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SUMMARY

Oxidatively modified low-density lipoprotein (oxLDL)
plays a key role in the initiation of atherosclerosis by
increasing monocyte adhesion. The mechanism that
is responsible for the oxLDL-induced atherogenic
monocyte recruitment in vivo, however, still remains
unknown. Oxidation of LDL generates lysophospha-
tidylcholine, which is the main substrate for the
lysophosphatidic acid (LPA) generating enzyme
autotaxin. We show that oxLDL requires endothelial
LPA receptors and autotaxin to elicit CXCL1-depen-
dent arterial monocyte adhesion. Unsaturated LPA
releases endothelial CXCL1, which is subsequently
immobilized on the cell surface and mediates LPA-
induced monocyte adhesion. Local and systemic
application of LPA accelerates the progression of
atherosclerosis in mice. Blocking the LPA receptors
LPA1 and LPA3 reduced hyperlipidemia-induced
arterial leukocyte arrest and atherosclerosis in the
presence of functional CXCL1. Thus, atherogenic
monocyte recruitment mediated by hyperlipidemia
and modified LDL crucially depends on LPA, which
triggers endothelial deposition of CXCL1, revealing
LPA signaling as a target for cardiovascular disease
treatments.

INTRODUCTION

The formation of atherosclerotic lesions is governed by interac-

tions between circulating leukocytes and activated endothelial

cells (Weber et al., 2008). Increased rolling and adhesion of

monocytes precedes extravasation into the subendothelial
592 Cell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc.
space and constitutes the first morphological sign of inflamma-

tion during early atherosclerosis (Mestas and Ley, 2008).

Modified lipoprotein particles, such as oxidized low-density

lipoproteins (LDLs), which are generated in the vessel wall,

upregulate the expression of endothelial cytokines and adhesion

molecules that are essential for the monocyte recruitment (Glass

and Witztum, 2001). Previous studies in murine models have

shown that the CXCR2 ligand keratinocyte-derived chemokine/

CXCL1, which is the murine ortholog of GRO-a, plays an impor-

tant role together with other chemokines in atherogenic mono-

cyte recruitment (Weber et al., 2008). CXCL1 in the vessel wall

promotes macrophage accumulation and induces monocyte

arrest during early atherosclerosis, thus enhancing atheroscle-

rosis (Boisvert et al., 2006; Huo et al., 2001). Minimally modified

LDL stimulates CXCL1 deposition on the endothelial cell surface,

which is required by chemokines to effectively induce the arrest

of leukocytes (Schwartz et al., 1994). However, it is currently

unknown how lipoproteins stimulate atherogenic monocyte

recruitment in vivo.

Lysophosphatidic acid (LPA) is a phospholipid that is derived

from the enzymatic cleavage of lysophospholipids or phospha-

tidic acid by phospholipases, such as autotaxin. Several LPA

subspecies can be found that vary based on the type of fatty

acyl chain and the linkage to the glycerol backbone, characteris-

tics that affect biological activity (Aoki et al., 2008). Platelet

activation and mild oxidation of LDL leads to LPA biosynthesis

(Aoki et al., 2008; Siess et al., 1999), and elevated LPA levels

are present in the atherosclerotic lesion core (Rother et al.,

2003). LPA effects are primarily mediated by seven G protein-

coupled receptors, such as LPA1, LPA2, and LPA3 (Choi et al.,

2010). LPA participates in vitro in various biological processes

that are associated with atherogenesis (Smyth et al., 2008),

e.g., LPA stimulates endothelial-monocyte adhesion in vitro by

inducing the expression of adhesion molecules and chemokines

(Lin et al., 2007; Rizza et al., 1999). Furthermore, LPA plays an

important role in modified LDL-mediated activation of platelets,
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monocytes, andendothelial cells (Fueller et al., 2003;Gustin et al.,

2008; Siess et al., 1999). Hypercholesterolemia typically is asso-

ciated with increased serum levels of predominantly unsaturated

LPAs (Tokumura et al., 2002).While all these findings indicate that

LPAand its receptorsplaya key role in atherosclerosis, nostudies

have provided direct evidence for this association.

