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1. Introduction

Given any y = (y1, . . . , yn) ∈ Rn we set its norm as follows:

‖y‖ = max
{|y1|, |y2|, . . . , |yn|}. (1.1)

We may view y as a linear form and define its Diophantine exponent as

ω(y) = sup
{

v
∣∣ ∃∞ many q ∈ Zn with |qy + p| < ‖q‖−v for some p ∈ Z

}
(1.2)

where qy = q1 y1 + q2 y2 + · · · + qn yn .
Alternatively we may define Diophantine exponent of y in the context of simultaneous approxima-

tion:

σ(y) = sup
{

v
∣∣ ∃∞ many q ∈ Z with ‖qy + p‖ < |q|−v for some p ∈ Zn}

. (1.3)

It can be deduced from Dirichlet’s Theorem [C] that

σ(y) � 1

n
, ω(y) � n ∀y ∈ Rn. (1.4)
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Khintchine’s Transference Theorem (see Chapter V of [C] for instance) tells

ω(y) − n + 1

n
� σ(y) � 1

n − 1 + n/ω(y)
, ∀y ∈ Rn. (1.5)

In particular σ(y) = 1
n if and only if ω(y) = n. We call y not very well approximable if σ(y) = 1

n and
call y very well approximable otherwise. It is known that σ(y) = 1

n and ω(y) = n for a.e. y, hence the
set of not very well approximable vectors has full Lebesgue measure.

Following [K2] the Diophantine exponent ω(μ) of a Borel measure μ is set to be the μ-essential
supremum of the ω function, that is,

ω(μ) = sup
{

v
∣∣ μ{

y
∣∣ ω(y) > v

}
> 0

}
. (1.6)

If M is a smooth submanifold of Rn and μ is the measure class of the Riemannian volume on M
(more precisely put, μ is the pushforward f∗λ of λ by any smooth map f parameterizing M), then the
Diophantine exponent of M , ω(M), is set to be equal to ω(μ). In the spirit of (1.6) let us define

σ(M) = σ(μ)
def= sup

{
v

∣∣ μ{
y

∣∣ σ(y) > v
}

> 0
}
. (1.7)

ω(M) � n and σ(M) � 1
n by Dirichlet’s Theorem combined with (1.6) and (1.7). M is called extremal

if σ(M) = 1
n or ω(M) = n. A trivial example of an extremal submanifold of Rn is Rn itself.

K. Mahler [M] conjectured in 1932 that

M = {(
x, x2, . . . , xn) ∣∣ x ∈ R

}
(1.8)

is an extremal submanifold. This was proved by Sprindžuk [Sp1] in 1964. The curve of (1.8) has a no-
table property that it does not lie in any affine subspace of Rn . We might describe and formalize this
property in terms of nondegeneracy condition as follows. Let f = ( f1, . . . , fn) : U → Rn be a differen-
tiable map where U is an open subset of Rd . f is called nondegenerate in an affine subspace L of Rn

at x ∈ U if f(U ) ⊂ L and the span of all the partial derivatives of f at x up to some order coincides
with the linear part of L. If M is a d-dimensional submanifold of L we will say that M is nondegen-
erate in L at y ∈ M if any diffeomorphism of f between an open subset U of Rd and a neighborhood
of y in M is nondegenerate in L at f−1(y). We will say M is nondegenerate in L if it is nondegenerate
in L at almost all points of M .

It was conjectured by Sprindžuk [Sp2] in 1980 that almost all points on a nondegenerate analytic
submanifold of Rn are not very well approximable. In 1998 D. Kleinbock and G.A. Margulis proved
that

Theorem 1. (See [KM1].) Let M be a smooth nondegenerate submanifold of Rn, then M is extremal, i.e. almost
all points of M are not very well approximable.

[K1] studies the conditions under which an affine subspace is extremal and showed that an affine
space is extremal if and only if its nondegenerate submanifolds are extremal. [K2] derives formulas for
computing ω(L) and ω(M) when L is not extremal and M is an arbitrary nondegenerate submanifold
in it. This breakthrough is achieved through sharpening of some nondivergence estimates in the space
of unimodular lattices (see Lemmas 8 and 9 for review). [K2] proves that

Theorem 2. (See Theorem 0.3 of [K2].) If L is an affine subspace of Rn and M is a nondegenerate submanifold
in L, then

ω(M) = ω(L) = inf
{
ω(x)

∣∣ x ∈ L
} = inf

{
ω(x)

∣∣ x ∈ M
}
. (1.9)
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This paper goes on to compute Diophantine exponents of nonextremal subspaces in the σ con-
text. We follow the strategy of associating Diophantine property of vectors with behavior of certain
trajectories in the space of lattices. Combined with dynamics we use nondivergence estimates in its
strengthened format (Lemma 8) to prove the following:

