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Abstract

Nonsymmetric saddle point problems arise in a wide variety of applications in computational science and engineering. The aim
of this paper is to discuss the numerical behavior of several nonsymmetric iterative methods applied for solving the saddle point
systems via the Schur complement reduction or the null-space projection approach. Krylov subspace methods often produce the
iterates which fluctuate rather strongly. Here we address the question whether large intermediate approximate solutions reduce
the final accuracy of these two-level (inner–outer) iteration algorithms. We extend our previous analysis obtained for symmetric
saddle point problems and distinguish between three mathematically equivalent back-substitution schemes which lead to a different
numerical behavior when applied in finite precision arithmetic. Theoretical results are then illustrated on a simple model example.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a solution of the generalized saddle point problem with 2 × 2 block structure
(

A B

BT 0

) (
x

y

)
=

(
f

0

)
, (1)

where A ∈ Rn,n is generally nonsymmetric (AT �= A) nonsingular matrix and B ∈ Rn,m has a full column rank
m�n. These systems arise in many application areas including the discretizations of partial differential equations
in computational fluid dynamics and solid state physics, constrained optimization, optimal control, etc. For a wide
overview of applications leading to (nonsymmetric) saddle point problems and solution approaches, we refer to [2].
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In this paper we look at the numerical behavior of two main representatives of a segregated solution approach called
the Schur complement reduction and the null-space projection method. They are both based on the transformation of
the original system (1) to the reduced (and still a nonsymmetric) system for one from the two solution components x and
y which is then solved with some iterative method. Such a process produces a sequence of iterates yk+1 for the Schur
complement method and xk+1 for the null-space method (k = 0, 1, . . .). At each step of a segregated method we need
to multiply a vector by a reduced system matrix, which involves a solution of some inner system (a nonsingular system
with the matrix A or the full-rank least squares problem with the matrix B). The approximation to the corresponding
second component of the solution vector is then obtained by the back-substitution into (1) which leads to the solution
of another linear or the least squares system either with the block A or with the block B, respectively. Since we
cannot solve such problems exactly, in practice we have only the approximations to their solutions. These vectors,
however, can be interpreted as the (exact) solutions to (slightly) perturbed systems, where the perturbation matrix (or
the error matrix) measuring the inexactness of the computation changes every time when the application of inner solver
is required.

Our motivation here is to analyze what is the best accuracy we can get from such (inexact) schemes when implemented
in finite precision arithmetic (see also the connection to [20,17]). Due to the associated rounding errors we must expect
that there is a limitation to the accuracy of computed approximate solutions x̄k+1 and ȳk+1. In fact, typically the norms
of so-called true residuals f −Ax̄k+1 −Bȳk+1 and −BTx̄k+1 stagnate from certain point on. We say then that the level
of maximum attainable (or limiting) accuracy has been reached. This quantity was analyzed [11] for inexact saddle
point solvers, where in addition to our current assumptions we assume the symmetric positive-definite block A. The
reduced Schur complement and null-space projection systems are then symmetric positive (semi)definite and therefore
the energy-norm minimizing conjugate gradient (CG) method [10] or the related conjugate residual (CR) method [19]
(minimizing the residual norm) can be efficiently applied. Indeed it was shown in [11] that the bounds on the maximum
attainable accuracy depend very much on the actual implementation of back-substitution formulas for computing the
corresponding approximate solutions (see also the discussion in next two sections). In addition, all developed bounds
depend on the largest norm of the iterates (either x̄i or ȳi) during the full iteration i = 0, 1, . . . , k + 1. For CG or
CR methods (also for the steepest descent method or any other error/residual norm minimizing method—with respect
to any fixed norm), where the error norm or the residual norm, respectively, are known to converge monotonously,
these bounds depend actually on the initial approximate solutions x0 and y0. In such cases this term does not play an
important role. The situation is significantly different when considering a nonsymmetric block A. It turns out that for
general nonsingular systems the GMRES [16] method with iterates satisfying the residual minimizing property cannot
be implemented with short recurrences so that work and storage requirements per iteration would be low and roughly
constant. On the other hand, there are nonsymmetric iterative methods (such as Bi-CG [6] or CGS [18]) that are known
to produce very large intermediate approximate solutions (and residuals). The oscillation in their norms may then affect
the maximum attainable accuracy of the scheme. Our aim here is to analyze this effect for various implementations
of back-substitution in the Schur complement reduction and null-space projection method and for various iterative
methods for solving the reduced systems. In particular, we consider the residual minimizing GMRES method, the
Bi-CG, CGS and CGNE [4] methods and we illustrate our theoretical results on a simple numerical example.

