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Abstract

We study a local description of composite five-branes of codimension two. The formulation is constructed 
by virtue of SL(2, Z) × SL(2, Z) monodromy associated with two-torus. Applying conjugate monodromy 
transformations to the complex structures of the two-torus, we obtain a field configuration of a defect (p, q)

five-brane. This is a composite state of p defect NS5-branes and q exotic 52
2-branes. We also obtain a 

new example of hyper-Kähler geometry. This is an ALG space, a generalization of an ALF space which 
asymptotically has a tri-holomorphic two-torus action. This geometry appears in the conjugate configuration 
of a single defect KK5-brane.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A Neveu–Schwarz five-brane, called an NS5-brane for short, plays a significant role in string 
theory. This is a soliton coupled to B-field magnetically in ten-dimensional spacetime, whereas a 
fundamental string is coupled to the B-field electrically [1,2]. A setup of two parallel NS5-branes 
with various D-branes attached with them is quite an important configuration to explore duali-
ties among supersymmetric gauge theories [3,4]. An NS5-brane is uplifted to an M5-brane in 
M-theory, which plays a central role in studying non-perturbative features of gauge theories in 
lower dimensions [5]. Applying T-duality to an NS5-brane along one transverse direction, a 
Kaluza–Klein monopole [6], or referred to as a KK5-brane, emerges. If one performs T-duality 
to the KK5-brane along another transverse direction, one finds an exotic 52

2-brane [7]. This is a 
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strange object whose background geometry is no longer single-valued. Furthermore, this strange 
object does also contribute to quantum aspects of spacetime [8].

NS5-branes and KK5-branes have been investigated from various viewpoints [9]. In partic-
ular, in order to analyze quantum stringy corrections to five-branes, the worldsheet approach to 
five-branes [2] has been developed in terms of two-dimensional supersymmetric gauge theory, 
called the gauged linear sigma model (GLSM) [10–13]. In the case of an exotic 52

2-brane, the 
situation is different. The background geometry is written by a multi-valued function because 
an exotic 52

2-brane is codimension two. These days, branes of codimension two are referred to 
as defect branes [14]. The exotic 52

2-brane is a typical example of defect five-branes. Indeed, it 
was difficult to construct both the worldsheet theory and the worldvolume theory for an exotic 
52

2-brane. However, there was a breakthrough in this topic. The GLSM for an exotic 52
2-brane 

was successfully obtained in [15]. This formulation enables us to study quantum aspects of an 
exotic 52

2-brane [16] in the same way as NS5-branes and KK5-branes [11–13]. The worldvolume 
theory for an exotic 52

2-brane was also constructed [17,18] by following the work [19].
In the analyses of five-branes, often encounter many of their configurations. A typical example 

is a defect (p, q) five-brane. This is a composite state of p defect NS5-branes and q exotic 
52

2-branes [7,8]. This is one of the most significant situations to formulate globally well-defined 
description of defect five-branes. This resembles a (p, q) seven-brane in type IIB theory [20–23]. 
It has been argued as a globally well-defined description of a defect (p, q) five-brane in terms of 
the modular J function [24,25]. This is related to a globally well-defined description of a (p, q)

seven-brane via string dualities. It should be important to find a direct derivation of a globally 
well-defined description of a defect (p, q) five-brane without the aid of seven-branes.

It is quite an important task to construct a globally well-defined description of a defect (p, q)

five-brane. In order to complete this, we study its “local” description as the first step. In this 
paper, we exhaustively utilize monodromy structures of a defect five-brane. Applying aspects of 
the monodromy to its background fields, we obtain an explicit form of a defect (p, q) five-brane. 
Even though the formulation tells us only the local structure of the five-branes, it would be a big 
step to find the globally well-defined form. In addition, we find a new example of hyper-Kähler 
geometry, as a bonus. This is called an ALG space [26,27], a generalization of an ALF space 
which asymptotically has a tri-holomorphic two-torus action. This is the conjugate geometry of 
a defect KK5-brane.

The structure of this paper is as follows. In Section 2, we review standard five-branes and 
defect five-branes. First, we exhibit their local descriptions. Next, we discuss O(2, 2; Z) mon-
odromy of the defect five-branes and mention a nongeometric feature. In Section 3, we fur-
ther study the monodromy of the defect five-branes by virtue of the equivalence O(2, 2; Z) =
SL(2, Z) × SL(2, Z). We introduce two complex structures associated with two SL(2, Z). They 
are the key ingredients to analyze composites of defect five-branes. In Section 4, we investigate 
conjugate monodromies and construct their corresponding configurations. In particular, we ob-
tain a local description of a defect (p, q) five-brane. This is a composite of p defect NS5-branes 
and q exotic 52

2-branes. We also obtain the conjugate configuration of a defect KK5-brane. This 
provides a new example of hyper-Kähler geometry as an ALG space. Section 5 is devoted to 
summary and discussions. In Appendix A, we prepare the T-duality transformation rules applied 
to the field configurations and monodromy matrices. In Appendix B, we discuss another defect 
KK5-brane which is different from the reduction of the standard KK5-brane, and analyze its 
conjugate configuration.
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2. A review of defect five-branes

2.1. Standard five-branes

In this subsection we briefly mention explicit descriptions of an H-monopole and a KK-
monopole [9]. An H-monopole is an NS5-brane smeared along one of the transverse direction, 
while a KK-monopole is a five-brane generated by T-duality along the smeared direction of the 
H-monopole. These two objects have been well investigated in the framework of GLSM [11–13], 
and doubled formalism [28,29] (see also [8,30]).

We begin with the H-monopole. In ten-dimensional spacetime, we describe the background 
metric GMN , the B-field BMN and the dilaton φ as

ds2 = ds2
012345 + H

[(
dx6)2 + (

dx7)2 + (
dx8)2 + (

dx9)2]
, (2.1a)

Bi9 = Vi, e2φ = H, (2.1b)

H = 1 + �0√
2|�x| , �0 = α′

R9
, (2.1c)

∇iH = (∇ × �V )i, �V · d�x = �0√
2

−x6dx8 + x8dx6

|�x|(|�x| + x7)
. (2.1d)

Here α′ is the Regge parameter in string theory. The NS5-brane is expanded in the 012345-direc-
tions whose spacetime metric is flat, while the transverse space of the 6789-directions is R3 ×S1. 
The vector �x lives in the transverse 678-directions R3. This five-brane is smeared along the trans-
verse 9-th compact direction whose radius is R9. This configuration is governed by a harmonic 
function H . The B-field is given by a function Vi which is subject to the monopole equation 
(2.1d), where the index i represents the spatial directions i = 6, 7, 8. We also evaluate the mass 
of the single H-monopole (see, for instance, [18]):

MH-monopole = 1

g2
st�

6
st

, (2.2)

where gst and �st = √
α′ are the string coupling constant and the string length respectively.