Theorem 3. If L is an affine subspace of Rn and M is a nondegenerate submanifold in L, then

σ(M) = σ(L) = inf
{
σ(x)

∣∣ x ∈ L
} = inf

{
σ(x)

∣∣ x ∈ M
}
. (1.10)

Theorem 3 shows that simultaneous Diophantine exponents of affine subspaces are inherited by
their nondegenerate submanifolds. Though Theorems 2 and 3 look much alike, the latter cannot be
deduced directly from the former. A simplified account for this can be found in (1.5). When ω(y) > n,
ω(y)−n+1

n > 1
n−1+n/ω(y)

and ω(y) might take on any value between the two fractions (we refer readers
to [J] for such examples).

We will also compute explicitly Diophantine exponents of affine subspaces in terms of the coef-
ficients of their parameterizing maps. One instance of our accomplishment is the derivation of σ(L)

where L is a hyperplane: Consider L ⊂ Rn parameterized by

(x1, x2, . . . , xn−1) → (a1x1 + · · · + an−1xn−1 + an, x1, . . . , xn−1). (1.11)

If we denote the vector (a1, . . . ,an) by a, then in Section 4 we will establish

Theorem 4. For L as described in (1.11)

σ(L) = max

{
1/n,

ω(a)

n + (n − 1)ω(a)

}
. (1.12)

The main result of this paper is actually much more general than Theorem 3. We will be consider-
ing maps from Besicovitch metric spaces endowed with Federer measures (we postpone definitions of
terminology till Section 2). We will be able to include in our results measures of the form f∗μ where
μ satisfies certain decay conditions as discussed in [KLW].

In Section 4 we will also study examples where σ(L) is determined by the coefficients of its
parameterizing map in a more intricate manner. In Section 5 we will give an illustration as to how
the process of ascertaining σ(L) differs from that of ascertaining ω(L).

2. Quantitative nondivergence

We will study homogeneous dynamics and how these relate to Diophantine approximation of vec-
tors. First we define the space of unimodular lattices as follows:

Ωn+1
def= SL(n + 1,R)� SL(n + 1,Z). (2.1)

Ωn+1 is noncompact, and can be decomposed as

Ωn+1 =
⋃
ε>0

Kε (2.2)

where

Kε = {
Λ ∈ Ωn+1

∣∣ ‖v‖ � ε for all nonzero v ∈ Λ
}
. (2.3)

Each Kε is compact by Mahler’s compactness criterion (see [M]).
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Remark 5. ‖ ‖ can be either the maximum or Euclidean norm on Rn+1 and both can be used for
decomposing Ωn+1 into union of compact subspaces because for each v = (v1, . . . , vn+1) there exist

C1 > 0 and C2 > 0 such that C1 max{|v1|, . . . , |vn+1|} �
√

v2
1 + · · · + v2

n+1 � C2 max{|v1|, . . . , |vn+1|}.

We assume it to be the maximum here and extend to the space of discrete subgroups of Rn+1. For
nonzero Γ we let ‖Γ ‖ be the volume of the quotient space ΓR�Γ , where ΓR is the R linear span
of Γ . If Γ = {0}, we set ‖Γ ‖ = 1.

Next we set

Σv
def= {

y ∈ Rn
∣∣ ∃∞ many q ∈ Z such that ‖qy − p‖ < |q|−v}

.

Obviously σ(y) = sup{v | y ∈ Σv}.
Set gt = diag{et/n, et/n, . . . , et/n︸ ︷︷ ︸

n

, e−t} ∈ SL(n + 1,R) with t � 0 and associate y ∈ Rn with matrix

uy =
(

In y
0 1

)
. (2.4)

Consider lattice

{(
qy + p

q

) ∣∣∣ q ∈ Z, p ∈ Zn
}

= uyZn+1. (2.5)

When we have gt act on vectors in uyZn+1 as defined by (2.5), the first n components will be ex-
panded and the last one (q) will be contracted. A definitive correlation between σ(y) and trajectory
of certain lattices in Ωn+1 was proposed and proved in [K1]. This is a special case of Theorem 8.5
of [KM2] on logarithm laws.

Lemma 6. Suppose we are given a set E ∈ R2 which is discrete and homogeneous with respect to positive
integers, and take a,b > 0, v > a/b. Define c by c = bv−a

v+1 , then the following are equivalent:

1. ∃(x, z) ∈ E with arbitrarily large |z| such that |x| � |z|−v ;
2. ∃ arbitrarily large t > 0 such that for some (x, z) ∈ E one has max(eat |x|, e−bt |z|) � e−ct .

