
Theoretical Computer Science 348 (2005) 84–94
www.elsevier.com/locate/tcs

Prediction-hardness of acyclic conjunctive queries�

Kouichi Hirata∗,1

Department of Artificial Intelligence, Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan

Abstract

A conjunctive query problem is a problem to determine whether or not a tuple belongs to the answer of a conjunctive query over
a database. In this paper, a tuple, a conjunctive query and a database in relational database theory are regarded as a ground atom, a
nonrecursive function-free definite clause and a finite set of ground atoms, respectively, in inductive logic programming terminology.
An acyclic conjunctive query problem is a conjunctive query problem with acyclicity. Concerned with the acyclic conjunctive query
problem, in this paper, we present the hardness results of predicting acyclic conjunctive queries from an instance with a j-database
of which predicate symbol is at most j-ary. Also we deal with two kinds of instances, a simple instance as a set of ground atoms
and an extended instance as a set of pairs of a ground atom and a description. We mainly show that, from both a simple and an
extended instances, acyclic conjunctive queries are not polynomial-time predictable with j-databases (j �3) under the cryptographic
assumptions, and predicting acyclic conjunctive queries with 2-databases is as hard as predicting DNF formulas. Hence, the acyclic
conjunctive queries become a natural example that the equivalence between subsumption-efficiency and efficient pac-learnability
from both a simple and an extended instances collapses.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Acyclic conjunctive query; Inductive logic programming; Prediction; Prediction-preserving reduction; Subsumption

1. Introduction

From the viewpoints of both learning theory and inductive logic programming, Džeroski et al. [11] have first shown
the learnability of (first-order) definite programs called ij-determinate. Furthermore, the series of the researches by
Cohen [5–7,9], Džeroski [10,12,25], Kietz [24–26] and Page [9,28] have been placed the theoretical researches for the
learnability of logic programs in one of the main research topics in inductive logic programming. Recently, they have
been deeply developed by many researchers [1,20,22,23,31,32].

On the other hand, a conjunctive query problem in relational database theory [3,4,14,17,36] is a problem to determine
whether or not a tuple belongs to the answer of a conjunctive query over a database. Here, a tuple, a conjunctive
query, and a database in relational database theory are regarded as a ground atom e = p(t1, . . . , tn), a nonrecursive
function-free definite clause C = p(x1, . . . , xn)← A1, . . . , Am, and a finite set B of ground atoms in inductive logic

� A preliminary version of the paper appeared in the Proceedings of the 11th International Conference on Algorithmic Learning Theory, Lecture
Notes on Artificial Intelligence, Vol. 1968, Springer, Berlin, 2000, pp. 238–251.
∗ Tel.: +81 948 29 7622.

E-mail address: hirata@dumbo.ai.kyutech.ac.jp.
1 Partially supported by Grand-in-Aid for Scientific Research 15700137 and 16016275 from the Ministry of Education, Culture, Sports, Science

and Technology, Japan, and 13558036 from the Japan Society for the Promotion of Science.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.09.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82275796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:hirata@dumbo.ai.kyutech.ac.jp

K. Hirata / Theoretical Computer Science 348 (2005) 84 –94 85

programming terminology. Then, we can say that the conjunctive query problem is a problem to determine whether or
not e is provable from C over B, i.e., {C} ∪ B�e.

Since database schemes in relational database theory can be viewed as hypergraphs, many researchers such as
[3,4,13,14,17,36] have widely investigated the properties of database schemes and hypergraphs, together with the
acyclicity of them. A hypergraph is called acyclic if it reduces to an empty hypergraph by GYO-reduction (See Section 2
below). 2

It is known that the acyclicity frequently makes intractable problems in cyclic cases tractable. The conjunctive query
problem is such an example. Here, a conjunctive query is called acyclic if its associated hypergraph is acyclic. While
the conjunctive query problem is NP-complete in general [15], Yannakakis has shown that it becomes solvable in
polynomial time if a conjunctive query is acyclic [36]. Recently, Gottlob et al. have improved the Yannakakis’s result
that it is LOGCFL-complete [17].

Concerned with the conjunctive query problem, in this paper, we present the hardness results of predicting acyclic
conjunctive queries from an instance with a database. In particular, we deal with a j-database of which predicate
symbol is at most j-ary.

According to Cohen [5–7], we introduce two kinds of instances, a simple and an extended instances. A simple
instance of (C, B), which comes from a general setting in learning theory, is a set {e | {C} ∪ B � e}. On the other
hand, an extended instance of (C, B), which comes from a proper setting in inductive logic programming, is a set
{(e, D) | {C} ∪ B ∪D � e}, where D is a set of ground unit clauses and called a description. If an extended instance is
allowed, then many programs that are usually written with function symbols can be rewritten as function-free programs.
Furthermore, some experimental learning systems such as FOIL [30] also impose a similar restriction.

The acyclic conjunctive query problem, which is LOGCFL-complete mentioned above, is corresponding to the
evaluation problem of our prediction problem. Schapire [34] has shown that, if the corresponding evaluation problem
is NP-hard, then the prediction problem is not polynomial-time predictable unless NP ⊆ P/Poly. Hence, we cannot
apply Schapire’s result to show the hardness results in our problem. In order to achieve the prediction-hardness, we
adopt the prediction-preserving reduction [29] as similar as Cohen [6,7].