We studied the role of LPA in lipoprotein-induced monocyte

recruitment and atherosclerosis. We found that both modified

LDL and unsaturated LPA induced CXCL1-dependent arterial

monocyte adhesion, and this effect was dependent upon endo-

thelial LPA receptors and autotaxin. Furthermore, hyperlipid-

emia-induced atherosclerosis was reduced in Apoe�/� mice by

inhibition of LPA receptors, and unsaturated LPA accelerated

lesion formation in these mice.

RESULTS

LPA Mediates Modified LDL-Induced Monocyte
Recruitment
Ex vivo perfusion of mouse carotid arteries with mildly oxidized

(mox)LDL significantly increased rolling and adhesion of human

monocytic MonoMac6 cells under flow (Figures 1A and 1B); in

contrast, perfusion with native LDL did not have an effect on

monocyte rolling and adhesion. Pretreatment of the monocytic

cellswithanantibody thatblocksCXCR2orperfusionof theartery

with a CXCL1 antibody decreased both monocyte adhesion and

rolling (Figures 1Aand1B).Blockadeof the LPA1 andLPA3 recep-

tors with Ki16425 during moxLDL perfusion completely inhibited

monocyte rolling and adhesion (Figures 1A and 1B), indicating

that these receptors are required for moxLDL-mediated adhe-

sion. Endothelial LPA1 and LPA3 protein expression in murine

carotid arteries was confirmed by immunostaining (Figures S1A

and S1B). Whereas the content of total LPA in moxLDL was not

elevated (data not shown), the LPA precursor lysophosphatidyl-

choline (LPC) was significantly increased (by 21%) as compared

to native LDL. Cultured endothelial cells release autotaxin

(Figure S1C), which is known to convert LPC into LPA, and

blocking autotaxin with S32826 reduced moxLDL-induced

monocyte adhesion and rolling (Figures 1A and 1B). Next, the

effect of various LPA species on monocyte adhesion in carotid

arteries was studied. In contrast to LPA18:0, 10 mM of

LPA20:4 significantly increased monocyte rolling and adhesion

(Figures 1C and 1D). In the LPA20:4-treated arteries, adherent

monocytes directly start to migrate across the endothelium

(Figures S1D and S1E). Perfusion with 1-AGP increased

monocyte adhesion, but not rolling (Figures 1C and1D). Inhibition

of monocytic CXCR2 or endothelial CXCL1 prevented LPA20:4-

induced monocyte rolling and adhesion (Figures 1E and 1F).

Treatment with an antibody that inhibits P-selectin reduced

monocyte rolling in LPA20:4-treated arteries (data not shown).

Treatment ofmonocyteswith LPA20:4 did not increasemonocyte

adhesion (data not shown). Collectively, these data indicate that

autotaxin-dependent generation of unsaturated LPA mediates

moxLDL-induced monocyte adhesion through the CXCL1/

CXCR2 axis and endothelial LPA receptors.

LPA Receptors Release Endothelial CXCL1
CXCL1 protein expression in endothelial cells of mouse

carotid arteries was detected by immunostaining (Figure 1G).
C

To evaluate whether LPA stimulates endothelial deposition of

CXCL1 in vivo, two-photon microscopy was performed on

perfused carotid arteries that were stained with a fluorescently

labeled CXCL1 antibody (Megens et al., 2007; van Zandvoort

et al., 2004). As compared to the control buffer, LPA20:4

treatment visibly increased CXCL1 protein on the endothelial

surface (Figure 1H and Movies S1 and S2). In vitro, short-term

treatment with LPA20:4 increased CXCL1 secretion and surface

deposition on endothelial cells, which was prevented by

Ki16425 and by BAY11-7085, an inhibitor of IkB phosphoryla-

tion (Figures S1F and S1G). The inhibitor of Rho kinase

activation, H-1152, also reduced CXCL1 surface deposition

(Figure S1F). In contrast to LPA18:0, LPA20:4 induced

CXCL1 mRNA expression via LPA receptors in a NF-kB-depen-

dent manner (Figure S1H). MoxLDL-induced surface immobili-

zation and secretion of CXCL1 was inhibited by Ki16425

(Figures S1I and S1J). These results imply that unsaturated

LPA is important in moxLDL-induced endothelial CXCL1

deposition.

LPA1 and LPA3 Expression in Atherosclerotic Plaques
In normal mouse arteries, LPA1 expression is almost twice as

high as LPA2 and LPA3 expression (Subramanian et al., 2010).

