycle.

W.l.o.g., $W(G_1) = W(G_2)$. Let C_i be a principal clique of G_i, $1 \leq i \leq 3$. Since $G_1 \cong G_2$ and $W(G_1) = W(G_2)$, by Corollary 2.6(1), there exists a relevant non-principal clique C_i' in G_i, $i = 1, 2$. Now by Lemma 3.5, C_i and C_i' are the only relevant cliques of G_i, $i = 1, 2$. Since $W(G_1) = W(G_2)$, by Lemma 3.3, $W(G_2)$ and $W(G_3)$ are non-comparable. So, $C_2 \ncong C_3$, and $C_1 \ncong C_3$. Since G is a critical non-DV graph and
Fig. 5. Forbidden subgraphs for DV graphs.
If $C'_1 \cap C_3 = 0 = C'_2 \cap C_3$, then there exist z_1, z_2, z_3, z_4, and z_5 s.t. $z_1 \in C'_1 \cap C_1 \cap C$, $z_2 \in C'_2 \cap C_2 \cap C$, $z_3 \in C'_1 \cap C_1 \cap C_3$, $z_4 \in (C_3 \cap C_2) - C_1$, and $z_5 \in C_3 - C$. Now $G'[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4, z_5\}]$ is isomorphic to A_3, as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4, z_5) \leftrightarrow (f, e, g, b, d, c, a, h, i)$ is an isomorphism.

If $C'_1 \cap C_3 \neq \emptyset$ but $C'_2 \cap C_3 = \emptyset$, then there exist z_1, z_2, z_3, and z_4 s.t. $z_1 \in C_3 \cap C'_1$, $z_2 \in C'_2 \cap C_2 \cap C$, $z_3 \in (C_3 \cap C) - C_2$, and $z_4 \in C_3 - C$. Then $G'[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4\}]$ is isomorphic to A_2 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4) \leftrightarrow (e, d, g, f, a, b, c, h)$ is an isomorphism.

Similarly, if $C'_1 \cap C_3 \neq \emptyset$ but $C'_2 \cap C_3 \neq \emptyset$, then G will be isomorphic to A_2.

Case 1.1.2: $C'_1 \cap C'_2 \neq \emptyset$.

If $C'_1 \cap C_3 = 0$ and $C'_2 \cap C_3 = 0$, then there exist z_1, z_2, z_3, z_4, and z_5 s.t. $z_1 \in C'_1 \cap C_1 \cap C$, $z_2 \in (C_1 \cap C_2) - (C'_1 \cap C'_2)$, $z_3 \in (C_3 \cap C) - C_2$, and $z_4 \in C_3 - C$. Now, $G'[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4\}]$ is isomorphic to A_2 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4) \leftrightarrow (h, c, e, d, a, b, f, g)$ is an isomorphism.

If $C'_1 \cap C_3 \neq \emptyset$ and $C'_2 \cap C_3 = 0$, then $|C'_1 \cap C| \geq 2$ as $C'_1 \cap C'_2 \neq \emptyset$. So, there exist z_1, z_2, z_3, z_4, and z_5 s.t. $z_1 \in C'_1 \cap C_2 \cap C$, $z_2 \in C'_1 \cap C_1 \cap C_3$, $z_3 \in (C_3 \cap C) - (C'_1 \cup C'_2 \cup C_1)$, $z_4 \in (C_1 \cap C) - C_2$, and $z_5 \in C_3 - C$. Since $C'_1 \cap C'_2 \neq \emptyset$, $C'_1 \cap C_3 \neq \emptyset$, $C'_2 \cap C'_2 = \emptyset$, and C'_1 is not antipodal to C'_2, $C'_1 > C'_2$. So, $(C_2 \cap C) - (C'_1 \cup C'_2 \cup C_3) \neq \emptyset$. So, the existence of z_3 is assured. Let $G' = G'[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4\}]$. Now, $G' - x_2$ is isomorphic to $A_3(3)$ as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4) \leftrightarrow (a_2, a_3, v_3, a, b, v_1, a_1)$ is an isomorphism. This contradicts the fact that G is a critical non-DV graph as a proper induced subgraph of G is isomorphic to $A_3(3)$, which is not a DV graph. So the condition $C'_1 \cap C_3 \neq \emptyset$ and $C'_1 \cap C'_2 = \emptyset$ does not arise.

Similarly, the condition $C'_2 \cap C_3 \neq \emptyset$ and $C'_3 \cap C'_1 = \emptyset$ does not exist.

