Maximum density for the Sierpinski carpet

Baoguo Jia
School of Mathematics and Computational Science, Zhongshan University, Guangzhou, 510275, China

A R T I C L E I N F O

Article history:

Received 15 February 2007
Received in revised form 14 February 2009
Accepted 27 February 2009
Keywords:
Density
Sierpinski carpet
Hausdorff metric

Abstract

We prove that there exists a closed convex set obtaining the maximum density for the Sierpinski carpet S. That is, there exists a closed convex set $V \subset E_{0}$, with $|V|>0$, such that $\sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset E_{0}\right.$, is closed $\}=\frac{\mu(V)}{|V|^{s}}$, where E_{0} is defined in the introduction and μ denotes the unique self-similar probability measure on S. We give a reasonable description about the shape of V.

© 2009 Elsevier Ltd. All rights reserved.

0. Introduction and the main result

The following famous fractal set is from [1]. Begin with a unit square E_{0} (with the inside) of side 1 . Subdivide it into 9 smaller squares of side length $\frac{1}{3}$ by trisecting the sides. For the next approximation E_{1}, the trema to be removed is the center square. That means 8 small squares remain. (The boundaries of these 8 squares must also remain, so that the set will be compact.) Inductively, for $n \geq 1$ continue in this way, at the nth stage replacing each square of E_{n-1} by its 8 smaller squares of side length $\left(\frac{1}{3}\right)^{n}$ to get E_{n}. We obtain $E_{0} \supset E_{1} \supset \cdots \supset E_{n} \supset \cdots$. The non-empty set $S=\bigcap_{n=0}^{\infty} E_{n}$ is called the Sierpinski carpet. For each $n \geq 0, E_{n}$ consists of 8^{n} squares with side length 3^{-n}. Any one of such squares is called a 3^{-n}-basic square. The Hausdorff dimension of S is $s=\operatorname{dim}_{H}(S)=\log _{3} 8$.

The Sierpinski carpet can be obtained as an iterated function system construction. It is made up of 8 parts, each similar to the whole with contraction ratio $\frac{1}{3}$. Suppose that 8 similar contraction maps are $f_{i},(i=1,2, \ldots, 8)$. (see Fig. 0.1). Let $S_{n}=\left\{f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(S): 1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq 8\right\}$.

Let μ denote the unique self-similar probability measure on S. It is easy to know that for any Borel set $U \subset R^{2}$, $\mu(U)=\frac{H^{s}(S \cap U)}{H^{s}(S)}$. For any subset $U \subset R^{2}$, we define the density $d(U)=\frac{\mu(U)}{\mid U U^{s}}$.

In [2], it was showed that the maximum density $\sup \{d(J): J \subset[0,1]\}$ for a linear Cantor set is attained in the field of sets generated by some stage basic intervals. However, it is not true in higher dimensional Euclidean spaces. In this paper, we prove that

Theorem 0.1. For the Sierpinski carpet, there exists a closed convex set $V \subset E_{0}$, with $|V|>0$, such that $\sup \{d(U): U \subset$ E_{0}, is closed $\}=d(V)$.

1. Some lemmas

Let $D \subset R^{n}$ be a non-empty set. $E \subset R^{n}$ is a self-similar set defined by m similar contracting maps $f_{i}: D \rightarrow D$, with contracting ratios, $0<c_{i}<1,(i=1,2, \ldots, m)$ and satisfying open set condition, that is, there exists a non-empty open set U for which we have $f_{i}[U] \cap f_{j}[U]=\phi$ for $i \neq j$ and $U \supseteq f_{i}[U]$ for all i. Then

$$
\operatorname{dim}_{H}(E)=s, \quad 0<H^{s}(E)<+\infty
$$

where s satisfies $\sum_{i=1}^{m} C_{i}^{s}=1, \operatorname{dim}_{H}(E)$ and $H^{s}(E)$ denote the Hausdorff dimension and measure of E, respectively.

[^0]

Fig. 0.1. The construction of the Sierpinski carpet.