As the prediction-hardness from a simple instance, we show that, for each j �3, acyclic conjunctive queries are not
polynomial-time predictable with j-databases under the cryptographic assumptions that inverting the RSA encryption
function, recognizing quadratic residues and factoring Blum integers are solvable in polynomial time. Also, similar to
Cohen’s proof (Lemma 11 in [7] or Theorem 4 in [9]), we point out that predicting acyclic conjunctive queries with
2-databases is as hard as predicting DNF formulas. The latter hardness result holds even if their depth is at most 1.
Furthermore, we show that acyclic conjunctive queries are polynomial-time pac-learnable with 1-databases.

As the prediction-hardness from an extended instance, we give the similar results as above. We show that, for
each j �3, acyclic conjunctive queries are not polynomial-time predictable with j-databases under the cryptographic
assumptions, and predicting acyclic conjunctive queries (of which depth is at most 2) with 2-databases is as hard as
predicting DNF formulas.

Our hardness results imply that acyclic conjunctive queries become a natural example that the equivalence
between subsumption-efficiency and efficient pac-learnability from both a simple and an extended instances collapses.
In general, the subsumption problem for conjunctive queries is NP-complete [2,15]. It is also known that, for both
famous determinate [11] and k-local [7,9] conjunctive queries, the subsumption problems are solvable in polynomial
time [26]. As the learnability results, k-local conjunctive queries are polynomial-time pac-learnable from a simple
instance, while determinate conjunctive queries are not polynomial-time predictable from a simple instance under the
cryptographic assumptions [7]. Note that the determinate conjunctive queries are defined over ordered conjunctive
queries, so it is slightly artificial. On the other hand, for acyclic conjunctive queries, while the subsumption problem
is LOGCFL-complete [17], it is not polynomial-time predictable from both a simple and an extended instances under
the cryptographic assumptions.

2. Preliminaries

In this paper, a term is either a constant symbol or a variable. An atom is of the form p(t1, . . . , tn), where p is an
n-ary predicate symbol and each ti is a term. A literal is an atom or the negation of an atom. A positive literal is an

2 Note here that the concept of acyclicity is different from one in [1,31].

86 K. Hirata / Theoretical Computer Science 348 (2005) 84 –94

atom and a negative literal is the negation of an atom. A clause is a disjunction of literals. A definite clause is a clause
containing one positive literal. A unit clause is a clause consisting of just one positive literal. By the definition of a
term, a clause is always function-free.

A definite clause C is represented as

A← A1, . . . , Am or A← A1 ∧ · · · ∧ Am,

where A and Ai (1� i�m) are atoms. Here, an atom A is called the head of C and denoted by hd(C), and a set
{A1, . . . , Am} is called the body of C and denoted by bd(C).

A definite clause C is ground if C contains no variables. A definite clause C is nonrecursive if each predicate symbol
in bd(C) is different from one of hd(C), and recursive otherwise. 3 Furthermore, a finite set of ground unit clauses is
called a database. A database is called a j-database if each predicate symbol in it is at most j-ary. According to the
convention of relational database theory [3,14,17,36], in this paper, we call a nonrecursive definite clause containing
no constant symbols a conjunctive query.

A substitution is a partial function mapping variables to constant symbols or variables. We will represent substitutions
with the Greek letters � and � and (when necessary) write them as sets � = {t1/x1, . . . , tn/xn} where xi is a variable
and ti is a term (1� i�n). For a literal A, A� denotes the result of replacing each variable xi in A with ti . If � and � are
substitutions, we will use A�� to denote (A�)�.

Next, we formulate the concept of acyclicity. A hypergraph H = (V , E) consists of a set V of vertices and a set
E ⊆ 2V of hyperedges. For a hypergraph H = (V , E), the GYO-reduct GYO(H) [3,13,14,17] of H is the hypergraph
obtained from H by repeatedly applying the following rules as long as possible:

(1) Remove hyperedges that are empty or contained in other hyperedges.
(2) Remove vertices that appear in �1 hyperedges.

Definition 1 (cf. (Beeri et al. [3], Eiter and Gottlob [13], Fagin [14], Gottlob et al. [17])). A hypergraph H is called
acyclic if GYO(H) is an empty hypergraph, i.e., GYO(H) = (∅,∅), and cyclic otherwise.

The associated hypergraph H(C) to a conjunctive query C is a hypergraph
(var(C), {var(L) | L ∈ bd(C)}),

where var(S) denotes the set of all variables occurring in S. 4

Definition 2 (Gottlob et al. [17]). A conjunctive query C is called acyclic (resp., cyclic) if the associated hypergraph
H(C) to C is acyclic (resp., cyclic).

Example 3. Let C1 and C2 be the following conjunctive queries:

C1 = p(x1, x2, x3)

← q(x1, y1, y2), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3), s(x1, x2, x3),

C2 = p(x1, x2, x3)

← q(x1, y1, x3), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3), s(x1, x2, x3).

Then, the associated hypergraphs H(C1) and H(C2) to C1 and C2 are described as Fig. 1. By the GYO-reduction, we
can show that

GYO(H(C1)) = ({x1, x2, y2}, {{x1, x2}, {x1, y2}, {x2, y2}}) �= (∅,∅),
but GYO(H(C2)) = (∅,∅), so C1 is cyclic but C2 is acyclic.