Throughout the text we denote the unit roundoff by u, ‖x‖ denotes the 2-norm of a real vector x. If A is a real
(rectangular) matrix, ‖A‖ stands for the 2-norm of A and �(A) is its condition number. For the notation of a least
squares problem we use the symbol ≈, i.e., Bu ≈ v means that we are looking for the least squares solution u =
arg minw‖v − Bw‖ = B†v, where B† is the Moore–Penrose pseudoinverse of B.

2. Segregated methods for the solution of saddle point problems

The Schur complement reduction method is based on the elimination of the unknown vector x from system (1). This
leads to the system for the unknown vector y

BTA−1By = BTA−1f , (2)

where BTA−1B is negative Schur complement of the block A in the whole system matrix of (1). Assume that
the iterative method applied to the Schur complement system (2) produces approximations to y in the form
yk+1=yk+�kp

(y)
k (k=0, 1, 2, . . .). The corresponding approximate solution component xk+1 is computed using the first
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equation of (1) via

xk+1 = A−1(f − Byk+1) = xk − A−1Bp
(y)
k = xk + A−1(f − Axk − Byk+1) (3)

with x0 = A−1(f − By0). The algorithm of the Schur complement reduction method is as follows.

Algorithm 1. The Schur complement reduction method

1. choose y0 (e.g., y0 = 0)
2. solve Ax0 = f − By0

3. compute r
(y)
0 = −BTx0

4. for k = 0, 1, 2, . . . until convergence

5. compute �k and p
(y)
k

6. solve Ap
(x)
k = −Bp

(y)
k

7. compute v
(y)
k = BTp

(x)
k

8. update yk+1 = yk + �kp
(y)
k

9. update r
(y)
k+1 = r

(y)
k − �kv

(y)
k

10. compute xk+1:
(a) update xk+1 = xk + �kp

(x)
k (generic update)

(b) solve Axk+1 = f − Byk+1 (direct substitution)
(c) solve Auk+1 = f − Axk − Byk+1,

update xk+1 = xk + uk (corrected direct substitution)
11. end

In lines 6 and 7 as well as in lines 2 and 10 implementing the back-substitution (3) the multiplication of a direction
vector p

(y)
k by the Schur complement matrix −BTA−1B is performed which requires a solution of a system with the

matrix A. Since in practice these systems cannot be solved exactly, we assume that they are solved with a backward error
�, i.e., that the computed solution v̄ of the system Av=b is the exact solution of a perturbed system (A+�A)v̄=b+�b

with ‖�A‖��‖A‖ and ‖�b‖��‖b‖. To preserve a nonsingularity of A + �A we also assume that ��(A)>1. Based
on (3) here we consider three different but mathematically equivalent schemes for computation of the approximate
solution component xk+1. They are listed in line 10 of Algorithm 1. The cheapest scheme, called generic update [14,1],
computes the approximation xk+1 via only one saxpy operation (since we need the computation of the vector p

(x)
k

anyway). The second scheme, called direct substitution [5], requires the additional solution of a system with the matrix
A. Note that since this scheme depends only on the actually computed iterate yk+1, we can perform the computation
of xk+1 only when we need it (e.g., at the end of the iteration process). The third scheme is called corrected direct
substitution [3]. As in direct substitution, its formula needs to solve an additional system with A at each step (together
with two extra saxpy operations).

