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Abstract 

A binary code C of length n is called a p-fold r-covering if every binary word of length n is within 

Hamming distance r of at least p codewords of C. The normality and the amalgamated direct sum 

(ADS) construction of l-fold coverings have been extensively studied. In this paper we generalize the 

concepts of subnormality and normality to p-fold coverings and discuss how the ADS construction 

can be applied to them. In particular, we show that for r = 1,2 all binary linear p-fold r-coverings of 

length at least 2r+ 1 and n-fold normal. 

1. Introduction 

A binary code of length n is a nonempty subset of IFi, where F2 = (0, l} is the field of 
two elements. If xi = (xi( l), . . . , xi(n))EF; for i = 1,2, their Hamming distance d(x,, x2) 
is the number of indices j for which x1 ( j)#x2( j), and the weight wt(x) of XEF! is the 
number of nonzero coordinates in x. Suppose that C is an (n, M) code, i.e. C G F”, and 
1 CJ = M. The smallest of the pairwise Hamming distances d(c,, c2) between different 
codewords cl,c2eC is called the minimum distance of the code C. If a code C is 
a linear subspace of F”,, of dimension k, then the code C is linear and it is called an 
[n, k] code. 

We say that a code C is a p-fold r-covering if for all XGF”, we have 

l&(x)nCl >P. 
Here 

B,(x)=(y~[FnZId(y,X)dr} 

denotes the Hamming sphere of radius r. The smallest r for which C is a p-fold 
r-covering is called the p-fold covering radius and is denoted by CR”(C). If p = 1, then 
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C is a l-fold r-covering or briefly an r-covering and CR’(C) is the covering radius 

CR(C) of C. 

The covering radius of codes has been extensively studied in recent years (see e.g. [2, 

151). In constructing new codes from the known ones the amalgamated direct sum 

(ADS) construction introduced in [4] has turned out to be most useful. Using this 

construction we can efficiently combine two binary codes [4,3]. In [S] the concept of 

a binary subnormal code was introduced. If the resulting code in the ADS construc- 

tion is not required to be linear, it is sufficient to assume that one of the codes is 

subnormal and the other is normal [6]. These concepts have been generalized to 

nonbinary codes in [ 161 and in a different way in [ 17, 8, IS]. The concepts of 

normality and subnormality have also been studied in several other papers (see e.g. 

[7,9-l 4,19,20]). 

The problem of studying multiple coverings is a natural generalization of the 

covering radius problems of codes and has been discussed in [l, 211. In this paper we 

first generalize subnormality and normality to multiple coverings in Section 2 and 

discuss how the ADS can be applied to multiple coverings. In Section 3 we study 

binary linear codes and show that many of them are in fact p-fold normal in the sense 

of our definition. We show that if an [n, k] code C is a p-fold r-covering with n 3 2r f 1 

and r < 2, then C is p-fold normal. We also show that if an [n, k] code C is a 2-fold 

r-covering with minimum distance d = 1 and r < n, then C is 2-fold normal. 

2. Basic definitions and results 

Suppose that C is an (n, M) code which is a p-fold r-covering. If CEC, XEF”, and 

d(x, c) Q r, we say that c r-covers x, or simply that c covers x when r is clear from the 

context. So, C is a p-fold r-covering if each point XEF! is r-covered by at least 

p codewords. 

When we study ,u-fold coverings, we often want to know the distance from x to the 

nearest codewords of C. Assume that XE[F”, is given, and that the codewords 

Cl,CZ, . . . . cM of C are indexed in such a way that 

d(x,c,)dd(x,cz)d...~d(x,c,). 

We then denote 

d’(x, C) = d (x, c,). 

So, d’(x, C) gives the tth smallest of the distances between x and the codewords of C. If 

c>M we define d’(x,C)=co (cf. [12]). 

We now generalize the concepts of subnormality and normality to p-fold r-coverings. 