Next, we consider the KK-monopole, or referred to as the KK5-brane. This is obtained via 
the T-duality transformation (see Appendix A) along the smeared direction of the H-monopole 
(2.1),

ds2 = ds2
012345 + H

[(
dx6)2 + (

dx7)2 + (
dx8)2] + 1

H

[
dy9 − �V · d�x]2

, (2.3a)

BMN = 0, e2φ = 1. (2.3b)

Due to the T-duality transformation, the B-field in the H-monopole (2.1) is involved into the off-
diagonal part of the metric as the KK-vector �V . We also see that the dilaton becomes trivial. The 
transverse space of the 6789-directions becomes the Taub–NUT space, a non-compact hyper-
Kähler geometry. In order to emphasize the T-duality transformation along the 9-th direction, we 
refer to this coordinate as y9 whose radius is R̃9. Under the T-duality transformation along the 
i-th direction, the radius Ri and the coupling constant gst are changed as

Ri → �2
st = R̃i , gst → �st

gst. (2.4)

Ri Ri
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We should notice that the radius R9 is now that of the dual coordinate x9. The function H−1 in 
front of (dy9)2 in (2.3) asymptotically approaches a dimensionless value (R̃9/�st)

2 in the large 
|�x| limit. We obtain the mass of the single KK5-brane via the transformation (2.4),

MKK5 = (R9)
2

g2
st�

8
st

= 1

g2
st�

4
st(R̃9)2

. (2.5)

2.2. Defect five-branes

In the previous subsection we mentioned two standard five-branes of codimension three. It is 
interesting to consider five-branes of codimension two, i.e., the defect five-branes [14]. We can 
easily find defect five-branes from H-monopoles and KK5-branes if one of the transverse direc-
tions is further smeared.1 One of the most interesting defect five-branes is an exotic 52

2-brane. 
This has been investigated in the various viewpoints [7,25,8,15].

We first discuss a defect NS5-brane smeared along the 8-th direction of the H-monopole (2.1). 
The configuration is given as

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + H�

[(
dx8)2 + (

dx9)2]
, (2.6a)

B89 = V�, e2φ = H�, (2.6b)

H� = h + � log
μ

�
, V� = �ϑ, K� = (H�)

2 + (V�)
2, (2.6c)

x6 = � cosϑ, x7 = � sinϑ, � = �0

2πR8
. (2.6d)

Here R8 is the radius of the compact circle along the smeared 8-th direction. Now the space of 
the 89-directions becomes a two-torus T 89. We notice that the harmonic function H is reduced 
to a logarithmic function. Here μ is the renormalization scale and h is the bare quantity which 
diverges if we go infinitely away from the five-brane. In this sense the representation (2.6) is 
valid only close to the defect five-brane. We note that the mass of the single defect NS5-brane is 
the same as that of the single H-monopole (2.2):

MNS = 1

g2
st�

6
st

. (2.7)

There exist two isometries along the 8-th and 9-th directions of the defect NS5-brane (2.6). 
Taking the T-duality transformation along the 9-th direction x9 to y9, we obtain a defect 
KK5-brane,

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + H�

(
dx8)2 + 1

H�

[
dy9 − V� dx8]2

, (2.8a)

BMN = 0, e2φ = 1. (2.8b)

This is also found if the KK5-brane of codimension three (2.3) is smeared along the 8-th direc-
tion. The space of the 89-direction is also a two-torus T 89. Here the B-field and the dilaton are 
again trivial. The mass of the defect KK5-brane is also the same as that of the single KK5-brane 
(2.5):

1 The smearing procedure can be seen in [7,25,15] and so forth.
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MKK = (R9)
2

g2
st�

8
st

= 1

g2
st�

4
st(R̃9)2

. (2.9)

Here R̃9 is the radius of the physical coordinate y9 in the configuration (2.8), while R9 is now 
the radius of the dual coordinate x9.

If we take the T-duality transformation along the 8-th direction instead of the 9-th direction 
of the defect NS5-brane (2.6), we also find the configuration of another defect KK5-brane of 
different type. This will be discussed in Appendix B.

Performing the T-duality transformation along the 8-th direction x8 of the defect KK5-brane 
(2.8), we obtain the configuration of an exotic 52

2-brane [7,25,8,15],

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + H�

K�

[(
dy8)2 + (

dy9)2]
, (2.10a)

B89 = − V�

K�

, e2φ = H�

K�

. (2.10b)

The space of the 89-directions is again a two-torus T 89. Here the B-field and the dilaton are 
non-trivial as in the configuration of the defect NS5-brane (2.6). However, their features are quite 
different from the ones in (2.6). Indeed, not only the spacetime metric, but also the B-field and 
the dilaton are no longer single-valued. It is impossible to remove such features by the coordinate 
transformations or by the B-field gauge transformation. This is the reason why this configuration 
is called the “exotic” five-brane. In the next subsection we capture the exotic structure by virtue 
of monodromy. Here we also evaluate the mass of the single exotic 52

2-brane obtained from that 
of the defect KK5-brane (2.9) via the transformation rule (2.4):

ME = (R8R9)
2

g2
st�

10
st

= 1

g2
st�

2
st(R̃8R̃9)2

, (2.11)

where R̃8,9 ≡ �2
st/R8,9 are the radii of the physical coordinates y8,9, while R8,9 are now radii 

of the dual coordinates x8,9. The function H�/K� in front of (dy8)2 + (dy9)2 in (2.10) asymp-
totically approaches a dimensionless value (R̃8/�st)

2 = (R̃9/�st)
2 in the appropriately large �

region.