Gottlob et al. [17] have shown that the problem of determining whether or not a conjunctive query or a hypergraph
is acyclic is in symmetric logspace SL.

3 A recursive clause in this paper is sometimes called an ambivalent clause [16].
4 In the preliminary version [19], the associated hypergraph is given as (var(C), {var(L) | L ∈ C}), which is different from the definition in [17]

represented here. Hence, the results in Section 4 are different from ones in [19], whereas the results in Section 5 hold under both definitions.

K. Hirata / Theoretical Computer Science 348 (2005) 84 –94 87

y1 y2 y3

z1 z2 z3

x1 x2 x3

y1 y2 y3

z1 z2 z3

x1 x2 x3

H(C1) H(C2)

Fig. 1. The associated hypergraphs H(C1) and H(C2) to C1 and C2.

Let C be a conjunctive query A← A1, . . . , Am, B a database and e a ground atom. Then, we say that e is provable
from C over B and denote it by {C} ∪ B � e if one of the following conditions holds.

(1) e ∈ B.
(2) There exists a substitution � such that e = A� and {A1�, . . . , Am�} ⊆ B.

Consider the following decision problem 5 :
ACQ (Acyclic Conjunctive Query) [17]
Instance: An acyclic conjunctive query C = p(x1, . . . , xn) ← A1, . . . , Am, a database B, and a ground atom

e = p(t1, . . . , tn).
Question: Does {C} ∪ B � e hold?

Theorem 4 (Gottlob et al. [17]). The problem ACQ is LOGCFL-complete.

The relationship between LOGCFL and other relevant complexity classes is summarized in the following chain of
inclusions:

AC0 ⊆ NC1 ⊆ DL ⊆ SL ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ NC ⊆ P ⊆ NP.

In the remainder of this section, we introduce some classes of conjunctive queries.
Let C be a conjunctive query. The free variables of C are variables in bd(C) but not in hd(C). A conjunctive query

C is k-free [7] if C has at most k free variables.
Let x and y be free variables of C. x is adjacent to y if they appear in the same literal of C. x is connected to y if

either x is adjacent to y or there exists a variable z such that x is adjacent to z and z is connected to y. The locale of a
variable x is the set of literals that contain either x or some variable adjacent to x. The locality of C is the cardinality of
the largest locale of any free variable in C. A conjunctive query C is k-local [7,9] if the locality of C is at most k.

A conjunctive query C = A ← A1, . . . , Am is called ordered if the order from 1 to m in C is fixed. Let C be an
ordered conjunctive query A ← A1, . . . , Am and B be a database. Then, C is determinate w.r.t. B [11] if for each i
(1� i�n) and substitution � such that

A�← A1�, . . . , Ai−1� is ground and B � A1� ∧ · · · ∧ Ai−1�,

there exists at most one substitution � such that

Ai�� is ground and B � Ai��.

The depth of a variable x in a conjunctive query C = A ← A1, . . . , Am is defined as follows: If x occurs in A,
then the depth of x in C is 0. Suppose that x first occurs in Ai . If none of the other variables in Ai already occurred in
A ← A1, . . . , Ai−1, then the depth of x in C is∞. Otherwise, the depth of x in C is 1 plus the depth of the variable
in Ai with greatest depth occurring in A ← A1, . . . , Ai−1. The depth of C is the largest depth of the variable in C.
A conjunctive query C is k-depth [11] if the depth of C is at most k.

5 Gottlob et al. [17] have called the problem ACQ “Acyclic Conjunctive Query Output Tuple (ACQOT)”.

88 K. Hirata / Theoretical Computer Science 348 (2005) 84 –94

3. Models of learnability

In this section, we introduce the models of learnability. The definitions and notations in this section are mainly due
to Cohen [6,7].

Let C be a conjunctive query and B be a database. A ground atom e is a fact of C if the predicate symbol of e is same
as one of hd(C). In this paper, assume that there exists no element of B of which predicate symbol is same as hd(C).

For a conjunctive query C and a database B, the following set is called a simple instance of (C, B):

{e | {C} ∪ B � e, e is a fact of C}.
For an element e of a simple instance of (C, B), we say that e is covered by (C, B).

Furthermore, we introduce a description D, which is a finite set of ground unit clauses. Then, the following set of
pairs is called an extended instance of (C, B):

{(e, D) | {C} ∪D ∪ B � e, e is a fact of C}.
For an element (e, D) of an extended instance of (C, B), we say that (e, D) is covered by (C, B).

In his learnability results, Cohen has adopted both the simple instance [7] and the extended instance [5,6]. If the
extended instance is allowed, then many programs that are usually written with function symbols can be rewritten as
function-free programs. There is also a close relationship between extended instances and “flattening” [10,18,23,33].
Some experimental learning systems such as FOIL [30] also impose a similar restriction. See the papers [5,6] for
more detail.

In the following, we introduce some definitions and notions in learning theory. Let X be a set, called a domain. Define
a concept c over X to be a representation of some subset of X, and a language L to be a set of concepts. Associated with
X and L are two size complexity measures. We will write the size complexity of some concept c ∈ L or instance e ∈ X

as |c| or |e|, and we will assume that this complexity measure is polynomially related to the number of bits needed to
represent c or e. We use the notation Xn (resp., Ln) to stand for the set of all elements of X (resp., L) of size complexity
no greater than n.

