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Abstract

Graphical methods provide useful tools to study the structure of systems. The bond

graph approach is used in modelling process of dynamical systems. The matroid theory

o�ers a powerful tool if we are interested in combinatorial aspects of causality assign-

ment. This paper is organized as follows: after an introduction, Section 2 introduces

some matroid background, and Section 3 presents some matroid de®nitions about

structural properties. In Section 4, the main result of this paper is the proposal of a

procedure that constructs cycle and co-cycle graphs from graphical matroids de®ned in

the previous section. Validity of this procedure and some examples are shown in Sec-

tions 5 and 6, respectively, and concluding remarks are given in Section 7. Ó 1999

Elsevier Science Inc. All rights reserved.
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1. Introduction

In system control analysis and design, graphical tools are often used to help
the engineer in his task [4,7,10].
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The bond graph theory [7] is one of these methods in which the structural
and the physical information are encoded in bond graph words. The capabil-
ities of the bond graph concept as a pictorial representation of combinatorial
structure have already been examined [2,3].

The aim of this work is to deal with the structural analysis aspect of
dynamical systems modelled by bond graphs [11]. We propose by using
matroid theory [13] a uni®ed method as one general combinatorial tech-
nique.

A correspondence between graph theory and matroids de®ned on the bond
graph causality concept is pointed out and we propose a procedure for con-
structing graph associated with a graphical matroid.

It is known, in matroid theory, that the greedy algorithm always gives op-
timal solution. We propose an algorithm of this kind to cope with large-scale
bond graph models in order to obtain a base (maximal independent set) of a
de®ned matroid.

This base will be used in the proposed procedure to construct a graph that,
in turn, leads to any valid combination of causality assignment on the bond
graph model.

Finally, this procedure is validated by some theoretical results.

2. Matroid background

Many applications of this theory in engineering can be found in [9]. We give
some de®nitions that concern our study.

De®nitions. A matroid M is obtained as a pair M� (S, I) where S is a set which
represents the domain on which the matroid is de®ned and I is the independent
set of this matroid.

The independent set I must verify the three following axioms:
(I1) ; 2 I,
(I2) X1 2 I, X2 Ì X1 ) X2 2 I (i.e. each subset of an independent set is also

independent),
(I3) X, Y 2 I, jXj > jYj ) $ x 2 X n Y such that Y[ {x} 2 I.
The sets that do not verify these axioms are called dependent. A minimal

dependent set is called a circuit.
A base of a matroid is a maximal independent set, it belongs to the B set

which veri®es:
(B1) B ¹ ;,
(B2) jB1j � jB2j " B1, B2 2 B,
(B3) B1, B2 2 B, x 2 B1 ) $ y 2 B2 such that (B1ÿ {x}) [ {y} 2 B.
All the bases of B set have the same cardinality: it is called the rank of the

matroid, and is noted rg or q.
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Examples. We retrieve the matrix theory, graph theory, etc. Below some ex-
amples of matroids de®ned by their S-set and I-sets are given:

S: The edges set of a graph G; I: the forests of G.
S: The columns set of a matrix; I: linearly independent sets of columns.
S: a set with cardinality n; I: subsets whose cardinality is at most k,

0 6 k 6 n. The latter matroid is called the uniform matroid Un;k. The matroid
Un;n is called the free matroid, Un;0 the trivial matroid.

A matroid is graphic if the set S is isomorphic to the set of edges of a graph G.
A base of a matroid in this case corresponds to a forest of cardinality nÿ p

where n is the number of vertices and p the number of the connected compo-
nents.

U3;2 is graphic and represented by:

U4;2 is not graphic, i.e. cannot be depicted by a ®gure.
For matroids, duality is well complete and symmetrical.
Let B� � {X such that SÿX 2 B } where B 2 B for some matroid M. Then

there exists a matroid M� called the dual of M whose bases constitute the B�

set.
One important and unique feature of matroids, unlike graphs, is the fact

that any matroid possesses a unique dual whereas a graph has a dual if and
only if it is planar.