The null-space projection method is based on the projection of the first equation in (1) onto the null-space of the
matrix BT (denoted as N(BT)). Since the second equation of (1) ensures that the unknown x can be found in this
subspace, we look for the approximate solution xk ∈ N(BT) and we obtain the system

(I − �)A(I − �)x = (I − �)f , (4)

where I −�=I −BB† is the orthogonal projector onto N(BT). This system is solved by an iterative method producing
the sequence of iterates xk+1=xk+�kp

(x)
k (k=0, 1, . . .). Considering (1) the approximate solution yk+1 is then obtained

from xk+1 using the formulas

yk+1 = B†(f − Axk+1) = yk + B†
(
r
(x)
k − �kAp

(x)
k

)
= yk + B†(f − Axk+1 − Byk). (5)

Here we summarize the algorithm of the null-space projection method.
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Algorithm 2. The null-space projection method

1. choose an initial guess x0 ∈ N(BT) (e.g., x0 = 0)
2. solve By0 ≈ f − Ax0

3. compute r
(x)
0 = f − Ax0 − By0

4. for k = 0, 1, 2, . . . until convergence

5. compute �k and p
(x)
k ∈ N(BT)

6. set v
(x)
k = r

(x)
k − �kAp

(x)
k

7. solve Bp
(y)
k ≈ v

(x)
k

8. update xk+1 = xk + �kp
(x)
k

9. update r
(x)
k+1 = v

(x)
k − Bp

(y)
k

10. compute yk+1:

(a) update yk+1 = yk + p
(y)
k (generic update)

(b) solve Byk+1 ≈ f − Axk+1 (direct substitution)
(c) solve Bvk ≈ f − Axk+1 − Byk ,

update yk+1 = yk + vk (corrected direct substitution)
11. end

Note that in lines 6, 7 and 9 we in fact compute the update r
(x)
k+1 = r

(x)
k − �k(I − �)A(I − �)p

(x)
k , where r

(x)
k and

p
(x)
k are supposed to belong to N(BT). In lines 7 and 10 we need to solve the least squares problem with B. Since

in practice such a problem cannot be solved exactly, we assume that the computed solution w̄ of the least squares
problem Bw ≈ c is the exact solution of a perturbed problem (B + �B)w̄ ≈ c + �c, where the relative perturbations
are bounded by � with ‖�B‖��‖B‖ and ‖�c‖��‖c‖. To leave the rank of B + �B unchanged the parameter � is
supposed to satisfy the inequality ��(B)>1. Similarly as in the case of the Schur complement reduction we analyze
three different but mathematically equivalent schemes for the computation of the iterate yk+1 which is performed in
line 10. For corresponding schemes we use the same names as in the case of the Schur complement reduction method.
They have similar properties also when considering their computational costs. However, as we will see in the next
section, their numerical behavior can be completely different. The generic update was used in [7] (under the name
“residual update”). The corrected direct substitution is closely connected to the constraint preconditioning of saddle
point systems, see e.g., [13,12,15].

3. Behavior in finite precision arithmetic

In this section we recall the results on the limiting accuracy of the computed iterates x̄k+1 and ȳk+1. As we have noted
similar results were developed in [11] for the case of symmetric saddle point problems and they can be extended also for
the nonsymmetric case. Here we give several (not exactly straightforward) reformulations and due to the simplicity of
presentation we do not include their proofs and refer to the paper [11]. By bars we denote here the quantities computed
in finite precision arithmetic.