An example of c is a pair (e, b), where b = 1 if e ∈ c and b = 0 otherwise. If d is a probability distribution function,
a sample of c from X drawn according to d is a pair of multisets S+, S− drawn from the domain X according to d, S+
containing only positive examples of c, and S− containing only negative examples of c.

Definition 5 (Cohen [6,7]). A language L is polynomial-time predictable if there exists an algorithm PACPREDICT and
a polynomial m(1/�, 1/�, ne, nt) so that for every nt > 0, every ne > 0, every c ∈ Lnt , every � (0���1), every �
(0���1), and every probability distribution function d, PACPREDICT has the following behavior:

(1) Given a sample S+, S− of c from Xne drawn according to d and containing at least m(1/�, 1/�, ne, nt) examples,
PACPREDICT outputs a hypothesis h such that

prob(d(h− c)+ d(c − h) > �) < �,

where the probability is taken over the possible samples S+ and S−.
(2) PACPREDICT runs in time polynomial in 1/�, 1/�, ne, nt , and the number of examples.
(3) h can be evaluated in polynomial time.

The algorithm PACPREDICT is called a prediction algorithm for L.

Definition 6 (Cohen [6,7]). A language L is polynomial-time pac-learnable if there exists an algorithm PACLEARN

so that:
(1) PACLEARN satisfies all the requirements in Definition 5, and
(2) on inputs S+ and S−, PACLEARN always outputs a hypothesis h ∈ L.

We will abbreviate “polynomial-time predictable” and “polynomial-time pac-learnable” as “predictable” and
“pac-learnable,” respectively.

For a language L, it is known that, if L is pac-learnable, then L is predictable, but the converse does not hold in
general. Hence, if L is not predictable, then L is not pac-learnable.

K. Hirata / Theoretical Computer Science 348 (2005) 84 –94 89

In this paper, a language L is regarded as some set of conjunctive queries. Furthermore, for a database B, L[B]
denotes the set of pairs of the form (C, B) such that C ∈ L. Semantically, such a pair denotes either a simple or an
extended instance covered by it. Furthermore, we will deal with the following languages:

(1) ACQ denotes the set of all acyclic conjunctive queries.
(2) k-FreeCQ denotes the set of all k-free conjunctive queries.
(3) k-LocalCQ denotes the set of all k-local conjunctive queries.
(4) DetCQ denotes the set of all determinate conjunctive queries.
(5) k-DepthCQ denotes the set of all k-depth conjunctive queries.

For some set B of databases, L[B] denotes the set {L[B] | B ∈ B}. Such a set of languages is called a language family.
Also the set of j-databases is denoted by j-B.

Definition 7 (Cohen [6,7]). A language family L[B] is predictable if for every B ∈ B there exists a prediction algorithm
PACPREDICTB for L[B]. The pac-learnability of a language family is defined similarly.

Schapire [34] has shown that, if the evaluation problem is NP-hard, then the prediction problem is not predictable
unless NP ⊆ P/Poly. Since the problem ACQ is corresponding to an evaluation problem for the prediction problem of
ACQ[B] and it is LOGCFL-complete, we cannot apply Schapire’s result to our prediction problem.

Pitt and Warmuth [29] have introduced a notion of reducibility between prediction problems. Prediction-preserving
reducibility is essentially a method of showing that one language is no harder to predict than another.

Definition 8 (Pitt and Warmuth [29]). Let Li be a language over domain Xi (i = 1, 2). We say that predicting L1
reduces to predicting L2, denoted by L1 �L2, if there exists a function f : X1 → X2 (called an instance mapping)
and a function g : L1 → L2 (called a concept mapping) satisfying the following conditions:

(1) x ∈ c iff f (x) ∈ g(c).
(2) The size complexity of g is polynomial in the size complexity of c.
(3) f (x) can be computed in polynomial time.

Theorem 9 (Pitt and Warmuth [29]). Suppose that L1 �L2.
(1) If L2 is predictable, then so is L1.
(2) If L1 is not predictable, then neither is L2.

For some polynomial p, let �BFp(n)
n be the class of read-once Boolean formulas, that is, Boolean formulas in which

each variable occurs at most once, over n Boolean variables of size at most p(n). Let �BFp(n) = ⋃
n�1 �BFp(n)

n .
Then:

Theorem 10 (Kearns and Valiant [21]). �BFp(n) is not predictable under the cryptographic assumptions that inverting
the RSA encryption function, recognizing quadratic residues and factoring Blum integers are solvable in polynomial
time.

Let DNFn be the class of DNF formulas over n Boolean variables, and let DNF = ⋃
n�1 DNFn. It remains open

whether or not DNF is predictable.
Finally, we summarize the previous results for the learnability of restricted conjunctive queries from a simple instance.