In the light of Lemma 6, if we set v > 1/n, y ∈ Rn and E = {(‖qy + p‖, |q|) | q ∈ Z, p ∈ Zn}, (1) of
Lemma 6 is equivalent to

σ(y)y ∈ Σv .

By setting a = 1/n, b = 1 and R+ = {x ∈ R | x � 0} one sees (2) of Lemma 6 is equivalent to

gt u yZn+1 /∈ Ke−ct for an unbounded set of t ∈ R+, (2.6)

where ‖ ‖ is the maximum norm and

c = v − 1/n

v + 1
⇔ v = 1/n + c

1 − c
= 1 + nc

n(1 − c)
. (2.7)

If, in compliance with the definition of σ(y), we set

γ (y) = sup
{

c
∣∣ gt uyZn+1 /∈ Ke−ct for an unbounded set of t ∈ R+

}
(2.8)
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then by (2.7) we have

σ(y) = 1 + nγ (y)

n(1 − γ (y))
. (2.9)

Suppose ν is a measure on Rn , and v � 1/n, by (1.6) and what ensues σ(ν) � v if and only if

ν(Σu) = 0 ∀u > v. (2.10)

(2.10) is equivalent to

ν
({

y
∣∣ gt uyZn+1 /∈ Ke−dt for an unbounded set of t ∈ R+

}) = 0, ∀d > c, (2.11)

where c is related to v via fractions of (2.7).
(2.11) can be further simplified into

ν
({

y
∣∣ gt uyZn+1 /∈ Ke−dt for an unbounded set of t ∈ N

}) = 0, ∀d > c. (2.12)

By the Borel–Cantelli Lemma, a sufficient condition for σ(ν) � v , or (2.12) is

∞∑
t=1

ν
({

y
∣∣ gt uyZn+1 /∈ Ke−dt

})
< ∞, ∀d > c. (2.13)

The following lemma, established in [K2], serves as a sharpening of quantitative nondivergence.
First an assembly of relevant concepts from the same resource (to trace their historical development
see also [KM1,KLW]).

A metric space X is called N-Besicovitch if for any bounded subset A and any family β of nonempty
open balls of X such that each x ∈ A is a center of some ball of β , there is a finite or countable
subfamily {βi} of β covering A with multiplicity at most N . X is Besicovitch if it is N-Besicovitch for
some N .

Let μ be a locally finite Borel measure on X , U an open subset of X with μ(U ) > 0. Follow-
ing [KLW] we call μ D-Federer on U if

sup
x∈suppμ, r>0

B(x,3r)⊂U

μ(B(x,3r))

μ(B(x, r))
< D.

μ is said to be Federer if for μ-a.e. x ∈ X there exists a neighborhood U of x and D > 0 such that
μ is D-Federer on U .

An important illustration of the above notions is that Rd is Besicovitch and λ, the Lebesgue mea-
sure is Federer. Many natural measures supported on fractals are also known to be Federer (see [K2]
for technical details).

For a subset B of X and a function f from B to a normed space with norm ‖ ‖, we define
‖ f ‖B = supx∈B ‖ f (x)‖. If μ is a locally finite Borel measure on X and B a subset of X with μ(B) > 0
‖ f ‖μ,B is set to be ‖ f ‖B∩suppμ .

A function f : X → R is called (C,α)-good on U ⊂ X with respect to μ if for any open ball B
centered in suppμ one has

∀ε > 0 μ
({

x ∈ B
∣∣ ∣∣ f (x)

∣∣ < ε
})

� C

(
ε

‖ f ‖
)α

μ(B).

μ,B
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Roughly speaking a function is (C,α)-good if the set of points where it takes small value has small
measure. In Lemma 8 we will see that functions of the form x → ‖h(x)Γ ‖, where Γ runs through
subgroups of Zn+1, are (C,α)-good with uniform C and α.

Let f = ( f1, . . . , fn) be a map from X to Rn . Following [K2] we say that (f,μ) is good at x ∈ X if
there exists a neighborhood V of x such that any linear combination of 1, f1, . . . , fn is (C,α)-good
on V with respect to μ and (f,μ) is good if (f,μ) is good at μ-almost every point. Reference to
measure will be omitted if μ = λ, and we will simply say that f is good or good at x. For example
polynomial maps are good. [K1] proved the following result:

Lemma 7. Let L be an affine subspace of Rn and let f be a smooth map from U , an open subset of Rd to L which
is nondegenerate at x ∈ U , then f is good at x.