2.3. O(2, 2; Z) monodromy

When we go around a defect five-brane along the angular coordinate ϑ in the 67-plane, we can 
capture monodromy generated by the two-torus T 89. The analysis of monodromy is important 
to investigate the exotic structure of defect five-branes. Now we package the 89-directions of the 
metric and the B-field in a 4 × 4 matrix M [31],2

M(�,ϑ) ≡
(

Gmn − BmpGpqBqn BmpGpn

−GmpBpn Gmn

)
, m,n, . . . = 8,9. (2.12a)

The matrix M is restricted to the coset space O(2, 2)/[O(2) × O(2)] [32]. The numerator 
O(2, 2) is related to the T-duality symmetry O(2, 2; Z) on the two-torus T 89, while the de-
nominator O(2) × O(2) describes the local symmetry related to the coordinate transformations 

2 The matrix M is called the moduli matrix. These days it is also referred to as the generalized metric in the framework 
of generalized geometry and double field theory.
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and the B-field gauge transformation. When we go around a five-brane along the coordinate ϑ
from 0 to 2π , the matrix M is transformed as

M(�,2π) = ΩTM(�,0)Ω. (2.12b)

The transformation matrix Ω indicates the monodromy of the system. This monodromy takes 
valued in O(2, 2; Z). We discuss the monodromy matrix more in detail [32–35,30]. The matrix 
Ω is described as [35]

Ω =
(

A β

Θ D

)
, (2.13)

where A, D, Θ and β are 2 × 2 block matrices. The blocks A and D govern the coordinate 
transformations, while Θ gives rise to the B-field gauge transformation. If the block β exists 
non-trivially, the T-duality is involved into the geometrical structure. A configuration involving 
β in the monodromy matrix is called a T-fold [32]. Such a space is locally geometric but globally 
nongeometric.

Now we explicitly describe the matrices M and Ω of the defect five-branes. The defect 
NS5-brane (2.6) has the following matrices,

MNS(�,ϑ) = 1

H�

⎛
⎜⎜⎝

K� 0 0 V�

0 K� −V� 0
0 −V� 1 0
V� 0 0 1

⎞
⎟⎟⎠ , ΩNS =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −2π� 1 0

2π� 0 0 1

⎞
⎟⎟⎠ .

(2.14)

We note that the monodromy matrix ΩNS contains the Θ part, while it does not contain the 
β part. This is consistent with the configuration (2.6), where the 2π shift of the coordinate ϑ
is removed by the B-field gauge transformation. When we move around the defect NS5-brane 
ϑ = 0 → 2πn with n ∈ Z, the monodromy matrix is given by (ΩNS)n. This is equal to ΩNS

whose components ±2π� are replaced to ±2π�n. In the same way, we study the matrices of the 
defect KK5-brane (2.8),

MKK(�,ϑ) = 1

H�

⎛
⎜⎜⎝

K� −V� 0 0
−V� 1 0 0

0 0 1 V�

0 0 V� K�

⎞
⎟⎟⎠ , ΩKK =

⎛
⎜⎜⎝

1 0 0 0
−2π� 1 0 0

0 0 1 2π�

0 0 0 1

⎞
⎟⎟⎠ .

(2.15)

The monodromy matrix ΩKK does not contain the Θ part and the β part. This is also consistent 
with the configuration (2.8), where the 2π shift of the coordinate ϑ can be eliminated by the 
coordinate transformations. However, the matrices of the exotic 52

2-brane (2.10),

ME(�,ϑ) = 1

H�

⎛
⎜⎜⎝

1 0 0 −V�

0 1 V� 0
0 V� K� 0

−V� 0 0 K�

⎞
⎟⎟⎠ , ΩE =

⎛
⎜⎜⎝

1 0 0 −2π�

0 1 2π� 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

(2.16)

indicates the exotic feature because the monodromy matrix ΩE contains the β part. Indeed, in 
the configuration (2.10), the 2π shift of the coordinate ϑ cannot be removed by the coordinate 
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transformations and the B-field gauge transformation. This shift is generated by the T-duality 
symmetry along the two-torus T 89. Hence we can interpret that the background geometry of the 
exotic 52

2-brane is a typical example of T-folds [32].
Monodromy is quite useful to investigate (non)geometric aspects. Furthermore, if we apply 

the equivalence O(2, 2; Z) = SL(2, Z) × SL(2, Z) to the analysis of monodromy, we can explore 
the geometries of defect five-branes in a deeper level. In the next two sections we will care-
fully analyze the SL(2, Z) × SL(2, Z) monodromy and construct new configurations of defect 
five-branes.

3. SL(2, ZZZ) × SL(2, ZZZ) monodromy of defect five-branes

In the previous section we studied the defect five-branes and their O(2, 2; Z) monodromy 
structures. In this section we apply the equivalence O(2, 2; Z) = SL(2, Z) × SL(2, Z) to mon-
odromy of the defect five-branes [8].

3.1. Two complex structures

The O(2, 2; Z) monodromy is generated by the two-torus T 89. Let us further study the mon-
odromy by the equivalent group SL(2, Z) × SL(2, Z). Each SL(2, Z) should also be governed by 
the structure of T 89. Associated with these two SL(2, Z), we introduce two complex structures τ
and ρ. τ is the complex structure of the two-torus T 89, while ρ is defined in terms of the B-field 
and the metric on T 89 in such a way as [8],

ρ ≡ B89 + i
√

detGmn. (3.1a)

In terms of the two complex structures, we can represent the metric Gmn and the B-field Bmn on 
the two-torus T 89, and the dilaton φ,

Gmn = ρ2

τ2

(
1 τ1

τ1 |τ |2
)

, B89 = ρ1, e2φ = ρ2, (3.1b)

where τ = τ1 + iτ2 and ρ = ρ1 + iρ2. Then, instead of the analysis of the matrix M(�, ϑ), we 
will investigate the monodromy structures of the two complex structures τ and ρ of the defect 
five-branes. The configuration of the dilaton is also fixed in order to satisfy the equations of 
motion of supergravity theories [8].

3.2. Monodromy matrices

Let us first analyze the SL(2, Z)τ × SL(2, Z)ρ monodromy of the defect NS5-brane. Plugging 
the configuration (2.6) into the formulation (3.1), we can read off the explicit forms of the two 
complex structures,

τ = i, ρ = V� + iH� = ih + i� log(μ/z), (3.2)

where we defined the complex coordinate z ≡ �eiϑ in the 67-plane. When we go around the 
defect NS5-brane z → ze2π i, the complex structure ρ has the monodromy as ρ → ρ + 2π�, 
whilst τ is invariant. The SL(2, Z) descriptions of the monodromy are

τ → τ ′ = τ, ΩNS
τ ≡

(
1 0
0 1

)
, (3.3a)
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ρ → ρ′ = ρ + 2π�, ΩNS
ρ ≡

(
1 2π�

0 1

)
. (3.3b)

It turns out that the two-torus T 89 is not deformed under the monodromy, while the field config-
uration of B89 is changed. However, this change can be removed by the B-field gauge transfor-
mation. Then the configuration (2.6) is invariant under the monodromy transformation. This is 
consistent with the previous analysis in terms of ΩNS (2.14).