De®nition. A co-base of M is a base of M� and the dual rank function, noted q�,
is de®ned by

q��M� � q�M�� � co-rg�M�:

Property. The function q� veri®es: q�(X)� jX j+ q(SÿX)ÿ q(S).

3. Matroids for structural properties study

This section proposes a new theory that transposes all results obtained in
bond graph theory into matroid theory.

It is well known in bond graph theory that, the variables related to the
dynamical elements that are in derivative causality when a preferred integral
causality is assigned, constitute together with the other variables a dependent
set with regard to the equational model. The order of the model, i.e. the di-
mension of its vector space, corresponds to the number of I and C elements in
integral causality. These elements then constitute an independent set.
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It is known that bond graphs are suitable for generating state space equa-
tions. On these equations matroidal conditions for structural controllability
can be de®ned, as it is shown in [8], but the design of this intermediate model is
very costly.

From a structural point of view, on the digraph (or linear graph), Reinschke
[10] has established the conditions for a model to be controllable by computing
the number of cycles of width n (number of state vertices) in the graph asso-
ciated with the underlying linear model.

We recall in the sequel an interpretation of the degree of freedom in the
assignment causality procedure [6]. As a matter of fact, the maximal number of
I±C-elements that may be assigned to integral causality (via the MSCAP
procedure assignment of causality) [12] is ®xed even if some I±C-elements are in
derivative causality. The existence of causal paths between I or C elements and
some R-elements may allow di�erent possibilities in the assignment of the
causal stroke. We have insisted on the consequence of these combinatorics
when expressing the rank of the state matrix in matroidal terms.

In the application of the sequential causality SCAP method [7], independent
states are associated with storage ports that obtain the preferred integral
causality and dependent states are associated with storage ports that obtain
derivative causality. In the application of SCAP in derivative mode, indepen-
dent rates are associated with storage ports that obtain the preferred derivative
causality while dependent rates are associated with storage ports in integral
causality.

In the same manner, we can give some interpretation to the dependent and
independent sets among I±C elements when causality is assigned in integral or
in derivative. The correspondence between the Tables 1 and 2 summarizes this
analogy.

In the same previous work [6], matroid theory has been used to express some
results about structural analysis of systems modelled by bond graphs that
generalize the theorem shown in [11]. This theorem states the following:

Table 1

Assignation in integral Assignation in derivative

I±C in integral Independent states Dependent rates

I±C in derivative Dependent states Independent rates

Table 2

Primal matroid (M) Dual matroid (M�)

Independent set (base) Tree Co-tree

Dependent set Circuits (or cycles) Co-circuits (or co-cycles)
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Theorem. A dynamical system represented by bond graph is structurally con-
trollable if and only if:

(a) All I±C elements in integral causality are causally connected to a source.
(b) All I±C elements in integral causality when integral causality is performed

accept derivative causality when derivative causality is performed on bond graph.

De®nition 1. The de®nition set of the matroid associated with a bond graph is
constituted by the set of the (R, C, I) elements, noted E. A subset S of E re-
stricted to the dynamical elements I and C is de®ned. If these elements do not
exist, then the system is called static and thus will not be concerned by our
study.

De®nition 2. A subset of dynamical elements S is independent if all I and
C-elements of this subset are in integral causality when integral causality is
performed. This subset is noted IND1, and a matroid M1(S, IND1) is then
de®ned.

De®nition 3. A base of the matroid M1 is a maximal independent set with re-
gard to the cardinality of a set.

Property 1. A subset X of I±C-elements included in S is dependent if there exists
at least one element in derivative causality belonging to this set when integral
causality is performed on the bond graph. The minimal dependent sets are
called circuits or stigms. They constitute the set C and must verify the following
axioms:

(C1) ; 62 C
(C2) C1 2 C, C2 Í C1 �) C2�C1

(C3) C1 2 C, C2 2 C, a, b 2 S, a 2 C1 \ C2, b 2 C1ÿC2, then
$ C3 2 C such that b 2 C3 Ì C1 [ C2ÿfag.