First we look at the Schur complement reduction method. Independently of the back-substitution scheme for the
approximation xk+1 we can state a bound on the gap between the true residual −BTA−1f + BTA−1Bȳk+1 and the
updated residual r̄

(y)
k+1 associated with the Schur complement system (2) as follows:

‖ − BTA−1f + BTA−1Bȳk+1 − r̄
(y)
k+1‖� O(�)�(A)

1 − ��(A)
‖A−1‖‖B‖(‖f ‖ + ‖B‖Ȳk+1), (6)

where Ȳk+1 ≡ max{‖ȳi‖|i = 0, 1, . . . , k + 1}. It is a well-known fact [8,9] that the norm of the updated residual
decreases far below the level of unit roundoff. Hence, from the estimate for the gap (6) we obtain an estimate for the
maximum accuracy level for the true Schur complement residual which ultimately stagnates on the level proportional
to the parameter �. A similar argumentation is used throughout the whole paper, where in the corresponding bound by
� we denote that r̄

(y)
k+1 (or r̄

(x)
k+1 in the case of the null-space projection method) has already converged below a level
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of unit roundoff and thus the estimate for the gap between the true and updated residuals leads to the bound for the
maximum attainable accuracy of the true one.

In the following we give bounds on the limiting accuracy level for the norms of the residuals f − Ax̄k+1 − Bȳk+1
and −BTx̄k+1, i.e., for two components of the true residual associated with the original saddle point system (1).

Generic update xk+1 = xk − �kA
−1Bp

(y)
k : Provided that the updated residual r̄

(y)
k+1 drops beyond the unit roundoff

level, the true residuals in (1) satisfy

‖f − Ax̄k+1 − Bȳk+1‖� O(�)�(A)

1 − ��(A)
(‖f ‖ + ‖B‖Ȳk+1), (7a)

‖ − BTx̄k+1‖� O(u)�(A)

1 − ��(A)
‖A−1‖‖B‖(‖f ‖ + ‖B‖Ȳk+1). (7b)

The use of the simple generic update thus leads ultimately to the second component of the residual in (1) on the level
proportional to the unit roundoff. However, the first component of the residual is proportional to the parameter � since
it accumulates the errors from solving the inner systems in line 6. Note that the maximum attainable accuracy level of
this residual depends on the whole history of the norms of the iterations ȳi (i = 0, 1, . . . , k + 1).

Direct substitution xk+1 =A−1(f −Byk+1): Provided that the updated residual r̄
(y)
k+1 drops beyond the unit roundoff

level, the true residuals in (1) satisfy

‖f − Ax̄k+1 − Bȳk+1‖� O(�)�(A)

1 − ��(A)
(‖f ‖ + ‖B‖‖ȳk+1‖), (8a)

‖ − BTx̄k+1‖� O(�)�(A)

1 − ��(A)
‖A−1‖‖B‖(‖f ‖ + ‖B‖Ȳk+1). (8b)

Now both residuals ultimately stagnate on the level proportional to the parameter �. However, the first component of
the residual depends only on the norm of the actual iterate ȳk+1.

Corrected direct substitution xk+1 = xk + A−1(f − Axk − Byk+1): Provided that the updated residual r̄
(y)
k+1 drops

beyond the unit roundoff level and for sufficiently large k�k0 the true residuals in (1) satisfy

‖f − Ax̄k+1 − Bȳk+1‖� O(u)�(A)

1 − ��(A)
(‖f ‖ + ‖B‖Ȳ (k0)

k+1), (9a)

‖ − BTx̄k+1‖� O(�)�(A)

1 − ��(A)
‖A−1‖‖B‖(‖f ‖ + ‖B‖Ȳk+1), (9b)

where Ȳ
(k0)
k+1 ≡ max{‖ȳi‖|i = k0, k0 + 1, . . . , k + 1}. This scheme gives a similar accuracy in the second component

of the residual as the direct substitution (8b) but it is significantly more accurate in the first component. Again, for k
large enough the attainable accuracy level of f − Ax̄k+1 − Bȳk+1 is proportional to unit roundoff u and it depends
only on the norm of the iterates in the last few steps ȳi (i = k0, k0 + 1, . . . , k + 1). Choosing k0 large enough makes
possible to eliminate large initial oscillations of the iterates from the quantity Ȳk+1 leading to the much optimistic bound
with Ȳ

(k0)
k+1 .