Furthermore if L is an affine subspace of Rn and f a map from X into L, following [K2] we say
(f,μ) is nonplanar in L at x ∈ suppμ if L is equal to the intersection of all affine subspaces containing
f(B ∩ suppμ) for some open neighborhood B of x. (f,μ) is nonplanar in L if (f,μ) is nonplanar in L
at μ-a.e. x. We skip saying μ when μ = λ and skip L if L = Rn . From definition (f,μ) is nonplanar
if and only if for any open B of positive measure, the restrictions of 1, f1, . . . , fn to B ∩ suppμ are
linearly independent over R. Clearly nondegeneracy in L implies nonplanarity in L. Nondegenerate
smooth maps from Rd to Rn as in Lemma 7 give typical examples of nonplanarity.

Let Γ be any discrete subgroup of Rk , we denote by rk(Γ ) the rank of Γ when viewed as a
Z-module. We denote by Sn+1, j the set of subgroups of order j in Zn+1 for 1 � j � n + 1.

Lemma 8. Let k, N ∈ N and C, D,α,ρ > 0 and suppose we are given an N-Besicovitch metric space X, a ball
B = B(x0, r0) ⊂ X, a measure μ which is D-Federer on B̃ = B(x0,3kr0) and a map h : B̃ → GLk(R). Assume
the following two conditions hold:

1. ∀Γ ⊂ Zk, the function x → ‖h(x)Γ ‖ is (C,α)-good on B̃ with respect to μ;
2. ∀Γ ⊂ Zk, ‖h(·)Γ ‖μ,B � ρrk(Γ ) .

Then for any positive ε � ρ one has

μ
({

x ∈ B
∣∣ h(x)Zk /∈ Kε

})
� kC

(
N D2)k

(
ε

ρ

)α

μ(B). (2.14)

Historically one theorem of [KM1] established the above lemma in its weaker form:

Lemma 9. Let k, N ∈ N and C, D,α,ρ > 0 and suppose we are given an N-Besicovitch metric space X, a ball
B = B(x0, r0) ⊂ X, a measure μ which is D-Federer on B̃ = B(x0,3kr0) and a map h : B̃ → GLk(R). Assume
the following two conditions hold:

1. ∀Γ ⊂ Zk, the function x → ‖h(x)Γ ‖ is (C,α)-good on B̃ with respect to μ;
2. ∀Γ ⊂ Zk, ‖h(·)Γ ‖μ,B � ρ .

Then for any positive ε � ρ one has

μ
({

x ∈ B
∣∣ h(x)Zk /∈ Kε

})
� kC

(
N D2)k

(
ε

ρ

)α

μ(B). (2.15)

For the wide number-theoretic applications of Lemma 9 we refer readers to papers like [KM1,
KLW], to name a few. [K2] proves with an inductive process that one can replace the second con-
dition ‖h(·)Γ ‖μ,B � ρ of Lemma 9 with ‖h(·)Γ ‖μ,B � ρrk(Γ ) and thus obtains a strengthening of
nondivergence estimates as recorded in Lemma 8. Both [K2] and the present paper exploit Lemma 8
to get Diophantine exponents of nonextremal spaces.
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Proposition 10. Let X be a Besicovitch metric space, B = B(x, r) ⊂ X, μ a measure which is D-Federer on
B̃ = B(x,3n+1r) for some D > 0 and f a continuous map from B̃ to Rn. Take c � 0 and assume that

1. ∃C,α > 0 such that all the functions x → ‖gt uf(x)Γ ‖, Γ ⊂ Zn+1 are (C,α)-good on B̃ with respect to μ;
2. for any d > c, ∃T = T (d) > 0 such that for any t � T and any Γ ⊂ Zn+1 one has

‖gt uf(·)Γ ‖μ,B � e−rk(Γ )dt . (2.16)

Then σ(f∗(μ|B)) � v, where v = 1/n+c
1−c .

Proof. Apply Lemma 8 with k = n + 1, μ = f∗(μ|B), h(x) = gt uf(x) , ρ = e−ct and ε = e−dt . d � c ⇔
ε � ρ . It follows that

μ
({

x ∈ B
∣∣ h(x)Zn+1 /∈ Ke−dt

})
� const · e−α d−c

2 tμ(B) ∀t � T . (2.17)

Hence

∞∑
t=1

μ
({

x ∈ B
∣∣ h(x)Zn+1 /∈ Ke−dt

})
< ∞ ∀d > c.

By previous discussion concerning (2.13), we conclude that σ(f∗(μ|B)) � v for v = 1/n+c
1−c , as de-

sired. �
To get an appreciation of the purport of the proposition, let us turn to the consequences of one of

the conditions failing to be met.

