

A543 JACC March 17, 2015 Volume 65, Issue 10S

HIGH RESOURCE UTILIZATION FOR NON-CARDIAC HOSPITAL ADMISSIONS FOR ADULTS WITH CONGENITAL HEART DISEASE

Poster Contributions Poster Hall B1 Sunday, March 15, 2015, 9:45 a.m.-10:30 a.m.

Session Title: Clinical Data-Driven Outcomes Abstract Category: 10. Congenital Heart Disease: Adult Presentation Number: 1189-326

Authors: <u>Michael Seckeler</u>, Ian D. Thomas, Jennifer Andrews, Omar Meziab, Elissa Heller, Tabitha Moe, Scott Klewer, University of Arizona, Tucson, AZ, USA, Arizona Pediatric Cardiology, Phoenix, AZ, USA

Background: As hospitalizations for adults with congenital heart disease (CHD) are increasing, this study sought to compare costs for common non-cardiac admission diagnoses between adult patients with and without CHD.

Methods: Retrospective review of hospital discharge data from the University HealthSystem Consortium (UHC) from January 2011 through December 2013; UHC collects discharge data from 120 academic institutions and 308 affiliated hospitals. The database was queried for patients with ICD-9 codes for moderate and severe CHD, as defined by the 32nd Bethesda Conference. Patients were stratified by age: Group 1 (18 - 29y) and Group 2 (30 - 39y). Diagnosis, direct cost, length of stay (LOS), ICU admission and mortality rates were compared for the five most common non-cardiac admission diagnoses for non-CHD and CHD patients using t-test and χ2 test, as appropriate.

Results: The most common non-cardiac admission diagnoses are shown in the Table. Total direct cost, LOS, and ICU admission rate were higher in CHD compared to non-CHD patients for nearly all diagnoses in both groups, with no difference between CHD severity.

Conclusion: Hospital costs for common non-cardiac diagnoses are higher for adults with CHD of at least moderate severity. Long-term survival of CHD patients is increasing and, as our study shows, they utilize a disproportionate amount of medical resources. Further characterization of CHD patient costs will be important to reduce or prevent hospitalizations in these patients.