Next, we discuss the SL(2, Z)τ ×SL(2, Z)ρ monodromy of the defect KK5-brane. Substituting 
the configuration (2.8) into (3.1), the two complex structures are given as

τ = −V� + iH�

K�

= i

h + � log(μ/z)
, ρ = i. (3.4)

Now ρ becomes trivial. Here it is convenient to introduce λ = −1/τ = V� + iH�. Under the shift 
z → ze2π i, the complex structure λ is transformed as λ → λ′ = λ + 2π�, while ρ is invariant. 
Their SL(2, Z) representations are given as follows,

τ → τ ′ = τ

−2π�τ + 1
, ΩKK

τ ≡
(

1 0
−2π� 1

)
, (3.5a)

ρ → ρ′ = ρ, ΩKK
ρ ≡

(
1 0
0 1

)
. (3.5b)

This implies that the complex structure of the two-torus T 89 is changed under the monodromy, 
while the B-field and the determinant of the metric is invariant. However, we can remove the 
change of the complex structure by the coordinate transformations. This is also consistent with 
the previous discussion in terms of ΩKK (2.15).

Finally, we study the SL(2, Z)τ × SL(2, Z)ρ monodromy of the exotic 52
2-brane. Applying the 

configuration (2.10) to the complex structures (3.1), we can read off the following forms,

τ = i, ρ = −V� + iH�

K�

= i

h + � log(μ/z)
. (3.6)

Again the complex structure of the two-torus T 89 becomes trivial. For convenience, we introduce 
ω ≡ −1/ρ = V� + iH�. Under the shift z → ze2π i, we see that ω has the monodromy ω → ω′ =
ω + 2π�, while τ is invariant. The SL(2, Z) matrix forms of the monodromy are

τ → τ ′ = τ, ΩE
τ ≡

(
1 0
0 1

)
, (3.7a)

ρ → ρ′ = ρ

−2π�ρ + 1
, ΩE

ρ ≡
(

1 0
−2π� 1

)
. (3.7b)

This behavior implies that the monodromy transformation does not change the complex struc-
ture of the two-torus, while the field configuration is changed. Furthermore, caused by the form 
ρ′ = B ′

89 + i
√

detG′
mn, this change cannot be eliminated completely in terms of the coordinate 

transformations and the B-field gauge transformation. As discussed in the analysis of ΩE, this is 
nothing but the aspect of T-fold.

In the next section we will investigate conjugates of SL(2, Z)τ × SL(2, Z)ρ monodromy. We 
will find various new configurations of defect five-branes as their composite states.
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4. Conjugate configurations

In type IIB theory, there exists a D7-brane which also has SL(2, Z) monodromy generated by 
the combination of the dilaton and the axion [20]. Applying a generic SL(2, Z) transformation to 
the monodromy, we can find a conjugate system of the D7-brane [21,22]. In the same analogy, 
a conjugate of an exotic 52

2-brane has been discussed in [25,8]. In this section, we develop the 
analyses to conjugate configurations of the defect five-branes. To do this, we prepare a set of 
generic SL(2, Z)τ × SL(2, Z)ρ matrices,

Uτ ≡
(

s′ r ′
q ′ p′

)
, Uρ ≡

(
s r

q p

)
,

s′p′ − r ′q ′ = 1,

sp − rq = 1.
(4.1a)

By using Uτ,ρ , we construct a set of conjugate monodromy matrices Ω̃τ,ρ ,

Ωτ,ρ → Ω̃τ,ρ = U−1
τ,ρΩτ,ρUτ,ρ. (4.1b)

Simultaneously, we transform the two complex structures τ and ρ in terms of Uτ,ρ to new com-
plex structures ̃τ and ρ̃. Plugging them into (3.1), we can read of new field configurations G̃mn, 
B̃89 and φ̃.

4.1. Conjugate configuration of defect NS5-brane

First, we investigate a conjugate configuration of the defect NS5-brane (2.6). Transforming 
the original monodromy matrices ΩNS

τ and ΩNS
ρ (3.3) in terms of the rule (4.1), the conjugate 

monodromy matrices can be obtained as

Ω̃NS
τ =

(
1 0
0 1

)
, Ω̃NS

ρ =
(

1 + 2π�pq 2π�p2

−2π�q2 1 − 2π�pq

)
. (4.2)

Here Ω̃NS
τ is again trivial because the original complex structure τ is trivial τ = i. Compared 

Ω̃NS
ρ with ΩNS

ρ (3.3) and ΩE
ρ (3.7), it turns out that the conjugate system is a composite of p

defect NS5-branes and q exotic 52
2-branes [25,8]. Associated with the transformation rule (4.1), 

we also arrange the complex structure ρ by means of U−1
ρ ,

U−1
ρ =

(
p −r

−q s

)
, ρ → ρ̃ ≡ pρ − r

−qρ + s
. (4.3)

Since the monodromy of the original ρ is ρ → ρ′ = ρ + 2π� under the shift z → ze2π i, then 
the new complex structure ρ̃ is transformed as

ρ̃ → ρ̃ ′ = pρ′ − r

−qρ′ + s
= (1 + 2π�pq)ρ̃ + 2π�p2

−2π�q2ρ̃ + (1 − 2π�pq)
. (4.4)

This indicates that the new complex structure ρ̃ reproduces the SL(2, Z)ρ conjugate monodromy 
Ω̃NS

ρ (4.2). Then it turns out that ρ̃ denotes a conjugate configuration of the defect NS5-brane 
(2.6).

We would like to construct a local expression of the conjugate configuration. Substituting the 
conjugate complex structures τ and ρ̃ (4.3) into (3.1), we can read off the field configuration,
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G̃mn = H�

s2 − 2qsV� + q2K�

δmn, m,n = 8,9, (4.5a)

B̃89 = −rs + (ps + qr)V� − pqK�

s2 − 2qsV� + q2K�

, (4.5b)

e2φ̃ = H�

s2 − 2qsV� + q2K�

. (4.5c)

This is a generic form of a composite system of p defect NS5-branes and q exotic 52
2-branes 

under the constraint sp − qr = 1. The system of a single defect NS5-brane can be realized by 
setting (p, q, r, s) = (1, 0, 0, 1), while the system of a single exotic 52

2-brane can be expressed 
by (p, q, r, s) = (0, 1, −1, 0).