Remark. A co-base of M1 is constituted by all the I±C elements in derivative
causality when integral causality is performed on the bond graph, the number
of these elements is the co-rank of the matroid M1 which was denoted by q�(M1).

Natural notions speci®c to matroid theory, like Duality, have their inter-
pretation in bond graph terms. In this work, duality is not only limited to the
junction structure as shown by Birkett [2], but also extended to causality. It will
be shown that integral causality and derivative causality induce dual matroids.

De®nition 4. Another matroid M2 noted M2(S, IND2) can be de®ned on the
same I±C elements set S. The independent set is each subset of S such that all
the I±C elements are assigned in derivative causality when derivative causality
is performed in the bond graph.
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Recalling that the co-rank is the complement of the rank relatively to the
dimension of the space or equivalently the rank of a co-base, the following
property is veri®ed.

Property 2. q�(M2)� q(M�
2 ) is the number of I and C elements remaining in

integral causality when a derivative causality is performed on the bond graph.
This property is helpful, if we want to express in matroid terms the theorem
shown in [11], regarding the structural controllability/observability property.

4. Graphical matroids

The existence of causal paths between the I±C elements in integral causality
and the I±C elements in derivative causality provides information about al-
gebraic relations between the rows of the junction structure matrix, associated
with the bond graph.

The interest in checking whether a matroid is graphic lies in the construction
of the graph that visualizes this matroid. This is achieved by performing an
isomorphism between the cycles of the graph and the circuits of the matroid or,
equivalently, between the trees that may be obtained from the graph and the
independent sets of the matroid.

We shall show, through an example, that the co-cycles of the graph deduced
from a bond graph give, in a combinatorial way, all the possible relations
between the rows of the associated junction structure matrix. We propose a
procedure which constructs the graph if either the M1 or M2 matroid is
graphic.

Procedure. (1) Given an independent set on the matroid M2, it can be
associated with a tree in a graph G where the edges are some dynamical
elements among I and C-elements.

The tree is built in an iterative way:
(a) Take any valid combination of derivative causality among the n I±C

elements. We may denote by bi the base element i � 1; . . . ; r and bk the co-base
elements k � 1; . . . ; q such that r � q � n. The combination is then written
b1 . . . brb1 . . . bq.

(b) Make a corresponding spanning tree so that the edges are incident at the
same and unique extremity called the root as seen below:
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(2) We complete the edges of the graph such that we obtain cycles as follows:
(a) For all elements in the co-base do:
If there exists a simple causal path (a causal path that does not go through

any I ;C;R element) between an element bk integral causality and a subset
bi1; bi2; . . . ; bim; im P 1, in derivative causality, then bi1; bi2; . . . ; bim; bk consti-
tutes a cycle.

In this step, if im > 2, then we remove the extra edges attached to the root as
shown below for im � 4:

b3 and b4 go to the second level of the tree
(b) For the remaining co-base elements, if there exists a causal path between

bm and some bi element, then bi and bm are two elements in integral causality
and derivative causality, respectively and they must interchange the causality,
they are kept in parallel in G.

The simplest case corresponds to two C-elements incident to 0-junction or
two I-elements incident to 1-junction.

We insist on the fact that the procedure fails if the matroid is not graphic as
we shall see in Example 2. Finally, we can say that this procedure can be ex-
ecuted by the aid of computer using cut and paste methods for building the
graph [2].

5. Validity of the procedure

The causality assignment is subject to a combinatorial problem [12], espe-
cially when several I±C elements have to be assigned in derivative causality or
when some R-elements are present, leading to a great number of possibilities
which grows exponentially. This combinatorial aspect is taken into account by
introducing matroids on bond graphs dealing with integral causality and/or
derivative causality.
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Proposition 1. If bÿ b1; . . . ; bÿ bi are causal paths, then in the assignment
b1 . . . bpÿ1bpbP�1 . . . bib, we have the causal paths bp ÿ b1; . . . ; bp ÿ bpÿ1,
bp ÿ bp�1; . . . ; bp ÿ bi; bp ÿ b. In other words, the knowledge of causal paths in
one maximal causality combination implies the knowledge of causal paths in any
other maximal combination of valid causality assignment.

