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Abstract--An algorithm for the solution of the finite difference approximation of the perturbed 
biharmonic problem is proposed which consists of both direct and iterative stages. The optimality of this 
algorithm is proved under the opportune hypothesis on the perturbation. 

1. I N T R O D U C T I O N  

In solving non linear or time-dependent problems we frequently have to solve equations of  the type 

(T+aZI)u=v, a~R, (1) 

where T = M or T = N, M and N being the finite difference matrices respectively of  the Poisson 
and of  the biharmonic equation on an n x n grid with square mesh. 

The parallel solution of  such systems can be obtained by using direct algorithms similar to those 
proposed in Ref. [1] requiring O(log n) and O(n log n) time steps respectively when T = M and 
T = N, and a number  of  processors O(n2). 

In Ref. [2] an iterative method has been shown (parallel Gauss algorithm) for the LDU 
factorization and the solution of  tridiagonal and block-tridiagonal systems. 

It is possible to show that the combined use of  these direct and iterative algorithms produces 
two algorithms to solve equation (1), for sufficiently large values of  a, requiring O (n 2) processors 
and O(log n), O(n) time steps respectively when T = M and T = N. Since the fastest available 
sequential algorithm for equation (1) when T = N requires O (n 3) operations [3] [this algorithm uses 
a preprocessing phase requiring O(n 3) operations] then the resulting speed up and efficiency of our 
"per turbed"  biharmonic solver are S ( p ) =  O(n 2) and E ( p ) =  O(1). 

2. T H E  P A R A L L E L  G A U S S  A L G O R I T H M  

The parallel Gauss (PG) algorithm for the n x n Toeplitz tridiagonal linear system A x = b, with 

2 - '  1 a - 1  

A = . . . . . . . . . .  a e C, (2) 

- 1  a - 1  

- 1  a 

is essentially based on the classical Gaussian elimination algorithm: 

1. Factor  A = (I + L ) D ( I  + LT), 
where D --- diag(dt, d2 . . . . .  d,), L = subdiag(12, 13 . . . . .  1,). 

2. Solve (I  + L) f  = b; 
3. S o l v e ( I + L + ) x = g ,  w h e r e g = D - l f .  

Let d r = a ,  then d i = a - d / - J l ,  l i = - l / d ~ _ t ,  i = 1 , 2  . . . . .  n. 

The PG algorithm is carried out by the following three iterative methods: 

I . d , = a ,  d ° = a ,  d k ,=a-(d~_- t ' ) - t ,  k = l  . . . . .  IO. 
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Define ~ =  - l ld)?i,  j = 2, 3 . . . . .  n -- 1, then 

2. f 0 = b ,  f k = b _ / _ ~ f k - i ,  k = l  . . . . .  IF. 

Define gj = ~l~/dJl°), j = 1, 2 . . . . .  n, then 

3. x ° = ~ ,  X k = ~ - - £ T X  k- j ,  k = l  . . . . .  IX;  

where the i terat ion limit 1D, 1F, I X  m a y  be fixed in advance  or determined automat ical ly .  No te  
that,  because o f  the special s t ructure  o f  matr ix  A, at  the k th  step o f  the iterative me thod  1, only 
the new value o f  the (k + 1)th entry  has to be computed ,  whereas  the iterative methods  2 and 3 
require O(n)  processors.  

Let  1 = 41a- J 12, then it is possible to p rove  the following. 

L e m m a  2.1 

Let l ~< 1, then A is nonsingular ,  ladi-][ < 2 / 0  + ~/1 - l) and I1 - a -~dll < (1 - ~/1 - l)/2 V i. 
Fur the rmore ,  if II - a-~d°[ < (1 - ~/1 - 1)/2 and dl k = a V i then la(dk)-~ I < 2/(1 + ~/1 -- 1) and 
I I - a - ~ d ~ l < ( l - . , f l - l ) / 2  V / and k. 

h o o f  

The  bounds  can be p roved  by using the same technique as used in Ref. [2] for  the block P G  
algor i thm.  • 

Under  the same hypothesis  o f  L e m m a  2.1 it is possible to prove  that  
lID k - D II < 11(1 + ~/1 - 1) 2 lID k -  ' - D II. Moreover ,  we have 

I d , - d , _ , l  = l d i - _ ~ 2 d ; - J , l l d , _ , - d , _ 2 1  < l / ( l  + x / 1  + l)21d~_ ~ -  di_2l, 

and a similar bound  holds for  the i terates d k, i.e. 

Id~ - d~_, I < l l ( l  + d l  l )  z Id~--]' - d~_-2' I. 

By using the same technique shown in Ref. [2] it is possible to prove  the following. 