Quantitative RT-PCR showed that mice that were fed a HFD

for 2 months had a decreased LPA2 mRNA expression level

(approximately 38%) compared to mice that were fed a normal

diet (Figure 2A). In contrast, the LPA3 expression level was

slightly increased in the HFDmice, whereas the LPA1 expression

level remained constant (Figure 2A). In Apoe�/� mice, LPA1 and

LPA3 were present on endothelial cells (Figure 2B), as well as on

macrophages within the plaque (Figure S2A). In vitro, macro-

phages expressed predominantly LPA2 and LPA3 (Figure S2B).

The endothelia within human plaques also expressed LPA1 and

LPA3 (Figure S2C). In conclusion, LPA2 expression is downregu-

lated during early atherosclerosis, and LPA1 and LPA3 are

expressed in lesional endothelial cells.

Role of LPA in Arterial Leukocyte Recruitment In Vivo
To investigate whether LPA can initiate arterial leukocyte adhe-

sion in vivo, leukocyte adhesion was studied with intravital

microscopy (IVM) of the carotid bifurcation after treatment with

LPA20:4. As compared to the control, a single injection of

LPA20:4 markedly increased the arterial adhesion of leukocytes

after 4 days (Figure 2C), although the plasma levels of total

LPA after 1 day and 4 days were not elevated (data not shown).

Simultaneous administration of an inhibitory CXCL1 antibody

completely prevented LPA-induced leukocyte adhesion (Fig-

ure 2C). In CCR2�/� mice, leukocyte adhesion was not reduced

after treatment with LPA20:4 (Figure S2D). Perivascular treat-

ment of the carotid artery with LPA20:4 also induced CXCL1-

dependent leukocyte adhesion (Figure 2D). Ki16425 treatment

decreased the hyperlipidemia-induced arterial leukocyte

adhesion in Apoe�/� mice by approximately 70% compared

to the control (Figure 2E). In Apoe�/� mice that were

treated with a CXCL1 antibody, additional Ki16425 treatment

did not reduce leukocyte adhesion (Figure S2E). Because

Ki16425 inhibits both LPA1 and LPA3 (Ohta et al., 2003), LPA

receptor-specific siRNA was locally applied to the carotid artery.

In contrast to LPA2-siRNA, treatment with LPA1- or LPA3-siRNA
ell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc. 593
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Figure 1. Unsaturated LPA Affects Arterial Monocyte

Recruitment

(A) Monocytic MonoMac6 cell rolling over perfused mouse

carotid arteries ex vivo after perfusion with native (nLDL) or

mildly oxidized (moxLDL) LDL for 1 hr. *p < 0.05 versus

moxLDL with or without control Ab; #p < 0.05 versus vehicle

and nLDL; n = 3–4 mice. Error bars are SEM.

(B) MonoMac6 cell adhesion to perfused mouse carotid

arteries ex vivo after perfusion with native or moxLDL for 1 hr. *

p < 0.05 versus moxLDL with or without control Ab; #p < 0.05

versus vehicle and nLDL; n = 3–4 mice. Error bars are SEM.

(C) MonoMac6 cell rolling over perfusedmouse carotid arteries

ex vivo after perfusion with the control buffer, LPA18:0,

LPA20:4, or 1-AGP18:1 for 1 hr. *p < 0.05 versus all other

groups; n = 4 mice. Error bars are SEM.

(D) MonoMac6 cell adhesion to perfused mouse carotid

arteries ex vivo after perfusion with the control buffer, LPA18:0,

LPA20:4, or 1-AGP18:1 for 1 hr. *p < 0.05; n = 4 mice. Error

bars are SEM.

(E) MonoMac6 cell rolling over perfusedmouse carotid arteries

ex vivo after perfusion with LPA20:4 for 1 hr. *p < 0.05

compared to LPA20:4 with or without control Ab; #p < 0.05

versus vehicle; n = 5 mice. Error bars are SEM.

(F) MonoMac6 cell adhesion to perfused mouse carotid

arteries ex vivo after perfusion with LPA20:4 for 1 hr. *p < 0.05

versus LPA20:4 with or without control Ab; #p < 0.05 versus

vehicle; n = 5 mice. Error bars are SEM.

(G) Immunostaining for CXCL1 and von Willebrand factor

(vWF) in normal mouse carotid arteries. Scale bar, 20 mm.