Theorem 11. The following statements hold:
(1) (Cohen [7], Cohen and Page [9]). k-FreeCQ[j -B] (k�1, j �2) is predictable from a simple instance iff DNF is

predictable.
(2) (Cohen [7], Cohen and Page [9]). k-LocalCQ[j -B] (k�0, j �0) is pac-learnable from a simple instance.
(3) (Cohen [7], Cohen and Page [9]). k-DepthCQ[j -B] (k�1, j �2) is not predictable from a simple instance unless

NP ⊆ P/Poly.
(3) (Cohen [7]). DetCQ[j -B] (j �3) is not predictable from a simple instance under the cryptographic assumptions.
(4) (Džeroski et al. [11]). k-DepthDetCQ[j -B] (k�0, j �0) is pac-learnable from a simple instance.

90 K. Hirata / Theoretical Computer Science 348 (2005) 84 –94

4. Prediction-hardness of acyclic conjunctive queries from a simple instance

In this section, we discuss the prediction-hardness of acyclic conjunctive queries from a simple instance.
As the related previous results, if we can receive a fact as a ground clause, Kietz [24,25] implicitly has shown that

acyclic conjunctive queries consisting of literals with at most j-ary predicate symbols (j �2) are not pac-learnable unless
RP = PSPACE, without databases as background knowledge. Under the same setting, Cohen [8] has strengthened this
result not to be predictable under the cryptographic assumptions.

First, we obtain the following theorem. Note that the following proof is motivated by Cohen (Theorem 5 in [6] and
Theorem 9 in [7]).

Theorem 12. ACQ[j -B] (j �3) is not predictable from a simple instance under the cryptographic assumptions.

Proof. By Theorems 9 and 10, it is sufficient to show that, for each n�0, there exists a database B ∈ 3-B such that
�BFp(n)

n � ACQ[B] from a simple instance.
Let e = e1 . . . en ∈ {0, 1}n be a truth assignment and F ∈ �BFp(n)

n be a Boolean formula of size polynomial p(n)

over Boolean variables {x1, . . . , xn}. First, construct the following database B ∈ 3-B:

B =
{

and(0, 0, 0), and(0, 1, 0), or(0, 0, 0), or(0, 1, 1), not(0, 1),

and(1, 0, 0), and(1, 1, 1), or(1, 0, 1), or(1, 1, 1), not(1, 0)

}
.

Also construct the following instance mapping f:

f (e) = q(e1, . . . , en, 1).

Note that F is represented as a tree of size polynomial p(n) such that each internal node is labeled by ∧, ∨ or ¬,
and each leaf is labeled by a Boolean variable in {x1, . . . , xn}. Each internal node ni of F (1� i�p(n)) has one (ni

is labeled by ¬) or two (ni is labeled by ∧ or ∨) input variables and one output variable yi . Let Li be the following
literals:

Li =
⎧⎨
⎩

and(zi1, zi2, yi) if ni is labeled by ∧,

or(zi1, zi2, yi) if ni is labeled by ∨,

not(zi1, yi) if ni is labeled by ¬.

Here, zi1 and zi2 denote input variables of ni . Then, construct the following concept mapping g:

g(F) = q(x1, . . . , xn, y)←
⎛
⎝ ∧

1� i �p(n)

Li

⎞
⎠ ,

where y is a variable in (
∧

1� i �p(n) Li) corresponding to an output of F.
Since F is represented as a tree, the associated hypergraph H(g(F)) of g(F) is acyclic, so g(F) is acyclic. Further-

more, it holds that e satisfies F iff f (e) is covered by (g(F), B), that is,

{g(F)} ∪ B � f (e).

Hence, it holds that �BFp(n)
n � ACQ[B] from a simple instance. �

For ACQ[2-B], we obtain the following weaker hardness result than Theorem 12.

Theorem 13 (Cohen [7], Cohen and Page [9]). If ACQ[2-B] is predictable from a simple instance, then so is DNF.

Theorem 13 follows from the proof of only-if direction of the statement 1 in Theorem 11, that is, for each n�1,
there exists a 2-database B ∈ 2-B such that DNFn � 1-FreeCQ[B] (Lemma 12 in [7] or Theorem 4 in [9]), because
the 1-free conjunctive query in this reduction is acyclic. An extension of this proof will be presented as the proof of
Theorem 17.

K. Hirata / Theoretical Computer Science 348 (2005) 84 –94 91

Note that the conjunctive query in this reduction is also 1-depth. Then, as the prediction-hardness of depth-bounded
acyclic conjunctive queries from a simple instance, the following corollary holds.

Corollary 14. If k-DepthACQ[j -B] (k�1, j �2) is predictable from a simple instance, then so is DNF.

By Theorem 13 and Corollary 14, we can conclude that predicting ACQ[2-B] and k-DepthACQ[j -B] (k�1, j �2)

from a simple instance is as hard as predicting DNF.
For ACQ[1-B], we also obtain the following theorem.

Theorem 15. ACQ[1-B] is pac-learnable from a simple instance.

Proof. We can assume that a target acyclic conjunctive query has no variables that occur in the body but not in the
head. Let n be an arity of a target predicate q, and m be the number of distinct predicate symbols in B ∈ 1-B, where m
predicate symbols are denoted by q1, . . . , qm. We set an initial hypothesis C as

C = q(x1, . . . , xn)←
∧

1� i �n

∧
1� j �m

qj (xi).