Now we continue with the results on the null-space projection method. When the norm of the updated residual r̄
(x)
k+1

falls below the unit roundoff level, we can bound (independently of the computation scheme for the iterate yk+1) the
gap between the projected residual (I − �)(f − Ax̄k+1) and the updated residual (I − �)r̄

(x)
k+1 as follows:

‖(I − �)(f − Ax̄k+1 − r̄
(x)
k+1)‖� O(u)�(B)

1 − ��(B)
(‖f ‖ + ‖A‖X̄k+1), (10)

where X̄k+1 ≡ max{‖x̄i‖|i = 0, 1, . . . , k + 1}. Hence, the residual of the projected system ultimately stagnates on the
level proportional to unit roundoff. It is clear that the size of the residual −BTx̄k+1 depends on the “quality” of the
computed direction vectors p̄

(x)
k which are the results of the projections of some vector onto N(BT). This is strongly

dependent on the method used to compute these vectors and therefore we do not consider such analysis here. We expect
that ‖ − BTx̄k+1‖�O(�)‖B‖X̄k+1 but more precise analysis should be done in every specific situation. The accuracy
measured by the residual of the projected system (4) depends also on the departure of the iterates x̄k+1 (or the direction
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vectors p̄
(x)
k+1) from N(BT) as it follows from

‖(I − �)f − (I − �)A(I − �)x̄k+1‖�‖(I − �)(f − Ax̄k+1)‖ + ‖(I − �)A�x̄k+1‖.

In the following we give bounds on the limiting accuracy of computed approximations x̄k+1 and ȳk+1 measured by
the norm of the true residual f − Ax̄k+1 − Bȳk+1.

Generic update yk+1 = yk + B†(r
(x)
k − �kAp

(x)
k ): Provided that the updated residual r̄

(x)
k+1 drops beyond the unit

roundoff level, the norm of the first component of the true residual in (1) satisfies

‖f − Ax̄k+1 − Bȳk+1‖� O(u)�(B)

1 − ��(B)
(‖f ‖ + ‖A‖X̄k+1). (11)

Thus, the simple generic update formula makes the first component of the true residual in (1) stagnating ultimately on
the level proportional to unit roundoff. Note that the maximum attainable level of this residual depends on the whole
history of the norms of the iterations x̄i (i = 0, 1, . . . , k + 1).

Direct substitution yk+1 = B†(f − Axk+1): Provided that the updated residual r̄
(x)
k+1 drops beyond the roundoff unit

level, the norm of the first component of the true residual in (1) satisfies

‖f − Ax̄k+1 − Bȳk+1‖� O(�)�(B)

1 − ��(B)
(‖f ‖ + ‖A‖‖x̄k+1‖) + O(u)�(B)

1 − ��(B)
(‖f ‖ + ‖A‖X̄k+1). (12)

In contrast to the bound for the generic update formula (11) the first component of the residual in (1) ultimately stagnates
on the level proportional to the parameter �. Note that the term proportional to � depends only on the norm of the actual
iterate x̄k+1 (not on the maximum over all i = 0, 1, . . . , k + 1).

Corrected direct substitution yk+1 = yk + B†(f − Axk+1 − Byk): Provided that the updated residual r̄
(x)
k+1 drops

beyond the unit roundoff level and for sufficiently large k, the norm of the first component of the true residual in (1)
satisfies

‖f − Ax̄k+1 − Bȳk+1‖� O(u)�(B)

1 − ��(B)
(‖f ‖ + ‖A‖X̄k+1). (13)

This scheme gives a similar accuracy as the generic update (11) but it costs one additional solution of the least squares
problem with B. For k large enough the attainable accuracy level of the norm of f − Ax̄k+1 − Bȳk+1 is proportional to
unit roundoff but in contrast to the corresponding scheme (9a) in the Schur complement reduction method it depends
on the whole history of the norms of the iterates x̄i , i = 0, 1, . . . , k + 1.