(H) Two-photon microscopy of a perfused mouse carotid

artery ex vivo after treatment with control buffer or LPA20:4.

CXCL1 was detected with a fluorescently labeled antibody

(red) in 3D reconstructions of the Z stack images. Green,

elastic laminae; blue, collagen.

Cell Metabolism

Lysophosphatidic Acid in Atherosclerosis

594 Cell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc.



A

LPA1

LPA3

vWF overlay
B

1LPA 2LPA 3LPA
0

20

40

60

80

100

120

140

160

*

#

m
R

N
A 

ex
pr

es
si

on
 (%

 o
f c

on
tro

l)

normal chow
1 month HFD
2 months HFD

0

10

20

30

40

C

le
uk

oc
yt

e 
ad

he
si

on
 (c

el
ls

/fi
el

d)

LPA 20:4 - + + +
CXCL1 Ab - - - +
control Ab - - + -

0

2

4

6

8

10

12

14

*

D

F

LPA 20:4 - + + +
CXCL1 Ab - - + -
control Ab - - - +

*

*

vehicle Ki164250

2

4

6

8

10

12

14

*

le
uk

oc
yt

e 
ad

he
si

on
 (c

el
ls

/fi
el

d)

E

le
uk

oc
yt

e 
ad

he
si

on
 (c

el
ls

/fi
el

d)

*

*

siNT siLPA1 siLPA3

le
uk

oc
yt

e 
ad

he
si

on
 (c

el
ls

/fi
el

d)

siLPA2

0

2

4

6

8

control Ab

CXCL1Ab

Figure 2. LPA and CXCL1 in Leukocyte Adhesion In Vivo

(A) LPA1, LPA2, and LPA3 mRNA expression in the aortas of Apoe�/� mice that were fed either a normal diet, a high-fat diet (HFD) for 1 month, or a HFD for

2 months. *p < 0.05 versus normal diet; #p < 0.05 versus 1 month HFD; xp < 0.001 for linear trend; n = 3–4 mice per group. Error bars are SEM.

(B) Double immunostaining for either LPA1 or LPA3 and von Willebrand factor (vWF) in aortic root plaques of Apoe�/� mice. Scale bar, 50 mm.

(C) Intravital microscopy (IVM) of leukocyte adhesion to murine carotid arteries that were treated with vehicle or LPA20:4 (2 nmol) by intraperitoneal injection.
#p < 0.05 versus untreated; *p < 0.05 versus control antibody; n = 3–4 mice per group. Error bars are SEM.

(D) IVM of leukocyte adhesion to murine carotid arteries that were treated with vehicle or LPA20:4 (2 nmol) by perivascular application in pluronic gel.

*p < 0.05 versus vehicle and LPA20:4 with CXCL1 antibody; n = 3–4 mice per group. Error bars are SEM.

(E) Leukocyte adhesion to the carotid artery of Apoe�/� mice following treatment with Ki16425 or vehicle detected by IVM. *p < 0.05; n = 3–4 mice. Error bars

are SEM.

(F) IVM of leukocyte adhesion in nontargeting (siNT), LPA1-, LPA2-, or LPA3-specific siRNA-treated carotid arteries of Apoe�/� mice. *p < 0.05 versus siNT and

LPA2-siRNA; n = 3–4 mice. Error bars are SEM.
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inhibited hyperlipidemia-induced leukocyte adhesion (Figure 2F).

Leukocyte adhesion fully recovered 14 days after LPA1- and

LPA3-siRNA treatment (Figure S2F). These data indicate that

LPA elicits sustained CXCL1-dependent arterial leukocyte adhe-

sion in vivo, which may account for the hyperlipidemia-induced

leukocyte recruitment via LPA1 and LPA3.
C

Unsaturated LPA Accelerates Atherosclerosis
Progression
Apoe�/� mice that were fed a high-fat diet (HFD) for 4 weeks

were treated with either LPA20:4, LPA18:0, or vehicle by

systemic injection to study the effect on the progression of

atherosclerosis. Compared to the control, LPA20:4 treatment
ell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc. 595
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Figure 3. The Role of LPA in Atherosclerosis Progression

(A) Lipid quantification of oil red O-stained thoracic aortas of Apoe�/� mice that were treated with vehicle, LPA20:4 (2 nmol/mouse, twice weekly), or LPA18:0

(2 nmol/mouse, twice weekly). *p < 0.05 versus all other groups; n = 5–6 mice per group. Error bars are SEM.