Then, by applying Valiant’s technique of learning monomials [35] to C, the statement holds. �

5. Prediction-hardness of acyclic conjunctive queries from an extended instance

In this section, we discuss the prediction-hardness of acyclic conjunctive queries from an extended instance.
By using Cohen’s result (Theorem 3 in [6]), we can claim that, for each j �3, the recursive version of ACQ[j -B]

is not predictable from an extended instance under the cryptographic assumptions. In contrast, the following theorem
claims that this statement also holds for the nonrecursive version of ACQ[j -B] (j �3).

Theorem 16. ACQ[j -B] (j �3) is not predictable from an extended instance under the cryptographic assumptions.

Proof. By Theorems 9 and 10, it is sufficient to show that, for each n�0, there exists a database B ∈ 3-B such that
�BFp(n)

n � ACQ[B] from an extended instance.
First, we give e, F and B as same as the proof of Theorem 12. By the definition of an extended instance, an instance

mapping f must map e to a pair of a fact and a description. Then, construct the following instance mapping f:

f (e) = (q(1), {bit1(e1), . . . , bitn(en)}).
By using the same literals Li (1� i�p(n)) as Theorem 12, construct the following concept mapping g:

g(F) = q(y)←
⎛
⎝ ∧

1� j �n

bitj (xj)

⎞
⎠ ,

⎛
⎝ ∧

1� i �p(n)

Li

⎞
⎠ .

Here, y is a variable in (
∧

1� i �p(n) Li) corresponding to an output of F.
Since F is represented as a tree, the associated hypergraph H(g(F)) of g(F) is acyclic, so g(F) is acyclic. Further-

more, it holds that e satisfies F iff f (e) is covered by (g(F), B), that is,

{g(F)} ∪ {bit1(e1), . . . , bitn(en)} ∪ B � q(1).

Hence, it holds that �BFp(n)
n � ACQ[B] from an extended instance. �

For ACQ[2-B], as similar as Theorem 13, we also obtain the following weaker hardness result than Theorem 16.

Theorem 17. If ACQ[2-B] is predictable from an extended instance, then so is DNF.

92 K. Hirata / Theoretical Computer Science 348 (2005) 84 –94

Proof. It is sufficient to show that, for each n�1, there exists a 2-database B ∈ 2-B such that DNFn � ACQ[B] from
an extended instance. This proof is an extension of the proof of Lemma 12 in [7] or Theorem 4 in [9].

Let e = e1 . . . en ∈ {0, 1}n be a truth assignment and F ∈ DNFn be a DNF formula (l1
1∧· · ·∧l1

m1
)∨· · ·∨(lk1∧· · ·∧lkmk

)

with k terms over Boolean variables {x1, . . . , xn}, where lij denotes a literal, that is, either a Boolean variable or a negation
of a Boolean variable.

First, construct the following database B ∈ 2-B. Here, k denotes the set {1, . . . , k}
B =

⋃
1� i �k

{truei (1, l) | l ∈ k} ∪
⋃

1� i �k

{truei (0, l) | l ∈ k − {i}}

∪
⋃

1� i �k

{
falsei (0, l) | l ∈ k

} ∪ ⋃
1� i �k

{
falsei (1, l) | l ∈ k − {i}}

∪ {lit(l, 1) | l ∈ k}.
Note that the size of B is polynomially bounded by the size of F.

Construct the same instance mapping f as the proof of Theorem 16, that is,

f (e) = (q(1), {bit1(e1), . . . , bitn(en)}).

Furthermore, construct the following concept mapping g:

g(F) = q(y)←
⎛
⎝ ∧

1�h�n

bith(xh)

⎞
⎠ ,

⎛
⎝ ∧

1� i �k

⎛
⎝ ∧

1� j �mi

Mi
j

⎞
⎠

⎞
⎠ , lit(z, y),

where Mi
j (1� i�k, 1�j �mi) is defined as follows:

Mi
j =

⎧⎨
⎩

truei (x
i
j , z) if lij = xi

j ,

falsei (x
i
j , z) if lij = xi

j .

It is obvious that g(F) is acyclic and the size of g(F) is polynomially bounded by the size of F. Note that, for each
l ∈ k, the lth term of F is satisfied by the truth assignment e1 . . . en iff the variable z can be substituted to l when xh is
substituted to eh (1�h�n). Then, it holds that e satisfies F iff f (e) is covered by (g(F), B), that is,

{g(F)} ∪ {bit1(e1), . . . , bitn(en)} ∪ B � q(1).

Hence, it holds that DNFn � ACQ[B] from an extended instance. �

Note that we can array the atoms in bd(g(F)) as the 2-depth acyclic conjunctive query. Then, as the prediction-
hardness of depth-bounded acyclic conjunctive queries from an extended instance, the following corollary holds.

Corollary 18. If k-DepthACQ[j -B] (k�2, j �2) is predictable from an extended instance, then so is DNF.

By Theorem 17 and Corollary 18, we can conclude that predicting ACQ[2-B] and k-DepthACQ[j -B] (k�1, j �2)

from an extended instance is as hard as predicting DNF.

6. Subsumption-efficiency and efficient learnability

We say that a clause C1 subsumes another clause C2 if there exists a substitution � such that C1� ⊆ C2. The
subsumption problem for a language L is the problem of whether or not C1 subsumes C2 for each C1, C2 ∈ L.