Definition 2.1. Suppose C is a binary (n, M) code. We say that C has p-fold subnorm 

S if there is a partition C,uC2 of C such that 

di(x,C1)+d”+l-’ (x,Cz)6S for all i= 1,2, . . . ,p and x~lF$. (1) 
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If C has p-fold subnorm 2r + 1 we say that C is a subnormal p-fold r-covering. If C is 

a subnormal p-fold CR”(C)-covering then C is called ,u-fold subnormal. 

It is clear that if C has p-fold subnorm 2r + 1, then it is indeed a ,u-fold r-covering: 

foranyxE[F”zandi=1,2,...,~,wehaved’(x,C,)~rord”‘-‘(x,C,)~r,andhenceif 

IB,(x)nC1j=t then I&(x)nC,l~~-~. 

On the other hand, if C = Ci uCz is any partition of a p-fold r-covering C then, for 

alli=l,2,..., p and for all XE[F”,, we have d’(x, C1)<r or d”“-‘(x, Cz)<r. This very 

important fact will be used repeatedly in Section 3. For example, if we know that 

d”(x, C,)dr + 1 and d’(x, C,) < r + 1 for XEF;, then C is a subnormal p-fold 

r-covering. 

As usual (see [4]), we denote C$‘= { c~C(c(i)=a}, where c(i) denotes the ith 

coordinate of CE F”, . 

Definition 2.2. Suppose C is an (n, M) code. We say that C has p-fold norm N if there 

is an index i such that 

djcx cg))+dfl+l-j 
3 (x,Cy))GN for allj=l,2 ,..., p and XEIF~. (2) 

If C has p-fold norm 2r + 1 we say that C is a normal p-fold r-covering. If C is a normal 

p-fold CR’(C)-covering then C is called p-fold normal. 

As usual, we also say that a partition C1uC2 in (1) (resp. a coordinate i in (2)) is 

acceptable if it can be used to show that C has a given p-fold subnorm (resp. norm) or 

that C is a subnormal (resp. normal) p-fold r-covering. 

Clearly, if C is a (sub)normal p-fold r-covering then it is also a (sub)normal $-fold 

r’-covering for every $ <p and r’ 3 r. If a code C has at least two codewords then it is 

l-fold (sub)normal if and only if it is (sub)normal in the usual sense [4, 3, 51. 

By definition, a p-fold (sub)normal code has at least 2~ codewords. For example, the 

code [F$* is a p-fold r-covering for 

where M =22’ is the cardinality of this code. Therefore, this code is not p-fold 

(sub)normal. In Section 3 we show for r<2 that if an [n, k] code C is a p-fold 

r-covering and n > 2r + 1, then C is p-fold normal. 

Example 2.3. If the codes Ci c [F; (i= 1,2, . . . , k) are subnormal pi-fold r-coverings 

(normal pi-fold r-coverings with respect to the first coordinate) and CinCj=@ when 

i #j, then their union UCi is a subnormal (,ui +p2 + . . . + pk)-fold r-covering (normal 

(,u~ + p2 + ... +&-fold r-covering with respect to the first coordinate). 
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Example 2.4. If the codes Cc (i= 1,2) are pi-fold ri-coverings then their direct sum 

Ci @ C2 = {(a, b)l UEC,, ~EC,} is a plpz-fold (rl +r,)-covering. In the following 

theorem we see how using the ADS we can save one coordinate compared to the 

direct sum. 

Theorem 2.5. Suppose that an (nA, MA) code A is a subnormal PA-fold r,-covering with 
A= A,uA2 acceptable, and that an (nB, MB) code B is a normal p&old r,-covering with 
thefirst coordinate acceptable. Then the ADS of A and B, 

A&3 B={(a,b)laEA,, (O,b)cB}u{(a,b)laEAz, (1,b)EB) 

is an (n,++- 1, M) code which is a subnormal uLau&old (r,+rB)-covering, where 

M = I AI 1. BP’1 + I A2 1. IB’:‘I. If A is a normal ,a,-fold r,-covering with the lust coordi- 
nate acceptable and we choose AI = AtA’ and AZ= AyA’, then A 6 B is a normal 
uAuB-fold (rA + r,)-covering. 