Proof. In the graph G, b1 . . . bib constitutes an elementary cycle, i.e. the deletion
of one element leads to an independent subset. As the partial subgraph
b1 . . . bib is connected and by virtue of a known result in matroid theory which
says that for each co-base element, there exists a unique circuit which contains
it and no other co-base element (this circuit is called fundamental circuit), we
get the desired result. �

The same reasoning can be done if we consider the matroid M1. By duality,
for each base element there exists a unique cutset containing it and no other
base element.

Proposition 2. If, in a bond graph, we have r elements in derivative causality
and q elements in integral causality, then in any dual graph G� of the graph G
generated by the procedure, we have a base of q co-cycles and a base of r
cycles.

Proof. By construction, the procedure provides q elementary cycles in graph G.
Since the independent set is maximal (tree in the graph) it is a base of cycles
whose dimension is given by the nullity l(G) [5]. If a graph has n vertices, m
edges and p components, then this nullity can be computed by

l�G� � mÿ n� p:

In our case m � r � q, l�G�� q and p� 1.
Thus r � qÿ n� 1� q ® n� r � 1.
If k(G) designs the rank of G, then k(G)� nÿ p � r. �

Theorem 1. Let G the set of graphs obtained by application of the procedure from
the p possible valid assignments of causality: G � fG1; . . . ;Gpg. Thus Gi is is-
omorphic to Gj, i 6� j.

Proof. Let us consider a graph Gk obtained by this procedure. A cycle in this
graph is constituted by b1 . . . bjbk where b1 . . . bj correspond to elements in
derivative causality and bk to element in integral causality.

By construction, there exists a simple causal path between bk and
bi; 16 i6 j. Thus, we can obtain another valid causality assignment by inv-
erting causality on bi and bk.
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The latter combination is, by virtue of Proposition 1, a partial subgraph of a
graph Gi (more precisely a cycle) obtained by the procedure on the bond graph
with the previous assignation.

This theorem shows that we may assign an arbitrary valid derivative cau-
sality to the bond graph, the others are generated automatically.

We shall see now what happens when two elements or more change their
causality simultaneously:
1. The ®rst case corresponds to disjoint causal paths, between two di�erent

couples of I±C elements, where one is in integral and the other in derivative
causality. In this case if bi ÿ bk and bj ÿ bl contain no internal bond in com-
mon, then the simultaneous transition can occur corresponding to a partial
subgraph obtained by the procedure on the bond graph with the valid cau-
sality assignment:

b1 . . . bi . . . bj . . . bk . . . bl . . .

2. The second case is when the causal paths between the two couples are not
disjoint: two possibilities can occur if the common bonds stop at 0-junction
or at 1-junction as shown in Figs. 1 and 2, respectively (Ei symbolizes an el-
ement belonging to the I±C elements):
Let us denote the causal path E1E2 and E1E3 (the bar, `` '', placed upon the

element means that it is in integral causality), and by ® the inversion of the
causality process. It is obvious that: In a maximal derivative assignment, if we
change the causality in E2 (E2 ® E2) or E3 (E3 ® E3) we can easily verify that

Fig. 1. Causal path in common stop at 0-junction.

Fig. 2. Causal path in common stop at 1-junction.
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the causality in E1 has to change for E1 and thus, there exist causal paths
E2E1, E2E3 or E3E1, E3E2.

If some R-elements are present, then another possible assignment can occur
but it is not maximal regarding to a base and we cannot deduce information
about causal paths.

The same reasoning is carried out if the common causal path stops at
1-junction as shown in Fig. 2.

We conclude that it is impossible to have three simultaneous transitions or
more if the causal paths are not disjoint and no graph can be obtained from
those bond graphs.