4. Numerical experiments

We have applied several nonsymmetric iterative methods for the solution of the Schur complement system (2) and the
projected system (4). Here we demonstrate our theoretical results on a simple numerical example of the nonsymmetric
system (1) with

A = tridiag (1, 10−5, −1) ∈ R100,100, B = rand (100, 50), f = (1, . . . , 1)T.

These matrices are quite well conditioned since �(A) = ‖A‖‖A−1‖ = 2.00 · 32.15 = 64.27, �(B) = ‖B‖‖B†‖ = 7.39 ·
0.75=5.55. The conditioning of matrices A and B thus has no significant effect on the behavior of considered schemes.
For each test we have chosen the zero initial guess y0 = 0 and x0 = 0 for the Schur complement reduction method and
for the null-space projection method, respectively.

As we have noted in previous section, the norms of the updated residual vectors converge usually to zero or at least
become orders of magnitude smaller than unit roundoff. It follows from our theory that in such cases the true residuals
associated with the approximate solutions x̄k+1 and ȳk+1 stagnate on the level proportional to the maximum norms
(measured either by X̄k+1 or Ȳk+1) of iterates computed during the whole iteration process. It is also a well-known
fact that for methods in which some (fixed) norm of the error or the residual decreases monotonically the maximum
attainable accuracy level depends then on the norm of the initial residual.
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One of the most straightforward methods to solve a general nonsymmetric system is the CGNE method which
transforms the solution of a general square system to the symmetric positive (semi)definite system of normal equations.
Since the CGNE method is nothing but the CG method applied to the system of normal equations, its approximate
solution minimizes the 2-norm of the error over the associated Krylov subspace. Because the condition number of
the system matrix is squared, we can expect rather slow convergence of CGNE in general. Therefore, the use of the
GMRES method is preferred where the residual norm is minimized over the entire Krylov subspace generated with the
original system matrix and corresponding right-hand side. Indeed, due to the optimality of iterates the quantities X̄k+1
and Ȳk+1 in CGNE and GMRES applied either to (2) or (4) cannot be significantly larger than the size of the initial
approximations x0, y0 and unknowns x and y. Depending on the actual implementation of (3) or (5) the maximum
attainable accuracy level is then proportional either to roundoff unit u or to the parameter � and the quantities Ȳk+1 and
X̄k+1 do not play an important role in the bounds from previous section.

Unfortunately, for general nonsymmetric systems the GMRES method cannot be implemented without full recur-
rences. In order to reduce the storage and computational work several classes of nonsymmetric iterative methods have
been proposed including very popular methods based on the nonsymmetric Lanczos process such as Bi-CG, QMR or
CGS. These methods compute the iterates and residual vectors using short recurrences keeping the computational cost
constant at each iteration step (in contrast to the linear growth for the case of GMRES). The approximate solutions of
such methods are, however, no longer optimal and their convergence behavior can be quite irregular (they even may
occasionally fail to converge). In practice the norms of iterates can become (very) large during the initial phase of
the computation until the iterates begin to converge and finally to stagnate (hopefully) near the true solution. For this
reason one cannot give an a priori bound on X̄k+1 and Ȳk+1, and indeed the algorithms for solving (2) or (4) such as the
Bi-CG or CGS method may fail to obtain small ultimate residuals even if the updated residuals converged beyond the
unit roundoff. So the possibility of large iterates may correspondingly affect the maximum attainable accuracy level
for such nonsymmetric iterative methods.