Proof. Denote C=A&B, and C1={(a,b)la~AI, (O,b)EB} and Cz={(a,b)Ia~A2, 
(1,b)EB). Let XEF~ and y~[Fy-l be arbitrary. By Definitions 2.1 and 2.2 we can find 

different words a:,a:, . . . ,aklEA,, a:, a:, . . . ,aEAEA, and (0, by),(O, bi), . . . ,(O, b,O,)E 

Bb”, (1, b:),(Lb;), . ..> (1, b:,)E B’,” such that 

d(a,?,x)+d(a?,x)<2rA+1 
and 

d((O,b~),(O,~))+d((Lbj),(O,y))<2r~+l. 

Consequently, if we choose 

cl!,j=(a!, by)ECl and cf,j=(aF,bj’)EC2, 

then we have 

d(c:j,(x,Y))+d(c?,j, (x,Y)) 

~d(ai’,x)+d((O,b9),(O,y))+d(a?,x)+d((l,bf),(O,y))-l 

~(d(a!,x)+d(az,x))+(d((O,b9),(O,y))+d((l,bj),O,y)))-l 

d2r,+1+2rs+1-1=2(rA+rB)+1, 

proving our first claim. The second claim follows immediately from the first. 0 

Remark. Clearly, if A and B in the previous theorem are linear, and AI is a linear 

subspace of A of dimension dim A- 1 (in particular if A is a normal PA-fold 

r,-covering with the last coordinate acceptable and AI = AtA) and A2 = Ayl)), then 

A 6 B is also linear. 

Corollary 2.6. Assume that an [n,,, kA] code A is a normal pa-fold r,-covering with the 

last coordinate acceptable and an [ns, k,] code B is a normal pLg-fold r,-covering with the 
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first coordinate acceptable. Then there is an [n,., + n, - 1, kA + kB - l] code A 6 B that is 
a normal uAuLB-fold (rA + r,)-covering. 

3. Normality results for binary linear codes 

It is known that all binary linear [n, k] codes with covering radius 3 or less are 

l-fold normal (if k > 0) (see [3,11]). In this section we show that for r = 1 and 2 ail 

binary linear p-fold r-coverings of length at least 2r + 1 are p-fold normal. The proof is 

done in several steps. The case r = 1 is easy and is discussed in Theorem 3.2. The case 

r =2 is divided into two parts: in Lemmas 3.4-3.6 we prove the result when the 

minimum distance of the code is one, and in Lemma 3.7 and Theorem 3.8 we prove it 

when the minimum distance is two. 

In Theorem 3.3 we study 2-fold coverings and show that if C is a linear 2-fold 

r-covering of length n, r < n, and C has minimum distance one, then C is 2-fold normal. 

Lemma 3.1. Suppose C is a u-fold r-covering with ~22 and with minimum distance d. 

Then ddr. 

Proof. Any codeword of C must be r-covered by another codeword of C, and hence 

d < r as claimed. 0 

From now on C will be a linear code of length n. If XE F”, then the support of x is the 

set {i ( x(i) = 1). In this section we will identify codewords with their supports. For 

example, { 1,2} will denote the word (1, 1, 0, 0, . . . )EF;. If x,y~lVj we will denote that 

x c y if the support of x is a subset of the support of y. 

Theorem 3.2. If an [n, k] code C is a u-fold l-covering and n b 3, then C is u-fold normal. 

Proof. If p= 1, then C had covering radius 0 or 1 and is normal by [3], i.e. l-fold 

normal. Assume ~22. Then CR”(C) = 1. 

If C = %q then C is a normal p-fold l-covering with respect to every coordinate. 

Indeed, it suffices to consider x =O” (the all-zero word) in (2), and we have 

~,{2},{3},...,{~},{2,3}~C~~and {l>,{l,2},{l,3},...,{l,~),(l,2,3}~C(1’~. 
Suppose therefore that C # E;. Without loss of generality, In} $ C and (1 } E C. We 

show that the first coordinate is acceptable. 