Lemma 11. Let μ be a measure on a set B ⊂ Rn, take c > 0, v > 1/n and c = v−1/n
v+1 . Let f be a map from B

to Rn such that (2.16) does not hold, then

f(B ∩ suppμ) ⊂ Σu for some u > v. (2.18)

Proof. If (2.16) does not hold, ∃ j with 1 � j � n + 1, a sequence ti → ∞ and a sequence of discrete
subgroups Γi ∈ Sn+1, j such that for some d > c

∀x ∈ B ∩ suppμ ‖gt uf(x)Γi‖ < e− jdti . (2.19)

By Minkowski’s lemma, we have ∀i, ∀x ∈ B ∩ suppμ there exists nonzero vector v ∈ gti uf(x)Γi with
‖v‖ � 2 je−dti therefore

gti uf(x)Z
n+1 /∈ K2 j e−dti for an unbounded set of t. (2.20)

Hence γ (f(x)) � d by (2.8) and σ(f(x)) � u for some u > v by (2.9). �
3. Applications and calculations

In this part we will utilize the theories established in Section 2 to get some tangible applications.
Let L be an s-dimensional affine subspace of Rn . Throughout we will parameterize it as

x → (x̃A,x) (3.1)
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where x̃ stands for (x,1), x ∈ Rs and A ∈ Ms+1,n−s where Ms+1,n−s denotes the set of matrices of
dimension (s + 1) × (n − s).

We record the following observation:

Proposition 12. Let L be an s-dimensional affine subspace of Rn described by (3.1), then

1

n
� σ(L) � 1

s
. (3.2)

Proof. Note that σ(y) � 1
n for all y ∈ L hence σ(L) � 1

n .
Also by (3.1) for all y ∈ L, σ(y) � σ(x1, . . . , xs), hence σ(L) � σ(Rs) = 1

s . �
Although for any particular y ∈ L, σ(y) is determined by how L is parameterized, later develop-

ment will show that σ(L) is independent of parameterization. In brief, we are merely interested in
whether a set is null or not, and that is unaltered under invertible linear transformations.

For any matrix A ∈ Ms+1,n−s we define

ω(A) = sup
{

v
∣∣ ∃∞ many q ∈ Zn−s with ‖Aq + p‖ < ‖q‖−v for some p ∈ Zs+1}. (3.3)

Comparing (3.3) with (1.3) and (1.2), we see that given vector y = (y1, . . . , yn)

ω(A) = ω(y) if A = y, ω(A) = σ(y) if A = yT . (3.4)

Suppose Rn+1 has standard basis e1, . . . ,en+1, and if we extend the Euclidean structure of Rn+1 to∧ j
(Rn+1) = ⊗ j

(Rn+1)\W j where W j is the subspace of j-tensors generated by transposition, then
for all

I = {i1, i2, . . . , i j} ⊂ {1,2, . . . ,n + 1}, i1 < i2 < · · · < i j

{eI | eI = ei1 ∧ ei2 ∧ · · · ∧ ei j , #I = j} form an orthogonal basis of
∧ j

(Rn+1).

If a discrete subgroup Γ ⊂ Rn+1 of rank j is viewed as a Z-module with basis v1, . . . ,v j then
we may represent it by exterior product w = v1 ∧ · · · ∧ v j . Observing ‖Γ ‖ = ‖w‖, we will be able to
compute ‖gt ufΓ ‖μ,B as in (2.16) directly.

Further computation shows (up to ± signs of permutations)

u yei =
{

ei if i = n + 1,∑n
i=1 y je j + en+1 if i = n + 1.

(3.5)

Hence according to properties of exterior algebra,

u yeI =
{

eI if n + 1 /∈ I,∑n
i=1 y jeI\{n+1}∪i + eI if n + 1 ∈ I.

(3.6)

Therefore w ∈ ∧ j
(Rn+1) under left multiplication of uy results in

uyw = π(w) +
n+1∑
i=1

Ci(w)yi (3.7)

where

π(w) =
∑
#I= j

〈eI ,w〉eI , (3.8)
n+1∈I
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Ci(w) =
∑
i∈I

I⊂{1,2,...,n}

〈eI\{i}∪{n+1},w〉eI , 1 � i � n,

Cn+1(w) =
∑

I⊂{1,2,...,n}
〈eI ,w〉eI , yn+1 = 1. (3.9)

Note that
∑n+1

i=1 Ci(w)yi denotes the image of uyw under the projection from
∧ j

(Rn+1) to
∧ j

(V ),

where V is the space spanned by {e1,e2, . . . ,en}. Apparently
∧ j

(V ) is orthogonal to π(w).

gt uyw = e− n+1− j
n π(w) + e

jt
n

n+1∑
i=1

Ci(w)yi . (3.10)

(3.10) shows that gt action tends to contract the π(w) part while extracting its orthogonal com-
plement. As for the norm, up to some constant,

‖gt u f̃ w‖ = max
(
e− n+1− j

n
∥∥π(w)

∥∥, e
jt
n
∥∥ f̃ ( )C(w)

∥∥)
(3.11)

where f̃ = ( f1, . . . , fn,1), and

C(w) =

⎛
⎜⎜⎝

C1(w)

C2(w)
.
.
.