Theorem 2.1 

Assume l ,%< 1, then for  P G  

lID k - OII < l/(1 + x/1  - 1) 2 liD k - '  - D II, 

Ilf k - fll < v O / ( l  + x / q  - l ) l l f  k - '  - f l l  + dr ,  

and 

k = 2 . . . .  , ID,  

k = 2  . . . . .  IF, 

I Ix k - xll < %/7/ (1  + ,,/'1 - / ) l l x  k - '  - xll + d , ,  k = 2 . . . . .  IX, 

where dt and dx depend upon  the previous steps and can be made  arbi t rar i ly  small. 
In Ref. [2] an es t imat ion is given for  the total  n u m b e r  o f  i terat ions required to reduce the initial 

e r ror  e ° by a cons tant  factor  2 -b. Moreover ,  numerical  exper iments  giving results which are 
consistent  with the theoretical  es t imates  are shown. 

The  theoretical  analysis o f  the P G  algor i thm is carried out  by assuming that  the D and f i terations 
are pe r fo rmed  long enough so that  the quanti t ies dr and d~ which occur  in Theo rem 2.1 are 
negligible, i.e. the following relat ions are assumed to hold: 

l iD '< - D II < [ / / (1 + ~ /1  - / ) ~ ] k  iiDO _ D II, 

Il l  k - f l l  < I v 0 / ( 1  + ~ / 1  - l ) ]k  i i f0 _ f l l ,  

IIx k - xll < [ , , / '7/(1 + ~ / 1  - / ) ] J<  lix ° - xl l .  
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3. A P E R T U R B E D  B I H A R M O N I C  SOLVER 

Let us consider the perturbed biharmonic equation. 

V 4 u + d : u = f  in R, d e R ,  (3) 

where R is the unit square with the boundary conditions u(x, y) = 0 and u,,(x, y) = 0 for (x, y)  ~ fiR, 
and u,(x, y) is the outward normal derivative at the boundary.  Superimposing a square mesh on 
the unit square with mesh size h = 1/(n + 1), then a finite difference approximation leads to the 
linear system 

(N +a2I ) x=b ,  a e R ,  (4) 

N = 

where 

A = 

with 

C + I  
2B 
I 

2B I 
C 2B 1 
2B C 2B I 

1 2B 
• • . 

C + I  

X ~ 

xi 

/1 

, b - - -  

C = B 2 + (2 + a2)I + 2EE T, 

4 - 1  
--1 4 - 1  

- 1  4 --1 

--1 4 

ET=(O:  
\ e  s j ,  B = - A  and 

is an n x n matrix with eigenvalues 

lj = 4 -  2 cos[jrt/(n + 1)], j = 1, 2 . . . . .  n, and the corresponding eigenvector matrix 

( 2 yI2 ijx 
Q = (qij) = \ ~ - - ~  / sin n + 1" 

The system (4) can be expressed as 

(G + 2FFr)x  = b, 

where F = diag(E, E , . . . ,  E), G = M 2 + 2J  + a2 Iwi th  J = diag(L 0 , . . . ,  0, I , )  and M is the matrix 
associated to the five-point finite difference approximation of  the Poisson equation with Dirichlet 
boundary conditions, i.e. 

A - I  

- I  A - I  
M =  

- I  A - I  

- I  A 

Thus, by the Woodbury  ,formula, 

x = G - l b  - 2G-IF(I  + 2FTG-IF)-IFTG-Ib,  

and the algorithm proceeds as in the following four stages: 

1. Solve the 2n linear systems G Y = F. 
2. Solve the linear system Gv = b. 
3. Solve the linear system (12, + 2F ~ Y)z = FTv. 
4. Compute  x = v - 2 Yz, 
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It is possible to show that for the solution of the linear systems Gv = b and G Y  = F, by using 
direct algorithms similar to that proposed in Ref. [I], O(log n) steps and a number of processors 
of order O (n 2) and O (n 3) respectively suffice. On the other hand the use of the PG algorithm allows 
solving the linear systems G v = b and G Y = F with O (n 2) processors and a number of steps of order 
O(logn) and O(log 2 n) respectively, under the opportune hypothesis on d 2. 

Stage 1 

We have to solve the 2n systems 

Gy~=fk,  k = 2 ( i - I ) + j ,  i = 1,2 . . . . .  n, j  = !,2, (5) 

where yk and f k  a r e  the kth  columns of Y and F respectively, fk = ei®et, i f j  = 1, and f k  = ei®e., 
i f j  = 2, where el is the lth column of the n x n identity matrix. 