(B) The lesion area in the aortic root of Apoe�/� mice. Scale bars, 500 mm. *p < 0.05 versus all other groups; n = 4–6 mice per group. Error bars are SEM.

(C) Macrophage accumulation in lesions as determined by the Mac-2-immunostained area and the Mac-2+ cell count. Scale bars, 100 mm. n = 5–7 mice per

group. *p < 0.05 versus all other groups. Error bars are SEM.

(D) The lesion area (left) and Mac-2 immunostained area (right) in partially ligated carotid arteries of Apoe�/� mice treated perivascularly with LPA20:4 (2 nmol/

mouse) or vehicle. *p < 0.05; n = 3–4 mice. Error bars are SEM.
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increased aortic lipid deposition (Figure 3A), the plaque area in

the aortic root (Figure 3B), and the accumulation of macro-

phages (Figure 3C). In contrast, LPA18:0 treatment did not affect

plaque progression or plaque macrophage content (Figures 3A–

3C). There was no statistically significant difference in the lipid

levels for the three groups (Table S1). Perivascular treatment of

the carotid artery of Apoe�/�mice with LPA20:4 after partial liga-

tion increased the lesion size and the macrophage accumulation

(Figure 3D), indicating that LPA can affect lesion growth also
596 Cell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc.
from within the vessel wall. Thus, unsaturated LPA promotes

plaque progression and macrophage accumulation.

Inhibition of LPA1 and LPA3 Suppresses Diet-Induced
Atherosclerosis
To study the role of endogenous LPA in atherogenesis, Apoe�/�

mice fed a HFD were injected with Ki16425 daily for 3 months.

Treatment with Ki16425 did not affect the serum lipid levels or

the renal and liver function (Table S2). Compared to the control



Figure 4. The Effect of the LPA Receptors on Diet-Induced Plaque Formation

(A) Oil redO staining of en face-prepared aortas ofApoe�/�mice that were treatedwith vehicle or Ki16425 for 3months. *p < 0.001; n = 9mice. Error bars are SEM.

(B) The lesion area of aortic root sections of Apoe�/� mice. Scale bars, 500 mm; *p < 0.05; n = 5–8 mice. Error bars are SEM.

(C) Lesional macrophage accumulation in the aortic root of Apoe�/� mice determined by the Mac-2-immunostained area and the Mac-2+ cell count. Scale bars,

200 mm; *p < 0.05; n = 4–9 mice. Error bars are SEM.

(D) a-SMA immunostaining for lesional smoothmuscle cell accumulation in the aortic root ofApoe�/�mice. Scale bars, 200 mm; n = 7–9mice. Error bars are SEM.

(E) Immunostaining for lesional CXCL1 expression in the aortic root of Apoe�/� mice. Scale bars, 100 mm; *p < 0.05; n = 7–9 mice. Error bars are SEM.
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mice, Ki16425 decreased the lipid deposition by 38% (Figure 4A)

and the plaque area in the aortic root by 41% (Figure 4B)

and reduced the macrophage accumulation (Figure 4C).

Whereas the macrophage accumulation was reduced in the
C

Ki16425-treated mice, no difference of the lesional SMC content

was detectable (Figure 4D). The CXCL1-immunostained area in

the plaque of Ki16425-treated mice was decreased (Figure 4E).

The expression of CCL2, CCL5, and CX3CL1 in the lesions was
ell Metabolism 13, 592–600, May 4, 2011 ª2011 Elsevier Inc. 597
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not reduced by Ki16425 (Figure S3A). In Apoe�/� mice that

were treated with a blocking CXCL1 antibody, plaque size and

the lesional macrophage content were not decreased by

Ki16425 (Figure S3B). Hence, blocking the LPA1 and LPA3

receptors reduces lesional macrophage accumulation mainly

through CXCL1, which ultimately impairs atherogenesis.