Case 1: Suppose XE C; w.1.o.g. again x = 0”. The point x is l-covered by some p - 1 

codewords x,{iI},{i2), . . . . {iP_2}ECr) and by {l}~C\l); hence d’(x,Ct))=O and 

d”-’ (x, Cr’)= 1. Furthermore, because ~22, {n} is covered by a word {n, i}, where 

if 1 (because of the linearity of C, i= 1 would imply {n}EC, a contradiction). Hence 

d’(x, Cg))<2. Because { l}eC and C is linear, we have d’(x, C\‘))<di(x, CL’))+ 1, and 

(2) follows for x. 
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Case 2: Suppose x$C; w.1.o.g. x= {n}. The point x is covered by P codewords 

0”,{n,j1},{n,j2},... ,{n,j,_,}~C~); hence d’(x,C6l))<l and d”(x,C\“)d2, proving 

(2) for x. 0 

Theorem 3.3. If an [n, k] code C is a 2-fold r-covering with minimum distance 1 and 
r < n, then C is 2-fold normal. 

Proof. We can assume r=CR’(C). Because the minimum distance of C is 1 we can 

assume that {l} EC. We show that the first coordinate of C is acceptable. Suppose 

XEF”, and d(x, C) = mincec d(x, c) = i. Because C is linear we can assume that x has 

weight i and that x(1)=0 (by adding a suitable codeword to x if necessary). Because 

r < n, we can choose YE [F; of weight r such that x E y and y( 1) = 0. Then y is r-covered 

by a codeword CEC, c#O”, c# { l}. By adding the word { 1) to c if necessary, we can 

assume that CEC~’ and d(x,c)<d(x,Jl)+d(y,c),<r-i+r=2r-i. Then O”,CEC~), 

{l},{l}+~~C~‘,d’(x,C~1’)+d2(x,C~1’)~d(x,O”)+d(x,(1}+c)~i+2r+1-i= 
2r+l and d2(x,C~‘)+d’(x,C~“)~d(x,c)+d(x,{1})~2r-i+i+1=2r+1. q 

Lemma 3.4. Assume that an [n, k] code C is a p-fold 2-covering and n 2 5, and that 
{~)EC. IfxEF;, wt(x)=l and d(x,C)=l, then ICg’nB3(x)l>p. 

Proof. The proof consists of five steps. 

Step 1: Denote by t (t B 1) the number of words of weight 1 in C. Then w.1.o.g. these 

t words are {l}, {2}, . . . , { t} and C = [Fi @ C’, where C’ E F;-f. Without loss of general- 

ity further x = {t + 11. Denote 

Y={cEC({t+l~~c~{t+l,...,n), wt(c)=2), 

%!==(c~Cl{t+l}Ecc(t+l,...,n}, wt(c)=3}, 

and 

s=I~l, u=l%l. 

Then x is 2-covered by exactly F := 1 + t + u + (1 + t)s codewords of C. Indeed if we 

denote S={{1},{2},..., {t]} E Q, then x is covered by 0” and by the words in 

F,oId,Y and Y++={a+bIaEY, KEY}. Only l+s of these F words belong to 

C\” and therefore ) Ca’nB, (x)1 = F - 1 -s. If there is a codeword z L (t + 1, . . . , n} of 

C of weight 2 such that ~$9 and z is not a sum of two words in Y, then z itself and the 

words in z+Y= {z+ b I beY} clearly belong to Ct’nB,(x) and hence 

ICCI “‘nB,(x)(>F-1-s+l+s= F 2 p and we are done. We can therefore in the rest of 

the proof assume that 

if zeC, wt(z)=2, zE{t+l,...,n} and ~$9’ 

then z is the sum of two words in 9’. (3) 

Step 2: If n-t < 1 then C = ff: 0 (0) (because d(x, C) = 1) and {t + 1 } is 2-covered 

by exactly t + 1 words in C. Now n3 5 implies that t>4 and I Cg’nB,(x)j 3 
l+(t-l)+(‘;‘)>t+l. Hence we can asume n-t>2. 
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Step 3: Assume now that there is an index j, t + 1 < j < n, such that (t + 1, j}$C 