An example of these effects is shown in Fig. 1 where we consider GMRES, CGNE, Bi-CG and CGS in the Schur
complement reduction method with the inner systems solved by the direct method based on the LU factorization of
the matrix A (on the left). Similarly in Fig. 1 we report the results for the null-space projection method (on the right),
where the inner systems were solved using the Householder QR factorization of the matrix B. We have plotted the true
residual BTA−1f − BTA−1Bȳk+1 and (I − �)(f − Ax̄k+1) and the updated residuals r̄

(y)
k+1 and r̄

(x)
k+1, respectively,

for GMRES (solid lines), CGNE (dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines). As the computed
residuals converge to zero for all methods (or to the unit roundoff level in the case of the GMRES method), the true
residuals in (2) and (4) behave as indicated by the estimates (6) and (10). It is clear from Fig. 1 that for the error
norm minimizing CGNE and the residual minimizing GMRES is the maximum attainable accuracy level proportional
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Fig. 1. Relative norms of the residual BTA−1f − BTA−1Bȳk+1 in the Schur complement reduction method (on the left) and of the projected
residual (I −�)(f −Ax̄k+1) in the null-space projection method (on the right) with respect to the iteration number for GMRES (solid lines), CGNE
(dash-dotted lines), Bi-CG (dotted lines) and CGS (dashed lines) with a direct solver used for the solution of inner systems.
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Table 1
Quantities Ȳk+1 and X̄k+1 in the Schur complement method and in the null-space projection method, respectively, for GMRES, CGNE, Bi-CG
and CGS

Schur complement reduction Null-space projection

Ȳk+1 (dir. sol.) Ȳk+1 (� = 10−12) X̄k+1 (dir. sol.) X̄k+1 (� = 10−9)

GMRES 1.6155 · 101 1.6155 · 101 3.9445 · 101 3.9445 · 101

CGNE 1.6157 · 101 1.6156 · 101 3.9445 · 101 3.9445 · 101

Bi-CG 9.8556 · 104 1.5190 · 106 6.5733 · 105 6.5733 · 105

CGS 3.3247 · 107 7.7455 · 109 5.2896 · 1010 5.2896 · 1010
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Fig. 2. The Schur complement reduction method: relative norms of the residual f − Ax̄k+1 − Bȳk+1 for the Bi-CG (on the left) and for the CGS
(on the right) methods using the generic update (solid lines), the direct substitution (dashed lines) and the corrected direct substitution (dotted lines)
with the inner systems solved either by a direct solver or by an iterative method where � = 10−12.

to the unit roundoff. The quantities Ȳk+1 and X̄k+1 are comparable to the size of unknowns y and x and they do not
affect the limiting accuracy of computed approximate solutions. The situation is completely different for the Bi-CG
and CGS methods where the size of iterates grows approximately to 105 (for Bi-CG) and to 107 (for CGS) in the Schur
complement reduction method, or to 106 (for Bi-CG) and to 1011 (for CGS) in the null-space projection method (see
the corresponding Table 1). Indeed, the results confirm that the final residuals reach the levels which are roughly equal
to O(u)Ȳk+1 or O(u)X̄k+1 instead of O(u)|x| or O(u)|y|. Note that the matrices A and B are well conditioned and
thus the norms of the Schur complement matrix and the projected matrix do not affect the final accuracy level for this
example.