Lemma 1.1 ([3]). Suppose that E is a self-similar set satisfying the open set condition and $s=\operatorname{dim}_{H}(E)$, then for any measurable set U, we have

$$
H^{s}(E \cap U) \leq|U|^{s}
$$

Using the definition of the Hausdorff measure and the self-similarity of the Sierpinski carpet, we can obtain the following

Lemma 1.2.

$$
\begin{aligned}
H^{s}(S)=H_{\delta}^{s}(S) & =\inf \left\{\sum_{i}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} \text { is a } \delta \text {-closed cover of } S\right\} \\
& =\inf \left\{\sum_{i}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} i \text { is a closed cover of } S\right\} \\
& =\inf \left\{\sum_{i}\left|U_{i}\right|^{s}: \bigcup_{i} U_{i}=S, U_{i} \text { is closed }\right\}
\end{aligned}
$$

Lemma 1.3. $\sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset S\right.$ is closed $\}=\frac{1}{H^{s}(S)}$.
Proof. Set $L=\sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset S\right.$ is closed $\}$.
By Lemma 1.1, we have $\frac{\mu(U)}{\mid U U^{s}}=\frac{H^{s}(S \cap U)}{H^{s}(S)|U|^{s}} \leq \frac{1}{H^{s}(S)}$, so $L \leq \frac{1}{H^{s}(S)}$.
For each closed cover $\left\{U_{i}\right\}$ of K with $\bigcup_{i} U_{i}=S$, by the definition of L, we have $\frac{\mu\left(U_{i}\right)}{\left|U_{i}\right|^{s}} \leq L$, so

$$
H^{s}(S)=H^{s}\left(\bigcup_{i}\left(S \cap U_{i}\right)\right) \leq \sum_{i} H^{s}\left(S \cap U_{i}\right) \leq L H^{s}(S) \sum_{i}\left|U_{i}\right|^{s}
$$

By Lemma 1.2, $1 \leq L H^{s}(S)$. Therefore $L \geq \frac{1}{H^{s}(S)}$.
Lemma 1.4. Let $W \subset S$ be a non-empty closed set with $|W|<\frac{1}{27}$. Then there exists a non-empty closed set $W^{\prime} \subset S$ with $\left|W^{\prime}\right| \geq \frac{1}{27}$ such that

$$
\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(W^{\prime}\right)}{\left|W^{\prime}\right|^{s}}
$$

Proof. Since $|W|<\frac{1}{27}$, W at most intersects with three elements of $\left\{f_{i}(S),(i=1,2, \ldots, 8)\right\}$.
Case (1). W intersects three elements, $\Delta_{1}^{1}, \Delta_{2}^{1}, \Delta_{3}^{1}$ of $\left\{f_{i}(S),(i=1,2, \ldots, 8)\right\}$
When $\left|\Delta_{1}^{1} \cup \Delta_{2}^{1} \cup \Delta_{3}^{1}\right| \geq 1,|W| \geq \frac{1}{3}$. This contradicts $|W|<\frac{1}{27}$.
So $\left|\Delta_{1}^{1} \cup \Delta_{2}^{1} \cup \Delta_{3}^{1}\right|<1$, (See Fig. 1.1)
If W at least intersects four elements of $\left\{f_{i} \circ f_{j}(S),(i, j=1,2, \ldots, 8)\right\}$, then $|W| \geq \frac{1}{9}$. This contradicts $|W|<\frac{1}{27}$. So W at most intersects three elements $\Delta_{21}^{1}, \Delta_{22}^{1}, \Delta_{23}^{1}$ of $\left\{f_{i} \circ f_{j}(S),(i, j=1,2, \ldots, 8)\right\}$ and $\left|\Delta_{21}^{1} \cup \Delta_{22}^{1} \cup \Delta_{23}^{1}\right|<\frac{1}{3}$ (See Fig. 1.1).

By self-similarity, there exist a positive integer t and $\Delta_{t}^{1}, \Delta_{t}^{2}, \Delta_{t}^{3} \in S_{t}$ such that $3^{t} \Delta_{t}^{1}=\Delta_{1}^{1}, 3^{t} \Delta_{t}^{2}=\Delta_{1}^{2}, 3^{t} \Delta_{t}^{3}=\Delta_{1}^{3}$ and $W \subset \Delta_{t}^{1} \cup \Delta_{t}^{2} \cup \Delta_{t}^{3}$, W intersects four elements of S_{t+1} or W intersects three elements $\Delta_{t+1}^{1}, \Delta_{t+1}^{2}, \Delta_{t+1}^{3}$, of S_{t+1} but

Fig. 1.1.

Fig. 1.2.