(and hence {j} is not 2-covered by any CEC of weight 2 such that c E {t + 1,. . . , a} 

by (3)) and that for all h, t + 1 <h d n, we have {t + 1, j, h} +!C. We consider the words 

in C that 2-cover {t+ l,j}. By our assumptions the only words in C of weight 2 or 

less that 2-cover {t + 1, j> are O”, the words in Y, and all the other, say M, words CEC 

that 2-cover {t + 1, j} have weight 4 and satisfy c(1) = ... = c(t) = 0. Hence M + s + 12 p 

and, consequently, M > p -s - 12 p - F + 1 + s because F 2 2s + 2. These words to- 

gether with the F - 1 -s previously found words show that 1 Ch”nB,(x) I> p. 

Step 4: By step 3 and (3) we can assume that the s words in 9’ are (t+ 1, t +2), 
{t+l,t+3),...,{t+l,t+s+l) and the LJ words in 4?~ are (t+l,t+s+2,t+s+3}, 

{t+l,t+s+4,t+s+5}, . ..) {t+ l,n- 1, n}. Indeed, because there are no words of 

weight 1 in C’ it is clear that d(9’, a) = min {d(a, b) 1 ae9’, b&V’) 2 3, and if two words 

in L%I were only Hamming distance 2 apart then their sum would be a sum of two 

words in 9 by (3), contradicting d(Y’, @) B 3. 

Assume that u > 1 and {t + 1, n- 1, n}~@. The word (n} is 2-covered only by O”, the 

words in Y, by {t+l,n-l,n> and the s words {t+l,n-l,n)+Y and by some 

K words CEC of weight 3 for which cn{t+ l,n- l,n}={n> (there are no words 

cs{t+l,..., n}, for which cn{t+l,n-l,n}={t+l,n} by the assumption at the 

beginning of step 4). Therefore 1 + t + 1 +s+ K 2~. If ~22 then F >2s+t+ 3 and 

K~~-s-t-2=~-(2s+t+3)+1+s~~-F+1+s.AlltheseKcodewordscsatisfy 

c(l)=0 because {n> is not covered by any codewords UEC of weight 1 or 2 such that 

ac{t+l,... , n> (by (3)). These codewords added to (t + 1, n - 1, n} together with the 

F - 1 -s words of C found in step 1 again show that 1 C6”nB,(x) 12 p. 

Step 5: By step 4 we can assume that u < 1. Ifs 2 3 then the F - 1 -s words found in 

step 1 and the words in Y+ 9’\{0”} and Y+ Y + Y\Y prove our claim because 

(i)+(i) 3 1 + s. Hence we may also assume s < 2. Now step 3 (or what is said at the 

beginning of step 4) implies that n-t < 5. Now there are only the following possibili- 

ties (w.1.o.g.): (1) n-t = 2 and C’ is generated by 11; (2) n-t = 3, C’ generated by the 

words 110, 101 (t = 2 implies p < 7; t 2 3 is clear); (3) n-t = 3, C’ generated by 111; 

(4) n-t=4, C’generated by 1110, 1001 (t=l implies ,u<3; t=2 impliespL5; tg3 is 

clear); (5) n-t= 5, C’ generated by 11100, 10010, 10001 (t= 1 implies ~<5; t=2 

implies .D d 7; t > 3 is clear). It is easy to check our claim in each of these cases using the 

assumption n Z 5. 0 

Lemma 3.5. Assume that an [n, k] code C is a p-fold 2-covering, k < n, n B 5 and that 
(~)EC. Then 

IC!j1)nB3(0”)1 >p- 1. 