In a generic case of non-vanishing p and q , the expression (4.5) is rather lengthy. In order 
to reduce the expression of the generic (p, q) configuration, we rewrite the conjugate complex 
structure ρ̃,

ρ̃ = p(V� + iH�) − r

−q(V� + iH�) + s
= −p

q
− 1

q[(−s + qV�) + iqH�] . (4.6)

Here we removed r by using sp − qr = 1. Now s is no longer constrained by (p, q), then we set 
s to zero without loss of generality,

ρ̂ ≡ −p

q
− 1

q2(V� + iH�)
. (4.7)

This reduction can be interpreted as the coordinate transformation of the angular coordinate ϑ . 
For convenience, we further introduce a new expression ω̂ ≡ −1/(ρ̂ + p

q
). This is transformed 

as ω̂ → ω̂ ′ = ω̂ + 2π�q2 under the shift z → ze2π i. Then we can read off the monodromy of 
ρ̂ = −1/ω̂ in such a way as

ρ̂ → ρ̂ ′ = (1 + 2π�pq)ρ̂ + 2π�p2

−2π�q2ρ̂ + (1 − 2π�pq)
. (4.8)

It turns out that the reduced complex structure ρ̂ again reproduces the conjugate monodromy 
matrix Ω̃NS

ρ (4.3). Throughout the above reduction, the other complex structure τ is unchanged. 
Finally, plugging τ = i and ρ̂ (4.7) into the definition (3.1), we explicitly obtain the local de-
scription of a defect (p, q) five-brane, i.e., the configuration of p defect NS5-branes and q exotic 
52

2-branes,

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + H�

q2K�

[(
dx8)2 + (

dx9)2]
, (4.9a)

B̂89 = −p

q
− V�

q2K�

, e2φ̂ = H�

q2K�

. (4.9b)

Of course, this configuration satisfies the equations of motion of supergravity theories. In the 
previous work [36], we could not find the local description (4.9). At that time we did not have 
any ideas how to use the monodromy transformation in a suitable way to describe a composite 
of defect five-branes. The description (4.9) would enable us to construct a correct GLSM for 
a defect (p, q) five-brane. Thus the configuration (4.9) is indeed the one which we wanted to 
describe in [36].

We argue the mass of the defect (p, q) five-brane (4.9). In this case the metric and the dilaton 
are quite similar to those of the single exotic 52-brane (2.10). The integer p, the number of defect 
2
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NS5-branes, only appears in the constant term of the B-field (4.9). Since the mass of defect 
five-branes can be evaluated in terms of the metric and the dilaton under a certain assumption 
(see Section 4 of [8]), we guess that the mass of p defect NS5-branes in the system (4.9) is 
negligible. This is indeed true, as far as we concern the supergravity regime where the dilaton is 
very small

g2
st = e2φ̂ = H�

q2K�

	 1. (4.10)

Now the system (4.9) has the physical coordinates x8,9 whose radii are R8,9. They are related to 
the function H�/(q

2K�),(
R8

�st

)2

=
(

R9

�st

)2

= H�

q2K�

, (4.11)

in the appropriately large � region. This implies that the parameters R8,9/�st are very small in the 
supergravity regime. In terms of the radii of the physical coordinates of (4.9), we can evaluate 
the mass of a defect NS5-branes (2.7) and an exotic 52

2-brane (2.11) in such a way as

MNS = 1

g2
st�

6
st

, ME = 1

g2
st�

2
st(R8R9)2

,
MNS

ME
= (R8R9)

2

�4
st

=
(

H�

q2K�

)2

	 1.

(4.12)

Hence it turns out that the mass of p defect NS5-branes in the composite system (4.9) is negligi-
ble.

There is a comment. The conjugate complex structure ρ̂ (4.7) contains a constant term −p/q . 
Compared this with (3.1), we think that this constant might be eliminated by the B-field gauge 
symmetry. However, if the term −p/q in (4.7) is gauged away, the monodromy matrix Ω̃NS

ρ

is reduced to (ΩE
ρ )q , which no longer represents a composite system of defect NS5-branes and 

exotic 52
2-branes.

4.2. Conjugate configuration of defect KK5-brane

Next, we consider a conjugate of the defect KK5-brane (2.8). Applying the transformation 
rules (4.1) to the monodromy matrices ΩKK

τ and ΩKK
ρ (3.5), the conjugate monodromy matrices 

are given as

Ω̃KK
τ =

(
1 + 2π�r ′s′ 2π�r ′ 2

−2π�s′ 2 1 − 2π�r ′s′
)

, Ω̃KK
ρ =

(
1 0
0 1

)
. (4.13)

We note that the conjugate monodromy matrix Ω̃KK
ρ is identical with ΩKK

ρ because the complex 
structure ρ is trivial (3.4). Compared Ω̃KK

τ with the monodromy matrices ΩKK
τ (3.5) and ΩAK

τ

(B.5), the conjugate monodromy matrix Ω̃KK
τ denotes that the system is a composite of −s′

defect KK5-branes (2.8) and r ′ defect KK5-branes of another type (B.1). Let us focus on the 
complex structure τ . This is also changed in terms of U−1

τ in such a way as

U−1
τ =

(
p′ −r ′

−q ′ s′
)

, τ → τ̃ ≡ p′τ − r ′

−q ′τ + s′ . (4.14)

Since the original τ is transformed as in (3.5) under the shift z → ze2π i, the new complex struc-
ture ̃τ is transformed,



12 T. Kimura / Nuclear Physics B 893 (2015) 1–20
τ̃ → τ̃ ′ = (1 + 2π�r ′s′)̃τ + 2π�r ′ 2

−2π�s′ 2τ̃ + (1 − 2π�r ′s′)
. (4.15)

This provides the same conjugate monodromy matrix Ω̃KK
τ (4.13). Plugging ̃τ (4.14) and ρ = i

into the definition (3.1), we find

G̃88 = q ′ 2 + 2q ′s′V� + s′ 2K�

H�

, (4.16a)

G̃89 = G̃98 = −p′q ′ + (p′s′ + r ′q ′)V� + r ′s′K�

H�

, (4.16b)

G̃99 = p′ 2 + 2p′r ′V� + r ′ 2K�

H�

, (4.16c)

B̃MN = 0, e2φ̃ = 1. (4.16d)

This is a generic form of a composite system of −s′ defect KK5-branes and r ′ defect KK5-branes 
of another type. The system of the single defect KK5-brane (2.8) is obtained by setting 
(p′, q ′, r ′, s′) = (−1, 0, 0, −1), while the configuration of the single defect KK5-brane of an-
other type (B.1) is realized if (p′, q ′, r ′, s′) = (0, −1, 1, 0).