In Fig. 2 we report the norms of the residual f − Ax̄k+1 − Bȳk+1 in the Schur complement reduction method where
system (2) is solved by the Bi-CG method (on the left) or by the CGS method (on the right). In each plot we show the
norms of f −Ax̄k+1 −Bȳk+1 for the generic update (solid lines), the direct substitution (dashed lines) and the corrected
direct substitution (dotted lines). The inner systems are solved either by the direct solver (LU factorization) or by the
Bi-CG method with � = 10−12. The presented results confirm our estimates from the previous section. From Fig. 2 we
can see the difference between the final accuracy levels of the norm of f − Ax̄k+1 − Bȳk+1 for the generic update (7a)
and for the direct substitution (8a). In the first case, where the ultimate accuracy level depends on the maximum norm
of the iterates Ȳk+1, the residual is essentially growing due to the accumulation of the residuals in inner systems. On
the other hand, for the direct substitution (8a) the maximum attainable accuracy of the first equation in (1) is bounded
by the norm of the actual iterate ȳk+1. The norms of f − Ax̄k+1 − Bȳk+1 are somewhat oscillating which reflects the
jumps of ‖ȳk+1‖ in the initial phase of the iteration process. When the norms of ȳk+1 begin to stagnate, the norms of
f − Ax̄k+1 − Bȳk+1 do so but on much smaller level than for the generic update (7a). This difference between the
accuracy levels is even more significant for the CGS method which exhibits much larger oscillations of iterates. Note
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Fig. 3. Null-space projection method: relative norms of the residual f − Ax̄k+1 − Bȳk+1 for the Bi-CG (on the left) and for the CGS (on the right)
methods using the generic update (solid lines), the direct substitution (dashed lines) and the corrected direct substitution (dotted lines) with the inner
systems solved either by a direct solver or by an iterative method where � = 10−9.

that both for Bi-CG and CGS the residual norms for the corrected direct substitution converge to the unit roundoff level
and they are not affected by the oscillations in the initial phase.

In Fig. 3 we report the norms of the residual f − Ax̄k+1 − Bȳk+1 for the null-space projection method where the
system (4) is solved either by the Bi-CG method (on the left) or by the CGS method (on the right). In each plot we
show the norms of f − Ax̄k+1 − Bȳk+1 for the generic update (solid lines), the direct substitution (dashed lines) and
the corrected direct substitution (dotted lines). The inner systems are solved either by the direct solver (Householder
QR factorization) or by the CGLS method with � = 10−9. The results confirm our estimates discussed in the previous
section. For the direct substitution (12) the bound for the attainable accuracy level of f − Ax̄k+1 − Bȳk+1 depends
on two terms. The first term is proportional to the unit roundoff u and to the quantity X̄k+1, while the second term is
proportional to � and to the norm of the actual iterate x̄k+1.Therefore, if the convergence behavior is very dramatic,
the maximum attainable accuracy can be significantly affected by the rounding errors proportional to u dominating
the bound over the terms dependent on the parameter �. However, when the convergence behavior is quite regular the
ultimate level of the norm of f − Ax̄k+1 − Bȳk+1 does depend also on �. This can be seen in Fig. 3. The final level
of the residual f − Ax̄k+1 − Bȳk+1 in Bi-CG (with the direct substitution scheme and � = 10−9) is still dependent
on � (on the left), while the same quantity for CGS (with more irregular convergence behavior) is actually dominated
only by the rounding errors (on the right). For other two back-substitution formulas the norms of f − Ax̄k+1 − Bȳk+1
ultimately stagnates on the level proportional to u. In contrast to the Schur complement reduction method for both
Bi-CG and CGS the residuals in the corrected direct substitution (13) converge to the level of unit roundoff which is
affected, however, by the oscillations of the iterates.

5. Conclusions

In this paper we have extended the previous results of [11] developed for saddle point systems where the leading
diagonal block is symmetric positive definite. It appears that in the context of nonsymmetric saddle point systems the
situation is significantly more complicated. Indeed, the limiting (maximum attainable) accuracy of these algorithms
depends very much on intermediate iterates which may oscillate rather strongly for some methods (such as Bi-CG or
CGS) where the error or residual norms decrease far from monotonously. On the other hand, for the GMRES or CGNE
methods which are known to converge monotonously, these bounds depend actually on the initial error or residual.
In addition, we have analyzed three mathematically equivalent back-substitution formulas and studied the influence
of inexact solution of inner systems in the Schur complement reduction or in the null-space projection method onto
the limiting accuracy level of residuals associated with the computed approximate solutions. Our results confirm the
observed fact that the schemes with the direct substitution formula can be significantly less accurate than their generic
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or corrected counterparts frequently used in such computational schemes as inexact Uzawa algorithms or stationary
iterative methods with the constraint preconditioner used as smoothers.
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