K. Hirata / Theoretical Computer Science 348 (2005) 84 –94 93

The subsumption problem for conjunctive queries is NP-complete in general [2,15]. As the tractable cases for the
subsumption problem, the following theorem is given:

Theorem 19. The following statements hold:
(1) (Kietz and Lübbe [26]) The subsumption problems for DetCQ and k- LocalCQ (k�0) are solvable in polynomial

time.
(2) (Gottlob et al. [17]) The subsumption problem for ACQ is LOGCFL-complete.

By incorporating Theorem 19 with statement 4 in Theorem 11, the language DetCQ is an example that the
equivalence between subsumption-efficiency and efficient pac-learnability from a simple instance collapses. Note
that DetCQ is defined over ordered conjunctive queries, which is slightly artificial; consider the following database
B = {m(a, c), m(b, c), f (c, e), f (d, e)}. Then, gf (x, z)← f (y, z), m(x, y) is determinate w.r.t. B, while gf (x, z)←
m(x, y), f (y, z) is not [25]. Hence, there exist two same clauses without their order such that one is determinate but
another is not.

On the other hand, by incorporating Theorem 19 with Theorems 12 and 16, the language ACQ is an example that the
equivalence between subsumption-efficiency and efficient pac-learnability from both a simple instance and an extended
instance collapses. Since conjunctive queries are assumed not to be ordered for the ACQ, it is more natural than the
DetCQ.

Note that we cannot directly extend statement 4 in Theorem 11 to the prediction-hardness from an extended instance
under the determinacy with respect to databases, although we can extend Theorems 12 and 13 to Theorems 16 and
17, respectively. If we adopt the determinacy with respect to databases and descriptions, that is, if we can regard
descriptions as background knowledge, then determinate conjunctive queries are not predictable from an extended
instance (cf. the proof of Theorem 9 in [7]).

7. Conclusion

In this paper, we have mainly discussed the hardness results of predicting acyclic conjunctive queries from both a
simple and an extended instances.

As the prediction-hardness from a simple instance, we have shown that ACQ[j -B] (j �3) is not polynomial-time
predictable under the cryptographic assumptions. Also, as same as Cohen’s proof (Lemma 11 in [7] or Theorem 4 in
[9]), we have pointed out that predicting ACQ[2-B] and k-DepthACQ[j -B] (k�1, j �2) is as hard as predicting DNF.
Furthermore, we have shown that ACQ[1-B] is polynomial-time pac-learnable from a simple instance.

As the prediction-hardness from an extended instance, we have given the similar hardness results. We have shown that
ACQ[j -B] (j �3) is not polynomial-time predictable under the cryptographic assumptions, and predicting ACQ[2-B]
and k-DepthACQ[j -B] (k�2, j �2) is as hard as predicting DNF.

The above prediction-hardness implies that the language ACQ becomes a natural example that the equivalence
between subsumption-efficiency and efficient pac-learnability from both a simple and an extended instances collapses.

Various researches have investigated the efficient learnability by using equivalence and membership queries such
as [1,22,23,32,31]. Our result in this paper implies that ACQ[j -B] (j �3) is not polynomial-time learnable using
equivalence queries alone. It is a future work to analyze the learnability of ACQ[j - B] (j �3) by using membership
and equivalence queries, and by extending to one containing function symbols or recursion. It is also a future work to
analyze the relationship between our acyclicity and the acyclicity introduced by [1,31].

Fagin [14] has given the degree of acyclicity; �-acyclic, �-acyclic, �-acyclic and Berge-acyclic. In particular, he
has shown the following chain of implication for any hypergraph H: H is Berge-acyclic ⇒ H is �-acyclic ⇒ H is
�-acyclic ⇒ H is �-acyclic (none of the reverse implication holds in general). Acyclicity in the literature such as
[3,4,13,17,36] and also in this paper is corresponding to Fagin’s �-acyclicity [14]. Note that none of the results in this
paper implies the predictability of the other degrees of acyclicity, while all of the corresponding evaluation problems
are LOGCFL-complete [17]. It is a future work to investigate the relationship between the degree of acyclicity and the
learnability.

94 K. Hirata / Theoretical Computer Science 348 (2005) 84 –94

Acknowledgments

The author would like to thank Hiroki Arimura of Hokkaido University for a motivation of this paper and insightful
comments. He also would like to thank Akihiro Yamamoto of Kyoto University and Shinichi Shimozono of Kyushu
Institute of Technology for the constructive discussion. Finally, he would like to thank the anonymous referees of
ALT2000 for the valuable comments to revise the preliminary version [19] of this paper.

References

[1] H. Arimura, Learning acyclic first-order Horn sentences from entailment, Proc. Eighth Internat. Workshop on Algorithmic Learning Theory,
Lecture Notes on Artificial Intelligence, Vol. 1316, Springer, Berlin, 1997, pp. 432–445.