Proof. Because C # IF”, we can again assume that (11, {2}, . . . , { ~}EC and 

{t+l},...,(n>$C d an use the same notation as in step 1 of the proof of the previous 

lemma. If U> 1 (resp. .sa 3) then the F - 1 -s words in C61’nBz(x) (we again denote 

x= {t+ 11) found in step 1 together with the words in u+Y for any U&L (resp. 
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Y’+ 9’) prove our claim. We can therefore assume u =0 and s<2. If s =0 we are 

already done. Using again the points in Y+Y we see that 1 Cg’nB,(O”)I > 
F-l-s+s-l~F-2.IfF>~wearedone.Ontheotherhand,ifF=~,s=lor2and 

n - t 3 4, then there is a point (a} not 2-covered by any word in Y and therefore there 

isawordcEC,cc{t+l,..., n} of weight 2 or 3 that 2-covers {n}, and we are done. If 

n - t < 3, u = 0, s = 1 or 2, F = p and n 2 5, it is again easy to check the remaining 

cases. 0 

Lemma 3.6. Assume that an [n, k] code C is a p-fold a-covering with minimum distance 
1 and na5. Then C is a normal p-fold 2-covering. 

Proof. Without loss of generality, { l}cC. Let XEF”, be arbitrary. We show that (2) 

holds for i= 1, N = 5. We know that d(x, C)<2. Because C is linear, we can assume 

that wt(x)d2 and x(1)=0. 

If C= IF; then it is easy to check that ~_l< 1 +n+(;), jC~)nB3(On)12(;)+n, 

ICb”nB,(O”)I Z(Z)+n+ 1, I C~“n&(O”)I 2(Y)+ 1, IC11)nB4(On)12(~)+n and 

IC ‘l’)nB,(O”)I >(Z)+n+ 1, which shows that the normality condition (2) holds for 

x=0”. We can therefore assume that C # F”, and that there is a word ye[F”, such that 

d(y, C)= 1. We use the same notations as in Lemmas 3.4 and 3.5 and assume that 

(1) ,..., (t}G (t+l> ,...) (n}$C for some t, 1 d t < n. 

If x=0” then d’(x,Cb’))=O, d’(x,C$,l))=l, d”-‘(x,C(d))<3 by Lemma 3.5, 

and d”(x, Cb”) < d “( { t + l}, Cg’) + 1 Q 4 by Lemma 3.4. Similarly, d ’ (x, Cl’)) = 1, 

d”-‘(x,C\1’)<3 (b ecause clearly (B,((l})nC’,“I>p-t), d’-‘(x,C(,‘))~d’-‘(x,Cb’)) 

+ 1 < 4 by Lemma 3.5, and finally d”(x, C\“) dd’( { t + l}, CL’)) + 2 < 5 by Lemma 3.4, 

This shows that (2) holds for x=0”. 

Similarly, if x= (t + l}, we have dS+’ (x, CL”)< 1 (by the definition of s in 

Lemma 3.4), d”(x, CL”) < 3 by Lemma 3.4, dp- 1 -‘(x, C\‘))< 3 (because 

~C~‘~nB,(x)J~~-l--_bytheproofofLemma3.4)andd~(x,C’,‘~)~d~(x,C~~)+1~4 

by Lemma 3.4. Therefore (2) holds for x. 

It remains to check that (2) holds if d(x, C)=2 and x has weight 2. Without 

loss of generality, x = {t + 1, t + 2). Because d(x, C) = 2 and x( 1) = 0, we know that x 

cannot be 2-covered by any CEC with c(l)= 1. Hence d”(x, CL’))<2 and 

dp(x, C’,“)dd“(x, CL”)+ 1 < 3, completing the proof of Lemma 3.6. 0 

Lemma 3.7. Assume that an [n, k] code C is a pfold 2-covering with minimum distance 
2 and na5, ~22, and that {1,2}~C. If d(x,C)=l then (2) holdsfor x when i=l and 
N=5. 

Proof. Because C is linear we can w.1.o.g. assume that wt(x) = 1 and that x(1) =O. 

Denote by s (resp. u) the number of codewords of C of weight 2 (resp. 3) that 2-cover x. 