Remark that two elements may transit simultaneously but not the third.
· If two elements were initially in integral causality and they transit in de-

rivative, it means that the maximum derivative causality was not assigned
and this is in contradiction with the assumption of the M2 matroidal struc-
ture.

· If the two elements were in derivative and they transit in integral, we loose
the concept of the base.
If one element is in integral causality and the other in derivative, then we

obtain a valid assignment when interchanging process.
Finally, all cases are covered by the procedure, isomorphism between dif-

ferent graphs being obtained by a simple transition of causality. �

The next step and more important result is the fact that any graph obtained
by the procedure is a graphical instance of the matroid M2. The next theorem
highlights the power of matroid theory which is an abstraction of graph theory
and bond-graph theory in the context of structural analysis study.

In what follows, we suppose that there exists at least one element in integral
causality because in the opposite case, only one graph can be obtained, more
precisely it is a tree.

Theorem 2. Any graph Gi, i � 1; . . . ; p, is a graphical representation of the
matroid M2; in other words, the matroid M2 is isomorphic to any cycle matroid of
some graph Gi.

Proof. To prove this theorem, it is necessary to prove that for any graph Gi, its
cycle matroid is isomorphic to M2 and vice versa.

(a) In one hand, let b1 . . . bibk; i6 r, a cycle of a graph Gi obtained by the
procedure.

This implies that b1 . . . bi are in derivative and bk is in integral, thus the set
fb1; . . . ; big is an independent set in M2.

Remark that fb1; . . . ; big is not necessary a maximal independent set but
only independent and we cannot a�rm that fb1; . . . ; bi; bkg is dependent in the
matroid M2.
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Let us take the set of the n dynamical elements in the bond graph
b1; . . . ; bi; . . . ; br; b1; . . . ; bq such that r � q � n.

From each element bj; �16 j6 q�, there exists a causal path to some
element bi.

The evident case is when the two elements are of the same type, in the op-
posite, we have two subcases.

(a1) bi and bj are of di�erent types, and the unique way to have a causal path
consists in traversing the R-elements, as shown in Fig. 3.

The latter case is in contradiction with the hypothesis of the base. Indeed, we
can increase by one the number of elements in derivative causality, the R-el-
ement allows this transition.

(a2) bi and bj are of di�erent types and there exists an odd number of gy-
rators in the causal path. An example is shown in Fig. 4.

In this case, we cannot change the causality without introducing causal
con¯ict.

(b) In the other hand , a minimal generating set of circuits of the matroid M2

is of dimension q, we can express this set by

C � fb1 . . . brb1; b1 . . . brb2; . . . ; b1 . . . brbqg:
Let us consider now the p cycles generated from any graph Gi obtained by

application of the procedure. We have already shown by Theorem 1 the is-
omorphism between those graphs and thus any graph can represent this class.

Let us denote by G{C} the cycle graph of the matroid M2.
Both of the graphs can lead to a circuit incidence matrix. Denote them by D1

and D2, respectively, where the rows represent the circuit's incidence and the
column set is the set edges of the graph, that is all the dynamical elements in the
bond graph.

Fig. 3. bi and bj are di�erent types and only one is in integral (the ®rst case).

Fig. 4. bi and bj are di�erent types and only one is in integral (the second case).
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By applying the procedure, for each j 2 {1; . . . ; p}, two cases may appear:
· either we obtain the causal paths bj ÿ b1; . . . ; bj ÿ bi �i > 2� and we obtain

the cycle b1 . . . bibj,
· or we have bj ÿ bl and thus bj ÿ bl is a loop.

Consider now the graph Gi. A tree is, by construction, in correspondence
with the r-elements in derivative; each time a bj; 16 j6 p; is added, a new cycle
(a dependent set with r � 1 elements). As introduced, this corresponds to a
circuit in M2.