So, finally assume that $C'_1 \cap C_3 \neq \emptyset$ and $C'_3 \cap C'_1 = \emptyset$.

If $C'_1 \cap C'_2 \cap C_3 = \emptyset$, then there exist z_1, z_2, z_3, z_4, z_5 s.t. $z_1 \in C'_1 \cap C'_2 \cap C$, $z_2 \in (C'_1 \cap C'_2 \cap C) - C'_2$, $z_3 \in (C'_2 \cap C'_3 \cap C) - C'_2$, $z_4 \in (C_3 \cap C) - C_2$, and $z_5 \in C_3 - C$. Let $G' = G'[\{x_1, y_1, z_1, z_2, z_3, z_4\}]$ is isomorphic to A_7 as $(x_1, y_1, z_1, z_2, z_3, z_4) \leftrightarrow (e, f, a, b, c, d)$ is an isomorphism. Since G' is a proper induced subgraph of G, $(C'_1 \cap C'_2 \cap C_3) = \emptyset$ is not possible.

If $(C'_1 \cap C'_2 \cap C_3) \neq \emptyset$, then there exist z_1, z_2, z_3, and z_4 s.t. $z_1 \in C'_1 \cap C'_2 \cap C_3$, $z_2 \in (C_2 \cap C) - (C'_1 \cup C'_2 \cup C_1)$, $z_3 \in (C_3 \cap C) - C_2$, and $z_4 \in C_3 - C$. The existence of z_2 is assured from the fact that C'_1 is not antipodal to C'_2 and $C_2 \not\subset C_3$. Now, $G' = G'[\{x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4\}]$ is isomorphic to A_1 as $(x_1, x_2, y_1, y_2, z_1, z_2, z_3, z_4) \leftrightarrow (d, c, f, e, a, b, h, g)$ is an isomorphism.

Case 1.2: x is a semicomparable cycle.

Wlg, $W(G_2) \subset W(G_1)$. Wlg, assume that the separating clique C satisfies Lemma 3.4. So, $C_1 \not\subset C_2$, where C_i is a principal clique of G_i, $i = 1, 2$. Now $G_2 \not\subset G_3$, $W(G_2) \subset$
$W(G_3)$, and G_3 is a DV graph. So by Lemma 3.2, $G_2 \cup G_3$ contains a subgraph isomorphic to either H'_1 ($n \geq 3$) or H'_2. Since G is a critical non-DV graph, $G_2 \cup G_3$ is isomorphic to either H'_1 ($n \geq 3$) or H'_2.

First, assume that $G_2 \cup G_3$ is isomorphic to H'_1 ($n \geq 3$). Now $C_1 \not\subset C_2$. If every relevant clique of G_3 is attached to every relevant clique of G_1, then G will be isomorphic to A_5 ($n \geq 3$); otherwise, G will be isomorphic to A_6 ($n \geq 3$).

Next assume that $G_2 \cup G_3$ is isomorphic to H'_2. Let C_3 be the non-principal clique of G_3. If $C_3 \subset C_1$, then G will be isomorphic to A_4. If C_3 is attached to C_1, then $C_1 \not\subset C_3$; otherwise, $C_3 \not\subset C_1$. So, $G[(C \cup C_3 \cup C_1 \cup C_2)]$ will be a non-DV graph contradicting the fact that G is a critical non-DV graph. Now, G will be isomorphic to A_{10}.

Case 1.3: α is a non-comparable cycle.

If $W(G_1) \cap W(G_2) \cap W(G_3) = \emptyset$, then there exist $x, y, z, x_1, x_2,$ and x_3 s.t. $x \in W(G_1) \cap W(G_2), y \in W(G_2) \cap W(G_3), z \in W(G_3) \cap W(G_1)$, and $x_i \in C_i - W(G_i)$, where C_i is a principal clique of G_i, $1 \leq i \leq 3$. Then $G[\{x, y, z, x_1, x_2, x_3\}]$ is isomorphic to A_7 as $(x, y, z, x_1, x_2, x_3) \leftrightarrow (a, b, c, d, e, f, g)$ is an isomorphism.