DISCUSSION

The oxidative modification hypothesis states that modified LDL

affects many aspects of atherogenesis (Stocker and Keaney,

2004). Though several experimental studies have supported

this hypothesis, the specific LDL components that affect athero-

sclerosis in vivo are unknown (Steinberg, 2009). We have shown

that LPA accelerates the progression of atherosclerosis and

recruits leukocytes to the vessel wall during early atherogenesis

via LPA1 and LPA3 receptor-mediated release of endothelial

CXCL1. Inhibition of the LPA receptors impaired hyperlipid-

emia-induced arterial leukocyte adhesion and reduced diet-

induced atherogenesis, indicating that lipoprotein-derived LPA

plays a crucial role in atherosclerosis.

The oxidation of LDL is associated with cleavage of oxidized

phospholipids via lipoprotein-associated phospholipase A2,

which generates LPC (Steinbrecher et al., 1984). LPC is a physi-

ological substrate of autotaxin, which is a major LPA-producing

enzyme (Nakanaga et al., 2010).We demonstrated thatmoxLDL-

induced monocyte adhesion to the arterial wall via CXCL1 is

dependent upon the endothelial LPA receptors LPA1 and LPA3

and autotaxin activity. Furthermore, LPA20:4 closely mimics

the effect of moxLDL on CXCL1 secretion and monocyte

recruitment. Thus, our data are consistent with the concept

that oxidation of LDL gives rise to LPC, which is a substrate for

LPA generation by autotaxin-related mechanisms. Interestingly,

autotaxin that is secreted from endothelial cells recruits lympho-

cytes to the lymph nodes via LPA production (Kanda et al., 2008;

Nakasaki et al., 2008) and is upregulated after vascular injury

(Panchatcharam et al., 2008). Although our results do not

suggest that the CCL2/CCR2 axis mediates LPA-driven leuko-

cyte adhesion, LPA upregulates the endothelial expression of

numerous chemokines and adhesion molecules, which may

participate in the CXCL1-dependent recruitment of monocytes

in vivo (Lin et al., 2007; Rizza et al., 1999). In addition to themodi-

fication of LDL, platelet activation also leads to the generation of

LPA, which could affect atherogenesis (Aoki et al., 2008; Davı̀

and Patrono, 2007).

Saturated and unsaturated LPA species as well as the alkyl-

LPA analog 1-AGPhad differential effects onmonocyte adhesion

and rolling. Monocyte rolling ex vivo in perfused mouse carotid

arteries largely depends on interactions with the endothelial

adhesion molecule P-selectin (Ramos et al., 1999), and P-selec-

tin-dependent leukocyte rolling is enhanced by CXCL1 (Zhang

et al., 2001). P-selectin is stored within Weibel-Palade bodies

(WPB) and is transferred to the cell surface upon stimulation,

whereasCXCL1 is stored in non-WPBsecretory vesicles in endo-

thelial cells (Øynebråten et al., 2004). Because P-selectin is

involved in LPA20:4-induced monocyte rolling, we hypothesize

that both WPB and non-WPB endothelial vesicles are released

by LPA20:4. In contrast, 1-AGP18:1 may only induce CXCL1

secretion, thus increasing monocyte adhesion, but not rolling.
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Treatment with LPA20:4 enhanced the progression of athero-

sclerosis, and conversely, inhibition of LPA1 and LPA3 decreased

atherosclerosis in hyperlipidemicmice. Our findings indicate that

the effect of LPA on atherogenesis is due to increased macro-

phage accumulation following the LPA-induced arterial adhesion

of monocytes. Other LPA-dependent mechanisms, such as the

inhibition of macrophage emigration from plaques, however,

may additionally play a role (Llodrá et al., 2004). The subendothe-

lial space is generally regarded as the primary site for LDL modi-

fication, and thus LDL-derived LPA may accumulate in the

arterial tissue. LPA locally administered to the carotid wall

increased leukocyte adhesion and atherosclerosis like the

systemic application of LPA. Therefore, it is unlikely that an

unspecific systemic inflammatory response to the LPA injection

is responsible for the atherogenic effect. Furthermore, inhibition

of hyperlipidemia-induced leukocyte adhesion by targeting the

LPA receptors provides evidence that endogenous LPA exerts

functions like the administered LPA. This functional similarity

suggests that the dose of LPA used in this study represents

the amount of endogenously generated LPA, although the LPA

levels have not been directly compared.