[2] L.D. Baxter, The complexity of unification, Doctoral Thesis, Department of Computer Science, University of Waterloo, 1977.
[3] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic database schemes, J. Assoc. Comput. Mach. 30 (3) (1983) 479–513.
[4] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited, Theoret. Comput. Sci. 239 (2000) 211–229.
[5] W.W. Cohen, Pac-learning recursive logic programs: efficient algorithms, J. Artificial Intelligence Res. 2 (1995) 501–539.
[6] W.W. Cohen, Pac-learning recursive logic programs: negative results, J. Artificial Intelligence Res. 2 (1995) 541–573.
[7] W.W. Cohen, Pac-learning non-recursive Prolog clauses, Artificial Intelligence 79 (1) (1995) 1–38.
[8] W.W. Cohen, The dual DFA learning problem: hardness results for programming by demonstration and learning first-order representations, in:

Proc. Ninth Annu. Workshop on Computational Learning Theory, ACM, New York, 1996, pp. 29–40.
[9] W.W. Cohen, C.D. Page Jr., Polynomial learnability and inductive logic programming: methods and results, New Gener. Comput. 13 (3–4)

(1995) 369–409.
[10] L. De Raedt, S. Džeroski, First-order jk-clausal theories are PAC-learnable, Artificial Intelligence 70 (1–2) (1994) 375–392.
[11] S. Džeroski, S. Muggleton, S. Russell, PAC-learnability of determinate logic programs, in: Proc. Fifth Annu. Workshop on Computational

Learning Theory, ACM, New York, 1992, pp. 128–135.
[12] S. Džeroski, S. Muggleton, S. Russell, Learnability of constrained logic programs, Proc. Sixth European Conf. on Machine Learning, Lecture

Notes on Artificial Intelligence, Vol. 667, Springer, Berlin, 1993, pp. 342–347.
[13] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput. 24 (6) (1995) 1278–1304.
[14] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, J. Assoc. Comput. Mach. 30 (3) (1983) 514–550.
[15] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, New York, 1979.
[16] G. Gottlob, Subsumption and implication, Inform. Process Lett. 24 (2) (1987) 109–111.
[17] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive queries, J. Assoc. Comput. Mach. 43 (3) (2001) 431–498.
[18] K. Hirata, Flattening and implication, Proc. 10th Internat. Conf. on Algorithmic Learning Theory, Lecture Notes on Artificial Intelligence, Vol.

1720, Springer, Berlin, 1999, pp. 157–168.
[19] K. Hirata, On the hardness of learning acyclic conjunctive queries, Proc. 11th Internat. Conf. on Algorithmic Learning Theory, Lecture Notes

on Artificial Intelligence, Vol. 1968, Springer, Berlin, 2000, pp. 238–251.
[20] T. Horváth, G. Turán, Learning logic programs with structured background knowledge, in: L. De Raedt (Ed.), Advances in Inductive Logic

Programming, IOS Press, Amsterdam, 1996, pp. 172–191.
[21] M. Kearns, L. Valiant, Cryptographic limitations on learning Boolean formulae and finite automata, J. Assoc. Comput. Mach. 41 (1) (1994)

67–95.
[22] R. Khardon, Learning function-free Horn expressions, Mach. Learn. 35 (1) (1999) 241–275.
[23] R. Khardon, Learning range-restricted Horn expressions, Proc. Fourth European Conf. on Computational Learning Theory, Lecture Notes on

Artificial Intelligence, Vol. 1572, Springer, Berlin, 1999, pp. 111–125.
[24] J.-U. Kietz, Some lower bounds for the computational complexity of inductive logic programming, Proc. Sixth European Conf. on Machine

Learning, Lecture Notes on Artificial Intelligence, Vol. 667, Springer, Berlin, 1993, pp. 115–123.
[25] J.-U. Kietz, S. Džeroski, Inductive logic programming and learnability, SIGART Bull. 5 (1994) 22–32.
[26] J.U. Kietz, M. Lübbe, An efficient subsumption algorithm for inductive logic programming, in: Proc. 11th Internat. Conf. on Machine Learning,

Morgan Kaufmann, Los Altos, CA, 1994, pp. 130–138.
[28] C.D. Page Jr., A.M. Frisch, Generalization and learnability: a study of constrained atoms, in: S. Muggleton (Ed.), Inductive Logic Programming,

Academic Press, New York, 1992, pp. 129–161.
[29] L. Pitt, M.K. Warmuth, Prediction-preserving reduction, J. Comput. System Sci. 41 (3) (1990) 430–467.
[30] J.R. Quinlan, Learning logical definitions from relations, Mach. Learn. 5 (3) (1990) 239–266.
[31] C. Reddy, P. Tadepalli, Learning first-order acyclic Horn programs from entailment, Proc. Eighth Internat. Conf. on Inductive Logic

Programming, Lecture Notes on Artificial Intelligence, Vol. 1446, Springer, Berlin, 1998, pp. 23–37.
[32] C. Reddy, P. Tadepalli, Learning Horn definitions: theory and application to planning, New Gener. Comput. 17 (1) (1999) 77–98.
[33] C. Rouveirol, Extensions of inversion of resolution applied to theory completion, in: S. Muggleton (Ed.), Inductive Logic Programming,

Academic Press, New York, 1992, pp. 63–92.
[34] R.E. Schapire, The strength of weak learning, Mach. Learn. 5 (2) (1990) 197–227.
[35] L. Valiant, A theory of learnable, Comm. ACM 27 (11) (1984) 1134–1142.
[36] M. Yannakakis, Algorithms for acyclic database schemes, in: Proc. Seventh Internat. Conf. on Very Large Data Bases, IEEE Computer Society

Press, Silver Spring, MD, 1981, pp. 82–94.