The expression (4.16) is lengthy to describe the generic configuration of non-vanishing pa-
rameters (−s′, r ′). Let us find the simple form of the generic (−s′, r ′). We introduce ̃λ = −1/τ̃ . 
Applying the constraint s′p′ − q ′r ′ = 1 to this, we obtain

λ̃ = s′(V� + iH�) + q ′

r ′(V� + iH�) + p′ = s′

r ′ − 1

r ′[(p′ + r ′V�) + ir ′H�] . (4.17a)

Now the parameter p′ is no longer constrained by the other parameters (−s′, r ′). Then we can 
set p′ = 0 by the coordinate transformation of ϑ ,

λ̂ = − 1

τ̂
≡ s′

r ′ − 1

r ′ 2(V� + iH�)
. (4.18)

We check the monodromy of the new complex structure τ̂ . It is convenient to introduce ζ̂ ≡
−1/(̂λ − s′

r ′ ). Since this is transformed as ̂ζ → ζ̂ ′ = ζ̂ + 2π�r ′ 2 under the shift z → z e2π i, we 
can immediately read off the transformation of ̂τ = −1/̂λ in such a way as

τ̂ → τ̂ ′ = (1 + 2π�r ′s′)̂τ + 2π�r ′ 2

−2π�s′ 2τ̂ + (1 − 2π�r ′s′)
. (4.19)

This guarantees that the new complex structure τ̂ also generates the conjugate monodromy 
(4.13). Plugging τ̂ (4.18) and ρ = i into the definition (3.1), we find the local expression of 
the metric, the B-field and the dilaton for the composite of −s′ defect KK5-branes (2.8) and r ′
defect KK5-branes of another type (B.1),

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + λ̂2

(
dx8)2 + 1

λ̂2

[
dy9 − λ̂1 dx8]2

, (4.20a)

B̂MN = 0, e2φ̂ = 1, (4.20b)

λ̂1 = − τ̂1

|̂τ |2 = s′

r ′ − V�

r ′ 2K�

, λ̂2 = τ̂2

|̂τ |2 = H�

r ′ 2K�

. (4.20c)

This configuration also satisfies the equations of motion of supergravity theories. We note that 
the transverse space of 6789-directions in (4.20) is Ricci-flat. Since this configuration preserves 
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a half of supersymmetry, the transverse space is also hyper-Kähler. Indeed this belongs to a class 
of ALG spaces [26,27].3

The conjugate system can also be obtained from the conjugate configuration of the defect 
NS5-brane (4.9) via the T-duality transformation along the 9-th direction with relabeling (p, q) =
(−s′, r ′). The exchange of the conjugate complex structures (τ, ̂ρ) in (4.9) and (ρ, ̂λ) in (4.20)
also occurs.

We notice that the constant term s′/r ′ in the conjugate complex structure τ̂ (4.18) should 
not be eliminated in terms of the coordinate transformations. If we remove s′/r ′, the complex 
structure produces the monodromy matrix (ΩAK

τ )r
′

(B.5) rather than the conjugate monodromy 
matrix Ω̃KK

τ (4.13).

4.3. Conjugate configuration of exotic 52
2-brane

Finally, we investigate a conjugate system of the exotic 52
2-brane (2.10). The SL(2, Z)τ ×

SL(2, Z)ρ monodromy matrices (3.7) are transformed by using (4.1),

Ω̃E
τ =

(
1 0
0 1

)
, Ω̃E

ρ =
(

1 + 2π�rs 2π�r2

−2π�s2 1 − 2π�rs

)
. (4.21)

Since the complex structure τ (3.6) is trivial, the conjugate monodromy matrix Ω̃E
τ coincides 

with the original one ΩE
τ . On the other hand, the conjugate monodromy matrix Ω̃E

ρ implies that 
the conjugate system consists of r defect NS5-branes and −s exotic 52

2-branes. In order to obtain 
an explicit field configuration of the conjugate system, we also transform the complex structure ρ,

U−1
ρ =

(
p −r

−q s

)
, ρ → ρ̃ ≡ pρ − r

−qρ + s
. (4.22)

Recall that the original ρ is transformed as in (3.7) under z → ze2π i. Then the new complex 
structure ρ̃ is also transformed as

ρ̃ → ρ̃ ′ = (1 + 2π�rs)ρ̃ + 2π�r2

−2π�s2ρ̃ + (1 − 2π�rs)
. (4.23)

This reproduces the conjugate monodromy matrix Ω̃E
ρ (4.21). The complex structures τ and ρ̃

gives rise to a conjugate configuration of the metric, the B-field and the dilaton,

G̃mn = H�

q2 + 2qsV� + s2K�

δmn, m,n = 8,9, (4.24a)

B̃89 = −pq + (ps + rq)V� + rsK�

q2 + 2qsV� + s2K�

, (4.24b)

e2φ̃ = H�

q2 + 2qsV� + s2K�

. (4.24c)

This contains the case of the single exotic 52
2-brane (2.10) by setting (p, q, r, s) = (−1, 0, 0, −1)

and the case of the single defect NS5-brane (2.6) by (p, q, r, s) = (0, −1, 1, 0). However, in the 
case of a generic (r, −s) 
= (0, 0), the expression (4.24) is cumbersome. Fortunately, as in the 
previous configurations, we can reduce (4.24). For convenience, let us introduce ω̃ = −1/ρ̃,

3 The transverse space of the defect KK5-brane (2.8) is also an ALG space.
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ω̃ = s(V� + iH�) + q

r(V� + iH�) + p
= s

r
− 1

r[(p + rV�) + irH�] , (4.25a)

where we used sp − qr = 1 to remove q . Since the parameter p is now arbitrary without any 
constraints, we can set the following form by the coordinate transformation of ϑ ,

ω̂ = − 1

ρ̂
≡ s

r
− 1

r2(V� + iH�)
. (4.26)

We check the monodromy of the new complex structure ρ̂. For convenience, we define ζ̂ ≡
−1/(ω̂ − s

r
). This is transformed as ̂ζ → ζ̂ ′ = ζ̂ + 2π�r2 under the shift z → ze2π i. Then we can 

read off the monodromy of ρ̂ = −1/ω̂ in such a way as

ρ̂ → ρ̂ ′ = (1 + 2π�rs)ρ̂ + 2π�r2

−2π�s2ρ̂ + (1 − 2π�rs)
. (4.27)

Thus we confirm that the new complex structure ρ̂ is subject to the conjugate monodromy (4.21). 
Applying τ = i and ρ̂ (4.26) to the definition (3.1), it turns out that the conjugate configuration 
is described as

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + ω̂2

|ω̂|2
[(

dy8)2 + (
dy9)2]

, (4.28a)

B̂89 = − ω̂1

|ω̂|2 , e2φ̂ = ω̂2

|ω̂|2 , (4.28b)

ω̂1 = − ρ̂1

|ρ̂|2 = s

r
− V�

r2K�

, ω̂2 = ρ̂2

|ρ̂|2 = H�

r2K�

. (4.28c)