Cn+1(w)

⎞
⎟⎟⎠ .

Denote by Θμ,B the R-linear span of the restriction of ( f1, . . . , fn,1) to B ∩ suppμ. Suppose Θμ,B

has dimension s + 1. Let g = (g1, . . . , gs,1) be a basis of the above space, then ∃R ∈ Ms+1,n+1 such
that f̃ = gR . ‖ f̃ C(w)‖ = ‖gRC(w)‖. As the elements of g are independent, up to some constant

∥∥ f̃ C(w)
∥∥ = ∥∥RC(w)

∥∥.

(2.16) is equivalent to ∀d > c, ∃T such that ∀t � T , ∀ j = 1, . . . ,n + 1 and ∀w ∈ Sn+1, j one has

max
(
e− n+1− j

n
∥∥π(w)

∥∥, e
jt
n
∥∥RC(w)

∥∥)
� e− jdt . (3.12)

We may restate (3.12) in the language of Lemma 6 in the following manner.
Set E = {(‖RC(w)‖,‖π(w)‖) | w ∈ Sn+1, j} which is discrete and homogeneous with respect to

positive integers.
Set a = j

n , b = n+1− j
n , then (3.12) means ∀c > c0 = j v−n

v+1 the second assumption of Lemma 6 does
not hold for large enough ‖π(w)‖.

This, by the same lemma, is equivalent to the first assumption not being met with v replaced by
any number greater than

a + c0

b − c0
= jv

v + 1 − jv
. (3.13)

Therefore (3.12) becomes equivalent to ∀ j = 1,2, . . . ,n, ∀u >
jv

v+1− jv and ∀w ∈ Sn+1, j with large
enough ‖π(w)‖ one has

∥∥RC(w)
∥∥ >

∥∥π(w)
∥∥−u

. (3.14)
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Now we will adopt strategies devised in [K2] to prove Theorem 3. Let L = f̃ (B ∩ suppμ). Suppose
L has dimension s and h : Rs → L is an affine isomorphism then ∃R ∈ Ms+1,n+1 such that

(h1,h2, . . . ,hn,1)(x) = (x1, x2, . . . , xs,1)R, ∀x ∈ Rs. (3.15)

Theorem 13. Let μ be a Federer measure on a Besicovitch metric space X, L an affine subspace of Rn, and let
f : X → L be a continuous map which is ( f ,μ)-good and ( f ,μ)-nonplanar in L. Then the following state-
ments are equivalent for v � 1/n:

1. {x ∈ suppμ | f (x) /∈ Σu} is nonempty for any u > v;
2. σ( f∗μ) � v;
3. (3.14) holds for any R satisfying (3.15).

Proof. Suppose the second statement holds, then the set in the first statement has full measure hence
is nonempty.

If the third statement holds previous discussion shows that (3.14) ⇔ (3.12) ⇔ (2.16). We may apply
Proposition 10 to get the second statement.

If the third statement fails to hold, then no ball B intersecting suppμ satisfies (2.16). By Lemma 11
f (B ∩ suppμ) ⊂ Σu for some u > v . This would undermine the first statement. �

From Theorem 13 we see that σ(L) � inf{σ(y) | y ∈ L} because the first statement implies the
second one. σ(L) � inf{σ(y) | y ∈ L} is apparent by definition.

σ(L) is inherited by its nondegenerate submanifolds because nondegeneracy implies ( f ,μ)-
goodness and ( f ,μ)-nonplanarity by previous conceptual discussions. Therefore σ(L) = σ(M) =
inf{σ(y) | y ∈ L} = inf{σ(y) | y ∈ M} and Theorem 3 is established.

Besides, Theorem 13 establishes that

σ(L) = sup
{

v
∣∣ (2.16) does not hold

}
. (3.16)

More significantly, it yields a more general result than Theorem 3.

Theorem 14. Let μ be a Federer measure on a Besicovitch metric space X, L an affine subspace of Rn, and let
f : X → L be a continuous map such that ( f ,μ) is good and nonplanar in L then

σ( f∗μ) = σ(L) = inf
{
σ(y)

∣∣ y ∈ L
} = inf

{
σ

(
f (x)

) ∣∣ x ∈ suppμ
}
. (3.17)

[KLW], for instance, studied ‘absolutely decaying and Federer’ measures and proved that if μ is
absolutely decaying and Federer, and f is nondegenerate at μ-a.e. points of Rd , then ( f ,μ) is good
and nonplanar. Theorem 14 is applicable to such generalized situations.