Denote the corresponding sets by 9 and %, respectively. Then x is covered by the 

all-zero word 0” and these s + u words and by no others. 
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Case 1: Assume first that x=(2}. Then d’(x,C\“)=l, d”(x,Ct’)=l, 

d”-’ (x, CL’))<2 (all the words in B,(x)nC except { 1,2} belong to CL”). We next show 

that dpps(x, CT\“) < 3. Namely, the word { 1,2) is 2-covered by 0” and by itself, by some 

words CEC of weight 3 or 4 for which necessarily c(1) = 1 and by the words { 1, j}, (2, j} 

for some s- 1 indices j# 1,2, thus proving our claim. 

Finally, we show that d@(x, C\“) < 4, which then also implies that dJ’(x, CL’)) < 4 (add 

(1,2} to the words in B,(x)nC\“). Because every codeword CEC, c #On, that 2-covers 

(1) satisfies c(l)= 1 we have JB,(x)nC:“J >,u - 1. We show that there is at least one 

more codeword in B4(x)nC:“. If ( jl, jZ}EC for some j, >j2>2, then (1,2, j,, jz)EC 

and we are done. We can assume that no such codeword {jl,j2) exists. In particular, 

sd 2. Assume s = 2, and that the other word of weight two 2-covering { 2) is {2,3}. 

Then there are only three codewords of weight 2 in C, and hence p < 1 Bz (0”) n C I= 4. If 

,u=2 the claim follows because {1,2}, {1,3}~B~(x)nC 1”; if ~=3 (resp. 4) then {n} is 

2-covered by a word c (resp. by two words cl, c2) of weight 3 in Cb” and { 1,2}, { 1,3} 

and(l,2}+c(resp. {1,2}+c,,(1,2}+~~)be1ongto B4(x)nC\“.Finally,ifs=1,then 

p = 2 and the same argument as before (consider {n}) proves our claim. 

Case 2: Assume that x = (n} and that { 1, n} $C. We have dpmS- ’ (x, C\“) < 3 because 

all the words in B,({l, n})nC belong to B,(x)nCy’ except 0” and the s words of 

weight 2 that 2-cover x. Clearly, ds+ ’ (x, Cf’) = 1. 

We next show that d&(x, CL”)< 3. Denote ai = @nCi’), i=O, 1. Clearly, 

{O”}uYu~,u(~!, +@,)cB3(x)nC , t’. hence (B3(x)nCb1)l >,u-- 1. Furthermore, if 

1 4?ll I> 3 we are done. Assume therefore that 1 al ) < 2. Ifs 2 2 then there are two indices 

ji,jz such that {jl,n},{jz,n}EC and hence (j,, j2}EC, thus proving our claim 

({jl,j,}@!l+S!l because the minimum distance of C is two). If (+Yll=2 and s=l, 

then there are some codewords { 1, j,, n}, { 1, j,, n}, {j,, n}EC and their sum belongs to 

B,(x)nCa’.Hencewecanassumethat(l) I%!lI<1ands~1,0r(2) I%!,I=2ands=O. 

First suppose (1). If there are indices j,,j,, 1 #j, fn, 1 #j, #n, such that { jl,jz}EC we 

are done. In particular, we can assume that { 1,2) is the only codeword of weight 2 that 

does not belong to Y. Ifs = 0 (resp. s = 1) then p d 2 (resp. p < 3). If p < 2 (resp. p < 3) we 

are already done; if ,~=2 (resp. ,u= 3) then there is a word c&Y, CEC~‘) or 

c + (1,2}~C~) which, together with 0” (resp. 0” and the word in 9’), prove our claim. 

Then suppose (2) instead of (1). If the two words in el are { 1, ji, n}, i= 1,2, then their 

sum {jl,j2)EC has weight 2 and j,,j, 23. If there is any other CCC of weight 

2 satisfying c(l)=0 we are again done. In particular, we can again assume that the 

only CEC of weight 2 for which c(l)= 1 is the word (1,2}. Hence 0” is 2-covered 

by only three codewords of C and j_~< 3. Now the claim follows from 

{O”}u((l,2}+~l)cB,(x)nC~1~. 