If $W(G_1) \cap W(G_2) \cap W(G_3) \neq \emptyset$, then let $x \in W(G_1) \cap W(G_2) \cap W(G_3)$. Again $C' = C - x$ is a separating clique of $G' = G - x$. Let $G'_1 = G_1 - x$. Then $G'_1, G'_2, \text{ and } G'_3$ are the only separated graphs of G' w.r.t. C'. Note that $G'_1 \Leftrightarrow G'_2 \text{ if } G'_2 \text{ is attached to } G'_1$. If G'_1, G'_2 and G'_3 are pair wise unattached, then $\leq i \leq 3$. Then $G[\{x, x_1, x_2, x_3, y_1, y_2, y_3\}]$ is isomorphic to A_8 as $(x, x_1, x_2, x_3, y_1, y_2, y_3) \leftrightarrow (a, b, c, d, e, f, g, h)$ is an isomorphism.

Next assume that $G'_1 \Leftrightarrow G'_2$, $G'_3 \Leftrightarrow G'_1$, and $G'_3 \not\subset G'_2$. Then there exist $x_1, x_2, x_3, x_4, y_1, y_2,$ and y_3 s.t. $x_1 \in W(G'_1) \cap W(G'_2), x_2 \in W(G'_2) \cap W(G'_3), x_3 \in (C'_1 \cap C'_2) - C'_2, x_4 \in (C'_1 \cap C'_2) - C'_2,$ and $y_i \in C'_i - C'$, where C'_i is a principal clique of G'_i, $1 \leq i \leq 3$. Then $G[\{x, x_1, x_2, x_3, x_4, y_1, y_2, y_3\}]$ is isomorphic to A_9 as $(x, x_1, x_2, x_3, x_4, y_1, y_2, y_3) \leftrightarrow (e, a, b, c, d, f, g, h)$ is an isomorphism.

Case 2: $k > 1$.

Case 2.1: α is a comparable cycle.

Wlg, $W(G_1) = W(G_2)$. Now $W(G_2) \cap W(G_3) \neq \emptyset$. So G_1 is attached to G_3. Since $k > 1$, $G_1 \not\subset G_3$. So by Theorem 2.8(i), G_1 is a strong separated graph. So $W(G_i) \subseteq W(G_1)$ for all i, $2 \leq i \leq 2k + 1$. Since $G_1 \Leftrightarrow G_{2k+1}$, and $W(G_{2k+1}) \subset W(G_1)$, by Corollary 2.6(2), G_1 has a relevant non-principal clique. Let C_1 be a principal clique of G_1. Then clearly, C_1 is a separating clique of G, and $\mathcal{A}(G, C_1)$ has more vertices than
that of $\mathcal{A}(G, C)$. This contradicts the choice of C. Hence, α cannot be a comparable cycle.

Case 2.2: α is a semicomparable cycle.

Wlg, $W(G_2) \subset W(G_1)$. We claim that G_1 dominates G_j, $3 \leq j \leq 2k$. Now $G_3 \Rightarrow G_2$. As $k > 1$, $W(G_3)$ and $W(G_1)$ are comparable. If $W(G_1) \subseteq W(G_3)$, then since $G_2 \Rightarrow G_3$, $G_1 \Rightarrow G_3$. Since $k > 1$, it contradicts the fact that α is chordless. So G_1 dominates G_3. Hence, by Lemma 2.8(i), G_1 dominates G_j, $3 \leq j \leq 2k$. Again by Lemma 2.8(i), $W(G_i)$ is incomparable with $W(G_{i+1})$, $2 \leq i \leq 2k - 1$. Let C_i be a principal clique of G_i, $1 \leq i \leq 2k + 1$. Now $G_1 \Rightarrow G_2$, and $W(G_2) \subset W(G_1)$. So, by Corollary 2.6(2), there exists C_i' in G_1 s.t. either $C_2 > C_i'$ or $C_2 \subset C_i'$. Note that $W(G_{2k+1})$ is not a subset of $W(G_1)$; otherwise, C_1 will be a separating clique of G s.t. $\mathcal{A}(G, C_1)$ will have more vertices than that of $\mathcal{A}(G, C)$ contradicting the choice of C. So $W(G_1)$ and $W(G_{2k+1})$ are incomparable.