To make all this more explicit, first note that for an affine subspace L of dimension s matrix A as
described in (3.1) can be read from matrix R as in (3.15) and vice versa, since

R = ( A Is+1 ) . (3.18)

Set

σ j(A) (1 � j � n + 1)

= sup
{

v
∣∣ ∃w ∈ Sn+1, j with arbitrarily large

∥∥π(w)
∥∥ and

∥∥RC(w)
∥∥ <

∥∥π(w)
∥∥− jv

v+1− jv
}

(3.19)

and we derive
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Corollary 15. If L is an s-dimensional affine subspace of Rn parameterized by (3.1), then

σ(L) = max
{

1/n, σ1(A),σ2(A), . . . , σn(A)
}
. (3.20)

Proof. Note (3.14) ⇔ (3.12) ⇔ (2.16) then apply (3.16).
It remains to elucidate σn+1(A).

∧n+1
(Rn+1) is spanned by a single element e1 ∧ · · ·∧ en+1, hence

‖gt u f̃ w‖B,μ has a positive lower bound. (2.16) is always met as long as v > 1/n for j = n + 1, and we
replace σn+1(A) with 1/n in (3.20). �
4. Several examples

Corollary 15 will prove to be effective for deriving explicit formulas of σ(L). First we have

Theorem 16. σn(A) = ω(A)
n+(n−1)ω(A)

.

Proof. For w ∈ Sn+1,n ,

w =
n+1∑
j=1

x jeT �{ j} (4.1)

where T = {1,2, . . . ,n,n + 1} and x j ∈ Z.
Therefore

C j(w) = x jeT �{n+1}, 1 � j � n + 1, (4.2)

π(w) = ∑n
j=1 x jeT �{ j} , ‖π(w)‖ =

√
x2

1 + x2
2 + · · · + x2

n ,

∥∥RC(w)
∥∥ =

∥∥∥∥∥∥∥∥
( A Is+1 )

⎛
⎜⎜⎝

x1
x2
.
.
.

xn+1

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

xn−s+1
.
.
.

xn

xn+1

⎞
⎟⎟⎠ + A

⎛
⎜⎜⎝

x1
x2
.
.
.

xn−s

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
.

σn(A) is consequently equal to the supremum of v such that there exists x = (x1, . . . , xn+1) ∈ Zn+1

with arbitrarily large
√

x2
1 + · · · + x2

n and

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

xn−s+1
.
.
.

xn

xn+1

⎞
⎟⎟⎠ + A

⎛
⎜⎜⎝

x1
x2
.
.
.

xn−s

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
<

(√
x2

1 + · · · + x2
n

)− nv
v+1−nv

. (4.3)

In order for ‖RC(w)‖ to be sufficiently small, left side of the inequality of (4.3) has to be less
than 1, hence (xn−s+1, . . . , xn, xn+1) ∈ Zs+1 are determined by (x1, x2, . . . , xn−s) ∈ Zn−s . Up to some
constant

√
x2

1 + · · · + x2
n �

√
x2

1 + · · · + x2
n−s. (4.4)

Now that the definitions of σn(A) and ω(A) differ only by the exponents, we conclude that

nσn(A) = ω(A) ⇒ σn(A) = ω(A)
. � (4.5)
1 + (n − 1)σn(A) n + (n − 1)ω(A)
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Next we set out to prove Theorem 4 noting that we will be able to eliminate all σ j(A) for j < n
and only σn(A) matters.

Proof of Theorem 4. The aforementioned matrix R satisfies (a1x1 + · · · + an−1xn−1 + an, x1, . . . ,

xn−1,1) = (x1, . . . , xn−1,1)R . Therefore

R = ( A In ) ,

A =

⎛
⎜⎜⎝

a1
a2
.
.
.

an

⎞
⎟⎟⎠ ,

∥∥RC(w)
∥∥ = max

{∥∥C2(w) + a1C1(w)
∥∥, . . . ,

∥∥Cn+1(w) + anC1(w)
∥∥}

. (4.6)

We claim that σ j(A) (1 � j � n − 1) remain zero. To see this, consider w ∈ Sn+1, j : as the norm
of π(w) is tending to ∞ it suffices to show that ‖RC(w)‖ > ε for some ε > 0 for large ‖π(w)‖.