The problem of solving the linear systems (5) can be reduced [1] to that of solving the 2n 2 linear 
systems 

^ k  _ _  ~ k  ~ y j - f ~ ,  j = l , 2  . . . . .  n, k = l , 2 , . . . , 2 n ,  (6) 

where 

"q j +  1 

Pj 
1 

pj 1 
qj pj 1 
pj qj pj 1 

Pj q j + l  

, with q j = l ~ + 2 + a  z, 

^ k k p j = - 2 / j ,  ~ k = ( f j , , f j ~ , . . . , f ~ , ) T  and #=(y~,-kyj~ . . . . .  ~ , ) r ,  

k T k in which f ~  and ~ are the j t h  components of It = Q fl and Yt* = QTy,,, respectively. 
Therefore the algorithm consists of the following three stages: 

(a) Compute~t k=QTfk ,  l = 1 , 2  . . . . .  n, k - - 1 , 2 , . . . , 2 n .  
(b) Solve the 2n 2 systems (6). 
(c) C o m p u t e y k = Q y ~ ,  l = 1 , 2  . . . . .  n, k = l , 2  . . . . .  2n. 

Stage (a) does not affect the complexity of the algorithm because of the simple structure of F. 
In Stage (b) it is easy to see that the 5-diagonal matrix ~ cannot be decomposed as the matrix 
f~j in Ref. [1], but can be written as 

where 

R j =  

Tj = BjSj + 2EE T, 

- 1  

1 rj - 1  

- 1  rj - 1  
--I  rj 

SJ -- 1 [ 
--I  sj --1 

1 - 1  sj - 1  

- 1 SJ 

are Toeplitz tridiagonal matrices with entries rj = lj + ai, sj = lj - ai, i being the imaginary unit, and 
Irjl = Isj[ > 2. 

By the Woodbury formula we have 

~ = r]-'{~ = S]-' R ] - ' ~  - 2S]-' RT '  E ( I  + 2ET Sf-' Rj-'  E ) - '  ET S / '  R]-'{~, 

therefore the algorithm proceeds in the following way: 
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(i) Solve the linear system RjSjz k = ~k. 
(ii) Solve the two linear systems RjSjXj = E. 
(iii) Solve the linear system (12 + 2ETXj)x~ = ETz~. 
(iv) Compute ~k = Z~ -- 2Xjx~. 

Phase (i) can be performed by successively applying the PG algorithms to the two systems 

(7a) 

and 

Sjz~ = w~. (7b) 

It is possible to show that, under the opportune hypothesis on d 2, the bounds T = O(log 2 n) and 
p = O (1) can be obtained by successively applying the PG algorithm to the two systems (7a) and 
(7b), if we want to reduce the initial error by a factor 1/n 4. In fact, assuming that the errors, for 
the three iterations which comprise the parallel Gauss algorithm, satisfy relations of the type 

lie k÷l II < slick II, 

then we estimate the number of iterations to reduce the error norm by 2 - b =  1/n 4 as 
K = - 4 log n/log s. Therefore a number of iterations ID, IF, IX  of order O(log n) suffice, provided 
that s = s(n) is upper bounded by a constant < 1. We will comment on this point later. 

The system (7a) is of the type Rw = g where g = eib, ei being the ith column of the n x n identity 
matrix, and R is an n x n Toeplitz matrix of the type (2). As previously noted, at the kth step of 
the first iterative process of the PG algorithm only the (k + 1)th entry has to be computed. 
Therefore O(log n) steps and O(1) processors suffice to perform the first phase of  the PG algorithm. 

Let R = (I  + L ) D ( I  + L T) be the factorization of R, then the solution of (I + L)p = g can be 
obtained in T = O(log n) steps with O(1) processors because of the special structure of vector g 
and of matrix (I + L). In fact by applying the iterative method p0= g. pk= g _  L p k - i ,  where 
p0=  e~b and L = subdiag(/2, 13 . . . . .  /,), at the IFth step we obtain 

i+ lF  

pIF= ~ (--1)J-~ejqj, with q~=b, qj=ljqj_~,  j = i + l  . . . . .  i + I F .  
j = i  

Therefore we have to perform one multiplicative step at each iteration and after IF = O(logn) 
iterations we obtain a vector plr having only O(log n) nonzero entries. 

Analogously, the special structure of vector 0 ~F and the special structure of matrix (I + LT), allow 
solving the system Rw = g in no more than O(log 2 n) steps with O(1) processors. Moreover the 
resulting vector has only O(log n) nonzero entries. From these considerations it follows that phase 
(i) can be carried out in T = O(log 2 n) steps with p = O(1) processors. 