Assume that G_{2k+1} dominates some G_i, $i \not\in \{1, 2k\}$. Then G_{2k+1} is a strong separated graph. Let $G' = G - (C - W(G_1))$. Then C_i is a separating clique of G' and $\mathcal{A}(G', C_i)$ has an induced odd cycle, namely $G'_1, G'_2, \ldots, G'_{2k+1}$, where G'_i is the separated graph of G' w.r.t. C_i containing C_i, $2 \leq i \leq 2k + 1$. So G' is not a DV graph, which is contrary to the fact that $G \in \mathcal{F}_k$. So G_{2k+1} does not dominate any G_i, $1 \leq i \leq 2k$. So $W(G_{2k})$ is not a subset of $W(G_{2k+1})$. Hence $C_i \Rightarrow C_i'$, $2 \leq i \leq 2k$. Let $x_i \in (C_i \cap C_{i+1})$, $y_i \in C_i - C$, $2 \leq i \leq 2k$, $y_{2k+1} \in C_{2k+1} - C$, $x_i \in (C_{2k} \cap C_{i+1} \cap C)$, $x_{2k+1} \in (C_{2k+1} \cap C)$, $y_i \in (C_{2k} \cap C_{i+1}) - C$, and $y_{2k+1} \in C_{2k+1} - C$. Then $G_i \{x_1, x_2, \ldots, x_{2k+1}, y_1, y_2, \ldots, y_{2k+1}, y_{2k+1}\}$ is isomorphic to A_{13} as $(v_1, v_2, \ldots, v_{2k+1}, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}, u_{2k+1})$ is an isomorphism.

Case 3: α is a non-comparable cycle.

Case 3.1: $G_i \Rightarrow G_j$ iff $i \neq j - 1$, $1 \leq i < j \leq 2k + 1$.

Let C_i be a principal clique of G_i, $1 \leq i \leq 2k + 1$. Let $x_{i+1} \in C_i \cap C_{i+1}$, $y_{i+1} \in C_i - C$, $1 \leq i \leq 2k$, $x_i \in C_{2k+1} \cap C$, and $y_{2k+1} \in C_{2k+1} - C$. Then $G_i \{x_1, x_2, \ldots, x_{2k+1}, y_1, y_2, \ldots, y_{2k+1}\}$ is isomorphic to A_1 as $(v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}, u_{2k+1})$ is an isomorphism.

Case 3.2: There exists exactly one G_i which dominates some other separated graphs.

Now by Lemma 2.8(i), G_i is a strong separated graph. Wlg, $i = 1$. Let $x_i \in C_i - C$, $1 \leq i \leq 2k + 1$. Let $y_{i+1} \in C_i \cap C_{i+1}$, $2 \leq i \leq 2k$, $y_1 \in (C_{2k+1} \cap C) - C_1$, and $y_2 \in (C_2 \cap C) - C_1$. Since α is non-comparable, the existence of y_i, $1 \leq i \leq 2k + 1$, is assured. Again $y_i \in W(G_{i+1})$, $3 \leq i \leq 2k + 1$. As $C_2 \mid C_{2k+1}$, $y_1 \notin W(G_2)$ and $y_2 \notin W(G_1)$. Now $G_i \{x_1, x_2, \ldots, x_{2k+1}, y_1, y_2, \ldots, y_{2k+1}\}$ is isomorphic to A_{13} as $(v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}, v_{2k+1})$ is an isomorphism.

Case 3.3: There exist more than one G_i which dominates some other separated graphs.

Let G_i and G_j dominate some other separated graphs. Then by Lemma 2.8(ii), G_i and G_j are the only strong separated graphs and G_i and G_j occur consecutively in α. Wlg, $i = 1$ and $j = 2k + 1$. Let $y_i \in C_i - C$, $1 \leq i \leq 2k + 1$. Let $x_i \in C_i \cap C_{i+1}$, $2 \leq i \leq 2k - 1$, $x_1 \in (C_2 \cap C) - C_1$, and $x_{2k} \in (C_{2k} \cap C) - C_{2k+1}$. Then $G_i \{x_1, x_2, \ldots, x_{2k}, y_1, y_2, \ldots, y_{2k+1}, y_{2k+1}\}$ is isomorphic to A_{13} as $(v_1, v_2, \ldots, v_{2k+1}, u_1, u_2, \ldots, u_{2k+1}, v_{2k+1})$ is an isomorphism.
isomorphic to A_{14} ($k > 1$) as $(x_1, x_2, \ldots, x_{2k}, y_1, y_2, \ldots, y_{2k+1}) \rightarrow (v_1, v_2, \ldots, v_{2k}, u_1, u_2, \ldots, u_{2k-1})$ is an isomorphism.

Acknowledgements

The author thanks the referees for their thoughtful criticisms which improved the presentation of the earlier draft of this manuscript.

References