Suppose not and assume first that a1,a2, . . . ,an−1 are all nonzero. Recall

π(w) =
∑
#I= j

n+1∈I

〈eI ,w〉eI ,

C j(w) =
∑
j∈I

I⊂{1,2,...,n}

〈eI\{ j}∪{n+1},w〉eI , 1 � j � n,

Cn+1(w) =
∑

I⊂{1,2,...,n}
〈eI ,w〉eI .

Each term in C1(w) is of the form 〈eI\{1}∪{n+1},w〉eI ,1 ∈ I . For an arbitrary one, since the index
set I has i < n elements, ∃k > 1 such that k /∈ I .

Consider ‖Ck(w) + ak−1C1(w)‖ (it cannot have a positive lower bound by assumption), ‖Ck(w) +
ak−1C1(w)‖ � ‖ak−1〈eI\{1}∪{n+1},w〉eI‖, therefore 〈eI\{1}∪{n+1}w〉eI must be equal to zero. Conse-
quently C1(w) = 0. Ci(w) = 0 (2 � i � n) are forced to be zero by (4.6). This contradicts the fact
that π(w) is nonzero.

For arbitrary At = (a1, . . . ,at ,0, . . . ,0,an) first note that according to (4.6) we have Ci(w) = 0
(t + 1 � i � n) or ‖RC(w)‖ cannot be arbitrarily small.

∥∥RC(w)
∥∥ � max

{∥∥C2(w) + a1C1(w)
∥∥, . . . ,

∥∥Ct+1(w) + at C1(w)
∥∥}

. (4.7)

Employing previous analysis on (4.7) shows that Ci(w) = 0 (1 � i � t) hence π(w) has to be zero.
Therefore σ j(A) = 0 for j < n. Combining Corollary 15 and Theorem 16, Theorem 4 is estab-

lished. �
Remark 17. When At is of a special form (0,0, . . . ,0,a) our conclusion coincides with Satz 3 of [J]. The
latter proved this special case with elementary method. This method, however, is not easily adjustable
to more general situations.

In the next theorem we will study other subspaces than hyperplanes which highlight σ j(A) with
j < n.
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Theorem 18. Consider a line (L) ⊂ R3 that passes through the origin parameterized by x → (ax,bx, x). Set
y = (a,b) ∈ R2 , then

σ(L) = max

{
1/3,

σ (y)

2 + σ(y)
,

ω(y)

3 + 2ω(y)

}
. (4.8)

Proof. Because A = ( a b
0 0

)
in this case, by Corollary 15 and Theorem 16 we only need to prove

σ1(A) = 0 and σ2(A) = σ(y)
2+σ(y)

.
For w ∈ S4,1, w can be expressed as x1e1 + · · · + x4e4 with xi ∈ Z.

π(w) = x4e4,

C j(w) = x4e j, 1 � j � 3, C4(w) = x1e1 + x2e2 + x3e3,∥∥RC(w)
∥∥ = ∥∥( A I2 ) C(w)

∥∥ � |x4| =
∥∥π(w)

∥∥.

By (3.19), σ1(A) is zero as ‖RC(w)‖ becomes unbounded. Moreover

w ∈ S4,2 =
∑

1�i< j�4

xi, jei ∧ e j, xi, j ∈ Z. (4.9)

We have by (3.19) σ2(A) equal to the supremum of v such that there exists (p1, p2,q) ∈ Z 3 with
arbitrarily large |q| and

∥∥∥∥qa + p1
qb + p2

∥∥∥∥ < |q|− 2v
v+1−2v . (4.10)

Hence σ2(A) = σ(y)
2+σ(y)

as desired. �
5. Further remarks

We study one low dimension example to see some distinction between σ(L) and ω(L). Let L =
{(x,a) | x ∈ R} with σ(a) > 2. From definition we know at once that ω(x,a) � σ(a) ∀x, hence

ω(L) � σ(a). (5.1)

[K2] by using dynamics showed that the lower bound was actually attained

ω(L) = σ(a). (5.2)

From (1.5) and (5.2) we derive that σ(L) � 1
1+2/σ (a)

. However there seems to be no way to know
the exact value of σ(L) simply from results of ω(L).

On the other hand from Theorem 4 we derive that

σ(L) = 1

1 + 2/σ (a)
. (5.3)

It turns out (5.3) suffices to generate the exact value of ω(L) if we consider the following argu-
ment: by (1.5)

σ(L) � 1
. (5.4)
1 + 2/ω(L)
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By (5.3) and (5.1) and the fact that f (x) = 1
1+2/x is increasing we have

σ(L) � 1

1 + 2/ω(L)
. (5.5)

(5.4) and (5.5) show that σ(L) = 1
1+2/ω(L)

. Comparing this with (5.3) we see that ω(L) = σ(a) as
desired.
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