Although diverse functions for LPA1 and LPA3 have been

described (Choi et al., 2010), several reports indicate that these

receptors have similar effects in vascular cells (Lin et al., 2007;

Subramanian et al., 2010), which may be due to the formation

of heterodimers of the two different LPA receptors (Zaslavsky

et al., 2006). Our findings suggest that the inhibition of either

LPA1 or LPA3may be sufficient to prevent atherogenic monocyte

recruitment. Additional in vivo studies, however, are required to

define the general role of LPA1 or LPA3 in the recruitment of

immune cells in order to assess the therapeutic potential of

LPA receptor inhibition in atherosclerosis.

In conclusion, we have identified a mechanism for modified

lipoproteins in atherosclerotic progression. Modified lipopro-

tein-derived LPA promotes CXCL1-induced monocyte adhesion

by activating LPA1 or LPA3 receptors and by releasing endothe-

lial CXCL1. Thus, the LPA receptors may be targets for cardio-

vascular disease treatment.

EXPERIMENTAL PROCEDURES

Animals

Apoe�/� mice were fed a HFD (21% fat, 0.15% cholesterol) and treated with

the LPA1/3 receptor antagonist Ki16425 (5 mg/kg/day) or vehicle by intraperi-

toneal (i.p.) injection for 12 weeks. In addition, Apoe�/� mice fed a HFD were

treated with a CXCL1 antibody (50 mg/mouse, twice weekly, i.p.) and either

Ki16425 or vehicle for 4 weeks. Furthermore, Apoe�/� mice fed a HFD for

4 weeks were injected with LPA20:4, LPA18:0 (2 nmol, twice weekly for

4 weeks) or PBS. Partially ligated carotid arteries of Apoe�/� mice on a HFD

were treated perivascularly with LPA20:4 (2 nmol, once weekly) or PBS dis-

solved in pluronic gel and harvested after 4 weeks. The animal experiments

were approved by the local authorities (LANUV NRW) in accordance with the

German animal protection laws.

Histology

The en face prepared aortas were stained with oil red O. Serial sections of the

aortic root or the carotid artery were stained with Movat’s pentachrome or

Elastica van Gieson stain.

Immunostaining

Mac-2 (clone M3/38), a-smooth muscle actin (a-SMA, clone 1A4), von Wille-

brand factor (vWF, polyclonal), CXCL1 (polyclonal), LPA1, and LPA3 (both
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rabbit IgG) were detected by immunofluorescence staining using directly

conjugated secondary antibodies.

Ex Vivo Perfusion of Carotid Arteries

Isolated, perfused carotid arteries from C57BL/6 mice were transferred to

an epifluorescence microscope stage and pretreated as indicated. Calcein-

AM-labeled MonoMac6 cells that were either untreated or treated with an

antibody against CXCR2 or control IgG were subsequently perfused through

the arteries. Monocyte adhesion and rolling were recorded during strobo-

scopic illumination.

Intravital Microscopy

Leukocyte-endothelial interactions in the carotid arteries were analyzed by

IVM (BX51, Olympus) after labeling of the circulating leukocytes with Rhodami-

ne6G. Following injection or perivascular administration of LPA20:4 (2 nmol),

IVM was performed in C57BL/6 mice that were treated with a CXCL1 antibody

or control IgG. Additionally, Apoe�/� mice fed a HFD for 4 weeks were studied

after treatment with Ki16425 or vehicle for 1 week. Alternatively, carotid

arteries were treated perivascularly with control siRNA, LPA1-, LPA2-, or

LPA3-specific siRNA (Dharmacon) dissolved in pluronic gel 4 or 14 days before

analysis.

Two-Photon Laser Scanning Microscopy

Carotid arteries were perfused ex vivo with LPA20:4 (10 mM) or a control buffer

for 1 hr. The CXCL1 deposition after staining with a Cy3-labeled CXCL1 anti-

body or the transendothelial migration of Calcein-labeled MonoMac6 cells

was imaged with an Olympus FV1000MPE multiphoton system.

Statistical Analysis

The data represent means ± SEMs and were compared with either a Student’s

t test or a one- or two-way ANOVA, followed by a Newman-Keuls or linear

trend posttest when appropriate (Prism, GraphPad). ANOVA analysis for

the randomized block design was performed with the SAS 8.0 software

(SAS Institute Inc., Cary, NC). A p value < 0.05 was considered significant.
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