This is the local expression of a defect (r, −s) five-brane, i.e., the composite of r defect 
NS5-branes (2.6) and −s exotic 52

2-branes. This is similar to the previous form (4.9), while the 
roles of conjugate complex structures are different. Indeed, the configuration (4.28) is generated 
via the T-duality transformations along the 8-th and 9-th direction of (4.9), with relabeling (p, q)

to (−s, r). Simultaneously, the complex structures (τ, ̂ρ) in (4.9) are changed to (τ, ̂ω) in (4.28).
We again argue the mass of the composite system (4.28). Parallel to the previous discussion 

in Subsection 4.1, the dilaton is very small in the supergravity regime,

g2
st = e2φ̂ = ω̂2

|ω̂|2 	 1. (4.29)

This value also expresses the property of the radii R̃8,9 of the physical coordinates y8,9 in (4.28),(
R̃8

�st

)2

=
(

R̃9

�st

)2

= ω̂2

|ω̂|2 	 1, (4.30)

in the appropriately large � region. In this regime, the mass of the single defect NS5-brane and 
the single exotic 52

2-brane are described as

MNS = 1

g2
st�

6
st

, ME = 1

g2
st�

2
st(R̃8R̃9)2

,
MNS

ME
= (R̃8R̃9)

2

�4
st

=
(

ω̂2

|ω̂|2
)2

	 1. (4.31)

Then it turns out that the mass of −s exotic 52
2-branes is dominant and the mass of r defect 

NS5-branes is negligible.
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5. Summary and discussions

In this paper, we studied the SL(2, Z)τ × SL(2, Z)ρ monodromy structures of various defect 
five-branes. We also investigated the conjugate configurations of them by virtue of the conjugate 
monodromy matrices and the corresponding complex structures. Once we found the explicit 
forms of the complex structures which reproduce the conjugate monodromies, we immediately 
constructed the field configurations of the conjugate system. In this process we constructed the 
metric, the B-field and the dilaton for the defect (p, q) five-branes, i.e., the composite of p defect 
NS5-branes and q exotic 52

2-branes, in a concrete manner. Since the configuration of the single 
defect five-brane is not globally well-defined, the expression of the composite system would be 
quite helpful to find the globally well-defined formulation of defect five-branes, as in the case 
of seven-branes in type IIB theory. If we find the global description for defect five-branes, we 
will understand the importance of the exotic 52

2-brane in a deeper level. In this work we also 
obtained a new example of hyper-Kähler geometry (4.20) as the conjugate system of the defect 
KK5-branes. This is an ALG space, a generalization of an ALF space which asymptotically has a 
tri-holomorphic two-torus T 89 action [26,27]. Since this is originated from the Taub–NUT space 
via the smearing and the conjugating, we can interpret this as the conjugated defect Taub–NUT 
space.

There are several discussions. First, all of the conjugated configurations represent the com-
posites of coincident defect five-branes. In order to find a further general configuration where 
each defect five-brane is located at arbitrary point in the 67-plane, we should introduce new pa-
rameters into the system. In the case of multi-centered five-branes of codimension three, we have 
already known the harmonic function,

H = 1 + �0√
2|�x| → 1 +

∑
k

�0√
2|�x − �qk|

, (5.1)

where �qk is the position of the k-th five-brane in the 678-directions. In the case of defect five-
branes, however, it is difficult to recognize the sum of the harmonic functions for the single 
defect five-brane as the one for multiple defect five-branes. This is because the individual har-
monic function involves the renormalization scale μ. Then we have to control many number of 
scale parameters in order that the harmonic function is well-defined in the whole region of the 
67-plane. This estimate is too naive to describe a number of separated defect five-branes. In order 
to acquire the consistent form for such a configuration, we have to find the globally well-defined 
function as the modular invariant function for seven-branes in type IIB theory. Nevertheless, 
the local descriptions of composite defect five-branes would be helpful to construct the globally 
well-defined function.

Apart from the above current difficulty, we can still study other topics. (i) In the previous 
work [36], we tried to construct the GLSM for two defect five-branes. Since we obtained the 
explicit configuration for them in the current work, it can be possible to find the improved version 
of [36]. In particular, it would be quite interesting to construct string worldsheet theories for 
ALG spaces related to the previous work [15], by virtue of the T-duality transformation rules on 
the GLSM [37,38]. (ii) In the system of the defect (p, q) five-brane (4.9), the 9-th direction is 
compactified and smeared. Let us consider the string worldsheet instanton corrections along the 
9-th direction. From the viewpoint of the defect NS5-branes, the worldsheet instanton corrections 
to the 9-th direction can be interpreted as the KK momentum corrections [11–13]. On the other 
hand, from the viewpoint of the exotic 52

2-branes, the worldsheet instanton corrections can be 
understood as the winding corrections to the configuration [16]. Then, how should we interpret 
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the worldsheet instanton corrections to the defect (p, q) five-brane? This is quite a fascinating 
question. (iii) There are various hyper-Kähler geometries. If some of them coincide with the 
conjugate configurations discussed in this paper, we would be able to find a novel relation among 
various five-branes from the (non)geometrical viewpoint [18,39].
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Appendix A. T-duality

In this appendix we exhibit the T-duality transformations in two ways. The first expression is 
the Buscher rule [40] of the T-duality transformation along the n-th direction,

G′
MN = GMN − GnMGnN − BnMBnN

Gnn

, G′
nN = BnN

Gnn

, G′
nn = 1

Gnn

, (A.1a)

B ′
MN = BMN + 2Gn[MBN ]n

Gnn

, B ′
nN = GnN

Gnn

, (A.1b)

φ′ = φ − 1

2
log(Gnn). (A.1c)

In the main part of this paper we frequently utilize this rule. The explicit form is necessary for 
avoiding any sign ambiguities from involution of the B-field.

The second expression is a part of the monodromy transformations (2.12). The T-duality trans-
formations along the 8-th and 9-th directions are represented in terms of 4 × 4 matrices U8,9 in 
such a way as

U8 =
(

1 − T8 −T8
−T8 1 − T8

)
, T8 ≡

(
1 0
0 0

)
, (A.2a)

U9 =
(

1 − T9 −T9
−T9 1 − T9

)
, T9 ≡

(
0 0
0 1

)
, (A.2b)

U89 =
(

1 − T8 − T9 −T8 − T9
−T8 − T9 1 − T8 − T9

)
= U8U9 = U9U8. (A.2c)

In terms of these matrices, we can see the T-duality relations among the monodromy matrices 
ΩNS, ΩKK and ΩE,

ΩKK = UT
9 ΩNSU9, ΩE = UT

8 ΩKKU8, ΩE = UT
89Ω

NSU89. (A.3)

The matrix description of the T-duality transformations can be also seen in [41,25], and so forth.