Table 1 - Five most common non-cardiac admission diagnoses and ICD-9 codes with comparisons of costs Group 1 (18 - 29 years)						
	Non-CHD (n = 1,643,600)	ModCHD (n = 5,236)	р	HiCHD (n = 1,606)	p	p (ModCHD vs HiCHD)
Asthma (493.90) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	137,500 (8.37%) 7,094 ± 17,763 4.7 ± 7.68 9.55 0.32	540 (10.31%) 19,897 ± 55,438 7.65 ± 17.35 37.29 1.11	< 0.001 < 0.001 < 0.001 < 0.001 0.001	133 (8.28%) 18,899 ± 34,891 6.36 ± 8.05 34.85 2.26	0.903 <0.001 0.013 <0.001 <0.001	0.017 0.843 0.404 0.572 0.303
Esophageal reflux (530.81) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	84,409 (5.14%) 9,823 ± 23,354 5.71 ± 10.63 11.45 0.49	439 (8.38%) 27,265 ± 69,307 8.85 ± 18.10 37.21 2.51	<0.001 <0.001 <0.001 <0.001 <0.001	134 (8.34%) 26,861 ± 59,616 6.79 ± 10.07 45.11 4.48	<0.001 <0.001 0.240 <0.001 <0.001	0.956 0.951 0.209 0.112 0.239
Urinary tract infection (599.0) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	53,966 (3.28%) 15,834 ± 42,316 9.28 ± 20.34 18.86 1.04	229 (4.37%) 41,589 ± 78,928 15.92 ± 22.01 51.54 5.68	<0.001 <0.001 <0.001 <0.001 <0.001	60 (3.74%) 54,506 ± 127,678 17.15 ± 31.08 46.67 5.00	0.309 < 0.001 0.003 < 0.001 0.003	0.266 0.329 0.726 0.502 0.838
Dehydration (276.51) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	41,865 (2.55%) 7,631 ± 17,990 5.21 ± 9.26 15.18 0.68	142 (2.71%) 18,018 ± 52,484 9.86 ± 27.42 25.53 2.82	0.450 < 0.001 < 0.001 < 0.001 0.010	46 (2.86%) 32,345 ± 85,565 15.15 ± 44.69 45.65 2.17	0.420 < 0.001 < 0.001 < 0.001 0.739	0.744 0.176 0.338 0.009 0.771
Acute kidney injury (584.9) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	37,997 (2.31%) 22,754 ± 57,125 9.88 ± 16.81 37.03 4.96	295 (5.63%) 75,734 ± 122,268 20.57 ± 25.93 69.97 11.19	<0.001 <0.001 <0.001 <0.001 <0.001	137 (8.53%) 77,390 ± 162,490 20.54 ± 39.48 66.18 8.76	<0.001 <0.001 <0.001 <0.001 0.041	< 0.001 0.907 0.993 0.477 0.442
Group 2 (30 - 39 years)						
	Non-CHD (n = 1,531,321)	ModCHD (n = 5,260)	p	HiCHD (n = 974)	p	p (ModCHD vs HiCHD)
Esophageal reflux (530.81) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	129,128 (8.43%) 9,803 ± 20,747 5,22 ± 8,24 12,23 0.56	605 (11.05%) 24,445 ± 57,130 8.62 ± 14.86 42.31 1.65	<0.001 <0.001 <0.001 <0.001 <0.001	78 (8.01%) 20,089 ± 22,880 7.54 ± 8.11 44.16 2.56	0.634 < 0.001 0.013 < 0.001 0.109	0.001 0.506 0.529 0.830 0.906
Asthma (493.90) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	111,198 (7.26%) 7,795 ± 16,478 4.73 ± 8.00 10.52 0.49	442 (8.40%) 20,143 ± 42,343 7.28 ± 9.55 36.01 1.58	0.001 < 0.001 < 0.001 < 0.001 0.003	47 (4.83%) 21,510 ± 63,597 6.72 ± 13.01 34.04 4.26	0.003 < 0.001 0.088 < 0.001 0.008	< 0.001 0.842 0.713 0.792 0.469
Hypothyroidism (244.9) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	70,162 (4.58%) 8,572 ± 22,519 5.12 ± 11.00 11.09 0.66	371 (7.05%) 27,671 ± 58,799 9.18 ± 15.45 42.19 3.23	<0.001 <0.001 <0.001 <0.001 <0.001	95 (9.75%) 34,063 ± 93,025 11.06 ± 24.06 39.36 4.21	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.003 0.408 0.352 0.552 0.879
Type 2 diabetes (250.00) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	66,513 (4.34%) 9,867 ± 23,810 5.53 ± 10.52 14.79 0.98	239 (4.54%) 32,102 ± 98,780 10.24 ± 21.30 48.52 3.35	0.477 < 0.001 < 0.001 < 0.001 < 0.001	44 (4.52%) 21,120 ± 35,297 7.50 ± 9.39 38.64 4.55	0.790 0.002 0.214 < 0.001 0.103	0.975 0.467 0.403 0.227 0.964
Acute kidney injury (584.9) Number of admissions (%) Direct costs (mean ± SD) Length of stay (days) ICU admission rate (%) Mortality (%)	53,720 (3.51%) 19,730 ± 47,828 9.40 ± 17.17 33.65 5.24	383 (7.28%) 58,381 ± 103,039 18.58 ± 28.78 60.16 8.36	< 0.001 < 0.001 < 0.001 < 0.001 0.007	131 (13.45%) 65,834 ± 136,467 20.60 ± 40.66 56.49 9.16	<0.001 <0.001 <0.001 <0.001 0.045	< 0.001 0.513 0.536 0.474 0.776