Phase (ii) can be carried out in T = O(log 2 n) steps and p = O(1) processors. 
Phase (iii) can be performed in O(1), steps with O(1) processors. 
Phase (iv) can be performed in O(log n) steps with O(1) processors because of the special 

structure of matrix Xj and vector z~. Therefore stage (b) requires T = O(Iog 2 n) steps by using no 
more than p = O(n 2) processors. 

Stage (c), because of the special structure of fk and the finiteness of the PG algorithm, we have 
that yk contains only O(log n) blocks yk not equal to the null vector. Therefore stage (c) requires 
only O(n log n) FFT which can be performed in T = O(log2n) steps by using no more than 
p = O(n 2) processors. From the previous analysis it follows that Stage 1 can be carried out in 
T = O(log 2 n) steps using p = O(n 2) processors. 

Note that at phases (i) and (ii) of the previous algorithms we can apply a direct method to solve 
both systems (7a) and (7b). This method can be derived from a decomposition of the Toeplitz 
tridiagonal matrices (in the complex field) similar to that shown in Ref. [1] (see Lemma 4). It is 
easy to see that this direct algorithm to solve the linear systems (7a) and (7b) can be carried out 
in O(Iogn) steps with O(n) processors. Then, in this case, stage (b) can be performed in 
T = O(log n) steps with p = O(n 2) processors. Moreover stage (c) consists of O(n 2) FFT which 
can be performed in T = O(log n) steps by using p = O ( n  3) processors. The resulting bounds of 
this direct algorithm are T = O(log n), p = O(n 3) or, as pointed out in Ref. [1], if the requirement 
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o f  O(n 3) processors is impractical,  we may  restrict it to O(n 2) at the cost o f  increasing time 
O (n log n). 

Stage 2 

Let us consider now the problem o f  solving the linear system Gv = b. Note  that in this case we 
cannot  make use o f  the structure o f  vector b, then the trivial application o f  the previous algori thm 
produces  the bounds  T = O( log  n), p = O(n 2) either by using a direct method  similar to that  shown 
in Ref. [3] or  by using the P G  iterative method.  

Stages 3 and 4 

Can be performed in T = O(n) steps with p = O(n 2) processors [1]. 
Therefore T = O(n) steps and p = O(n 2) processors suffice to solve equat ion (4). The resulting 

speed up and efficiency o f  this a lgor i thm are respectively S = O (n 2) and E = O (1) and they follow 
from the fact that  the fastest available serial a lgori thm for the finite difference approximat ion  o f  
the per turbed b iharmonic  equat ion requires O(n 3) steps [3]. 

4. C O N C L U S I O N  

We have shown that  the use o f  the P G  algori thm in the solution o f  the finite approximat ion  (4) 
o f  the per turbed b iharmonic  equat ion on the unit square produces the bounds  p = O(n2), 
T = O(n), with a resulting speed up S = O(n 2) and efficiency E = O(1), which are better than the 
cor responding  ones obtained by direct methods.  

We have shown also that  the above  statement  is valid when s = 1 - e, with e > e '  > 0 for each 
n. This means that  the cons tant  d 2 in equat ion (3) must  be numerically o f  the same order  o f  n 4. 

The required approximat ion  error  implies a precise choice o f  n. Once n is fixed the proposed 
method  is convenient  when the constant  d 2 is sufficiently large to make e '  such that 
log n/ log s ~- log n. 

On the other  hand,  it is possible to see that  the use o f  the PG algori thm in the solution o f  the 
finite approximat ion  o f  the per turbed Poisson equat ion with Dirichlet boundary  condit ions on 
a square domain  produces  the same bounds  obtained by direct methods,  that  is p = O(n2), 
T = O(log n) [1, 4]. 

Acknowledgements--It is a pleasure to thank M. Capovani and D. Bini for helpful discussions and suggestions. The author 
wants to thank P. Flajolet for his kind hospitality at the INRIA (France) where most of the work was carried out. 

R E F E R E N C E S  

1. A. H. Sameh, S. C. Chen and D. J. Kuck, Parallel Poisson and biharmonic solvers. Computing 17, 219-230 (1976). 
2. D. E. Heller, D. K. Stevenson and J. F. Traub, Accelerated iterative methods for the solution of tridiagonal systems 

on parallel computers. 3'. Ass. comput. Mach. 23, 636-654 (1976). 
3. B. L. Buzbee and F. W. Dorr, The direct solution of the biharmonic equation on rectangular regions and the Poisson 

equation on irregular regions. SlAM Jl numer. Analysis ll, 753-762 (1974). 
4. B. L. Buzbee, G. H. Golub and C. W. Nielson, On direct methods for solving Poisson's equations. SIAM Jl numer. 

Analysis 7, 627-656 (1970). 