Appendix B. Another configuration of defect KK5-brane

In this appendix, we discuss another defect KK5-brane of different type.4 If we take T-duality 
along the 8-th direction of the defect NS5-brane (2.6), we obtain the following configuration,

4 We note that the GLSM formulation is mentioned in Appendix B of [15].
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ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + H�

(
dx9)2 + 1

H�

[
dy8 + V� dx9]2

, (B.1a)

BMN = 0, e2φ = 1. (B.1b)

This is similar to the defect KK5-brane (2.8), while the structure of the two-torus T 89 is different. 
In order to study the structure of the defect KK5-brane (B.1), we analyze the matrix MAK and 
the O(2, 2; Z) monodromy matrix ΩAK defined in (2.12),

MAK(�,ϑ) = 1

H�

⎛
⎜⎜⎝

1 V� 0 0
V� K� 0 0
0 0 K� −V�

0 0 −V� 1

⎞
⎟⎟⎠ , ΩAK =

⎛
⎜⎜⎝

1 2π� 0 0
0 1 0 0
0 0 1 0
0 0 −2π� 1

⎞
⎟⎟⎠ .

(B.2)

The O(2, 2; Z) monodromy matrix ΩAK is related to that of the defect NS5-brane ΩNS (2.14)
and the exotic 52

2-brane ΩE (2.16) under the T-duality transformations (A.2),

ΩAK = UT
8 ΩNSU8, ΩE = UT

9 ΩAKU9. (B.3)

We can also discuss the SL(2, Z)τ ×SL(2, Z)ρ monodromy matrices by virtue of the two-torus 
T 89 and two complex structures τ and ρ defined by (3.1). Plugging (B.1) into (3.1), we find

τ = V� + iH� = ih + i� log(μ/z), ρ = i. (B.4)

Their monodromy transformations by the shift z → z e2π i are given as

τ → τ ′ = τ + 2π�, ΩAK
τ ≡

(
1 2π�

0 1

)
, (B.5a)

ρ → ρ′ = ρ, ΩAK
ρ ≡

(
1 0
0 1

)
. (B.5b)

This is similar to the monodromy matrices of the defect KK5-brane (3.5). The slight difference 
of ΩAK

τ from ΩKK
τ originates in the difference of the involution of the KK-vector �V into the 

off-diagonal part of the metric on the two-torus.
Let us now study the conjugate system by transformations of the monodromy matrices via 

(4.1),

Ω̃AK
τ =

(
1 + 2π�p′q ′ 2π�p′ 2

−2π�q ′ 2 1 − 2π�p′q ′
)

, Ω̃AK
ρ =

(
1 0
0 1

)
. (B.6)

Simultaneously, we also transform the complex structure τ in the following way,

U−1
τ =

(
p′ −r ′

−q ′ s′
)

, τ → τ̃ ≡ p′τ − r ′

−q ′τ + s′ . (B.7)

Since the original τ is transformed as τ → τ ′ = τ + 2π� under the shift z → ze2π i, then we can 
read off the monodromy of the new complex structure ̃τ in such a way as

τ̃ → τ̃ ′ = p′τ ′ − r ′

−q ′τ ′ + s′ = (1 + 2π�p′q ′)̃τ + 2π�p′ 2

−2π�q ′ 2τ̃ + (1 − 2π�p′q ′)
. (B.8)

This indicates that ̃τ is also subject to the conjugate monodromy (B.6). Then we find the generic 
form of the metric, the B-field and the dilaton for the composite configuration of q ′ defect 
KK5-branes (2.8) and p′ defect KK5-branes (B.1),
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G̃88 = s′ 2 − 2q ′s′V� + q ′ 2K�

H�

, (B.9a)

G̃89 = G̃98 = − r ′s′ − (p′s′ + r ′q ′)V� + p′q ′K�

H�

, (B.9b)

G̃99 = r ′ 2 − 2p′r ′V� + p′ 2K�

H�

, (B.9c)

B̃MN = 0, e2φ̃ = 1. (B.9d)

We note that the single defect KK5-brane (2.8) is realized by setting (p′, q ′, r ′, s′) = (0, 1, −1, 0), 
and the single defect KK5-brane of another type (B.1) is obtained by (p′, q ′, r ′, s′) = (1, 0, 0, 1). 
However, the expression (B.9) is redundant for the case of generic (q ′, p′) 
= (0, 0). In order to 
find the reduced form for the generic (q ′, p′) configuration, we rewrite the complex structure ̃τ ,

τ̃ = p′(V� + iH�) − r ′

−q ′(V� + iH�) + s′ = −p′

q ′ − 1

q ′[(−s′ + q ′V�) + iq ′H�] . (B.10)

Here we used s′p′ − q ′r ′ = 1 to eliminate r ′. Now the parameter s′ is arbitrary without any 
constraints from (q ′, p′). Then we can set s′ = 0 without loss of generality,

τ̂ ≡ −p′

q ′ − 1

q ′ 2(V� + iH�)
. (B.11)

For convenience, we define ̂ζ ≡ −1/(̂τ + p′
q ′ ). This is transformed as ̂ζ → ζ̂ ′ = ζ̂ +2π�q ′ 2 under 

the shift z → ze2π i. Then we can read off the transformation of ̂τ in such a way as

τ̂ → τ̂ ′ = (1 + 2π�p′q ′)̂τ + 2π�p′ 2

−2π�q ′ 2τ̂ + (1 − 2π�p′q ′)
. (B.12)

Then we find that ̂τ is the conjugate complex structure of the conjugate monodromy (B.6). Sub-
stituting ρ = i and τ̂ (B.11) into the definition (3.1), we also find the local expression of the 
conjugate system,

ds2 = ds2
012345 + H�

[
(d�)2 + �2(dϑ)2] + 1

τ̂2

[
dy8 + τ̂1 dx9]2 + τ̂2

(
dx9)2

, (B.13a)

B̂MN = 0, e2φ̂ = 1, (B.13b)

τ̂1 = −p′

q ′ − V�

q ′ 2K�

, τ̂2 = H�

q ′ 2K�

. (B.13c)

Close to the situation of (4.20), the transverse space of the 6789-directions is also a hyper-Kähler 
geometry of ALG type [26,27]. This system is also found via the T-duality transformation along 
the 8-th direction of the conjugate system of the defect NS5-brane (4.9), where we also relabel 
(p, q) in (4.9) to (p′, q ′) in (B.13).
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