The D1 matrix has the following form:

and the D2 matrix is as follows:

Two matrices Am�n and Bm�n are equivalent if and only if there exist Pm�m

and Qn�n regular such that

B � P A Q:

It has been demonstrated that two matrices are equivalent if and only if they
have the same rank. The latter result is easily veri®ed on the previous D1 and
D2 matrices, both are of the rank q and we conclude about the isomorphism
between the two graphs. Fig. 5 summarizes the correspondence. �

Fig. 5. Isomorphism between G{C} and Gi.
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6. Examples

Example 1. Consider the example given in [11] that models a two-axis robot,
one possible preferred derivative causality assignment is displayed (Fig. 6), I:I1
and I:I4 have an integral causality.

The corresponding matroid M2 is graphic and we obtain the graph of Fig. 7.
Consider now the partial graph composed of the I-elements and construct its

dual, i.e. each cycle will correspond to a co-cycle and vice versa. We have re-
moved the C-elements, C1 and C2, because they do not determine faces in the
graph. Then, we obtain the following graph.

We ®nd three co-cycles E1� � fI1; I2; I3g; E2� � fI2; I3; I4g, and
E3� � fI1; I4g.

Six possibilities appear for assigning a preferred derivative causality but one
of them is not valid (i.e. taking I1 and I4 in derivative): we may take four IC-
elements among the six to construct the base. The C-elements are always in
derivative because if one of them is in integral then we loose the base.

In this example, each co-cycle corresponds to the presence of direct causal
paths between elements in integral causality and those in derivative causality.

Fig. 6. Bondgraph assigned in one possible derivative causality.
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Each possible causality assignment gives two possible co-cycles among the
three previous ones.

We can remark that the I2 and I3 elements always occur together in the co-
cycles, this reveals that both of them are causally connected with I1 and I4, and
they are represented in parallel in the dual graph (Fig. 8): this explains the fact
that we cannot simultaneously a�ect I2 and I3 in integral causality when a
preferred derivative causality is performed without decreasing the cardinality
of the maximal independent set, namely the base. Moreover, through this ex-
ample, we have shown an important feature: integral causality and derivative
causality are handled by duality.

Finally, it can be noted that the interest of the proposed procedure lies in the
fact that we have not to generate all the possibilities, the result can be obtained
from any arbitrary valid initial derivative causality assignment, which gives
always isomorphic graphs.

In order to optimize the causality assignment procedure, the combination
which minimizes the interconnections between these co-cycles, E�i \ E�j �i 6� j�
can be chosen.

We easily verify Proposition 2, that is q � 2; n � 5, and k(G)� r� 4.
We may obtain two sets among E1�; E2�; E3�, which really constitutes a co-

cycle base of the dual of the graphs stemming from the procedure.
Finally, we have voluntary omitted in (Fig. 8) the edges C1 and C2 because

it is known in graph theory [1] that in a planar graph, the contours of the
di�erent faces constitute a base of independent cycles.

Example 2. Consider the following bond graph (Fig. 9) isomorphic to U4;2. It
should be noticed that there is a base composed of four elements in M1 (or M2),

Fig. 8. The dual graph obtained by removing the C-elements.

Fig. 7. The graph obtained by application of the procedure.
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but the I-element is common to each base, meanwhile we cannot assign more
than two elements in integral (or in derivative) causality among the four ele-
ments Ci; i � 1; . . . ; 4. This provides six valid combinations in the assignment
process (combination of 4 elements 2 by 2).

7. Conclusion

We have proposed mathematical foundations for the causality assignment
process in bond graphs based on matroids de®ned upon elements in integral or
derivative causality.

Thus, we have constructed a combinatorial procedure visualizing graphical
matroids and demonstrated theorems validating what we proposed.

Our contribution stipulates that any pictorial schema of bond graph is in
fact a representation of some equivalence class which regroups bond graphs
related together by existence of causal paths between the I±C elements in in-
tegral causality and the I±C elements in derivative causality.

Thus, only one pictorial representation of the class is necessary, we can
generate the others by isomorphism through the graphical matroid that in-
volves this class.

The important conclusion is that matroids on bondgraphs show, in a
combinatorial way, how we can analyse structural properties and the causality
assignment process in a more abstract manner.
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