Finally, we show that d”(x, C\“) Q 4. The word { l} is 2-covered by p - 1 codewords 

c1={L2},cz,..., p 1 c _ l C(1l) of weight 2 or 3. We show that there is at least one more 

codeword in B,(x)nC \‘) If {j,n)cC for some j, then {l,n)t$C implies that j>,3 and . 
{ 1,2} + (j, n} will do. Assume that no such j exists. If there is no word { 1, k, PI} in C, 

1 < k < n, then none of the words ci 2-covers {n} and there is a word c,, = {j,, j,, n} EC, 

3 d j, < j, < n (if j, = 2, adding cl would yield a codeword of the form { 1, k, n}), and 
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co+cl will do. Hence we assume that there does exist a word { 1, k,n)EC (then k> 3, 

otherwise (n} would be a codeword). If { 1, h} E C for some h > 3, then h # k because the 

minimum distance of C is 2, and { 1, k, n} + { 1, h} + { 1,2} will do. Assume therefore 

that no such h exists. If p = 2 we are already done, because { 1,2}, { 1, k, n}EB,(x)nC:‘); 
hence consider the case ~2 3. Then the word 0” has to be covered by another 

codeword of C of weight 2, say { kI, k2}, and 3 <k, < kz <n. If there exists such a word 

for which k, #k # kz then { 1, k, n} + {k,, k2} will do. If for every such word kI = k or 

kZ= k then there exists only one such word, and consequently there are only two 

words of weight 2 in C. Then ~=3 and we are done because (1,2}, (1, k, n}, 

{l,k,n}+{k,,k,)EB,(x)nC’,‘). 0 

Theorem 3.8. If an [n, k] code C is a ,u-fold 2-covering with n > 5, then C is ,u-fold normal. 

Proof. If ,u= 1 then C is l-fold normal by [3]. Hence assume p 22. If C is a p-fold 

l-covering then the result follows from Theorem 3.2. We can assume CR”(C)= 2. If the 

minimum distance of C is 1, then the result follows from Lemma 3.6. We can therefore 

assume that the minimum distance of C equals 2 and that { 1,2}~C. We show that the 

first coordinate is acceptable by showing that (2) holds for all xelF”, when i= 1 and 

N = 5. If d(x, C) = 1 this has already been shown in the previous lemma. It remains to 

consider the cases XEC and d(x, C)=2. 
Case 1: Assume d(x, C) = 2. By adding a suitable codeword to x if necessary, we can 

assume that wt(x) = 2 and that x( 1) = 0. It is easy to check that every CE C that 2-covers 

the point y=x + {l} satisfies c(1) = 1. Indeed, this is immediate if wt(c) 24, and if 

wt(c) = 2 or 3 and c(l) = 0 then x _c c, contradicting our assumption d(x, C) = 2. There- 

fore d’(x, C\“)63. Adding { 1,2} to these (at least) p words in B,(y) shows that 

d’(x. Cf’)63, completing the proof of case 1. 

Case 2: Assume XGC; w.1.o.g. x = 0”. Every codeword ceC, c #On, that 2-covers { 1 } 
belongs to C$i). Therefore d”-‘(x, C’,“)<3. It suffces to show that d’(x, Ct’)63, 
which then implies d”(x, C’,“)<5 because {1,2}~C. Every codeword CEC that 2- 

covers (2) satisfies c(l)=0 except (1,2}. Therefore IB,(x)nCg’l >p- 1. If there exists 

a word {jl,j2}EC, 2<j,<j,, or a word (j,,j,, j3}EC, 2<j,<j,<j,, we are done. 

Assume that no such codewords exist. Suppose there is another word of weight 2, the 

word {2,3} say, that 2-covers (2). Because (4) must be 2-covered by a codeword in 

C\{O”},wecanassumethat (2,4}~Cor{2,4,j}~Cforsomej>4(wecanadd(1,2}if 

necessary), but then adding {2,3} to this codeword proves our claim. Hence we can 

assume that the only codeword of C of weight 2 is { 1,2}, and thus p = 2. Then there 

exists a word cgC of weight 3 that 2-covers {rr} and c or {1,2} +c together with 0 

prove our claim. 0 
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