Fig. 1.3.
$\left|\Delta_{t+1}^{1} \cup \Delta_{t+1}^{2} \cup \Delta_{t+1}^{3}\right| \geq \frac{1}{3^{t}}$. Set $W^{\prime}=3^{t} W$. Note that

$$
\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(3^{t} W\right)}{\left|3^{t} W\right|^{s}}
$$

We have $\left|W^{\prime}\right| \geq \frac{1}{9}>\frac{1}{27}$ and $\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(W^{\prime}\right)}{\left|W^{\prime}\right|^{s}}$.
Case (2). W intersects two elements, $\Delta_{4}^{1}, \Delta_{5}^{1}$ of $\left\{f_{i}(S),(i=1,2, \ldots, 8)\right\}$.
Since $|W|<\frac{1}{27}, \Delta_{4}^{1}$ and Δ_{5}^{1} have a common intersection point or Δ_{4}^{1} and Δ_{5}^{1} have a common side.
(a) Δ_{4}^{1} and Δ_{5}^{1} have a common intersection point (See Fig. 1.2)

Similar to Case (1), by self-similarity, there exist a positive integer t_{1} and $\Delta_{t_{1}}^{1}, \Delta_{t_{1}}^{2}, \in S_{t_{1}}$ such that $3^{t_{1}} \Delta_{t_{1}}^{1}=\Delta_{4}^{1}$, $3^{t_{1}} \Delta_{t_{1}}^{2}=\Delta_{5}^{1}$, and $W \subset \Delta_{t_{1}}^{1} \cup \Delta_{t_{1}}^{2}$, W at least intersects three elements of $S_{t_{1}+1}$ or W intersects two elements $\Delta_{t_{1}+1}^{1}$, $\Delta_{t_{1}+1}^{2}$, of S_{t+1} but $\left|\Delta_{t_{1}+1}^{1} \cup \Delta_{t_{1}+1}^{2}\right| \geq \frac{1}{3^{t_{1}}}$. Set $W^{\prime}=3^{t_{1}} W$. Note that

$$
\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(3^{t_{1}} W\right)}{\left|3^{t_{1}} W\right|^{s}}
$$

We have $\left|W^{\prime}\right| \geq \frac{1}{9}>\frac{1}{27}$ and $\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(W^{\prime}\right)}{\left|W^{\prime}\right|^{s}}$.
(b) Δ_{4}^{1} and Δ_{5}^{1} have a common side (See Fig. 1.3).

Since $|W|<\frac{1}{27}, W$ at most intersects with four elements of $\left\{f_{i} \circ f_{j}(S),(i, j=1,2, \ldots, 8)\right\}$
$\left(\mathrm{b}_{1}\right) W$ intersects four elements $\Delta_{1}^{2}, \Delta_{2}^{2}, \Delta_{3}^{2}, \Delta_{4}^{2}$ of $\left\{f_{i} \circ f_{j}(S), i, j=1,2, \ldots, 8\right\}$. Since $|W|<\frac{1}{27},\left|\Delta_{1}^{3} \cup \Delta_{2}^{3} \cup \Delta_{3}^{3} \cup \Delta_{4}^{3}\right|<\frac{1}{9}$ (See Fig. 1.4).

Fig. 1.4.

Fig. 1.5.

Fig. 1.6.
Similar to Case (1), by self-similarity, there exists a positive integer t_{2},
Set $W^{\prime}=3^{t_{2}} W$. We have $\left|W^{\prime}\right| \geq \frac{1}{27}$ and $\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(W^{\prime}\right)}{\left|W^{\prime}\right|^{s}}$.
$\left(\mathrm{b}_{2}\right) W$ intersects three elements of $\left\{f_{i} \circ f_{j}(S),(i, j=1,2, \ldots, 8)\right\}$ (See Fig. 1.5), by self-similarity, this belongs to Case (1). $\left(\mathrm{b}_{3}\right) W$ intersects two elements of $\Delta_{1}^{2}, \Delta_{2}^{2}$
$\left\{f_{i} \circ f_{j}(S),(i, j=1,2, \ldots, 8)\right\}$.
When $\Delta_{1}^{2}, \Delta_{2}^{2}$ have a common intersection point (See Fig. 1.6), by self-similarity, this belongs to Case (2)-(a).
When $\Delta_{1}^{2}, \Delta_{2}^{2}$ have a common side, by self-similarity, this belongs to Case (2)-(b).
Case (3). If W only intersects a element of $\left\{f_{i}(S),(i=1,2, \ldots, 8)\right\}$, by self- similarity, there exist a positive integer l and $i_{1}^{0}, i_{2}^{0}, \ldots i_{l}^{0} \in\{1,2, \ldots, 8\}$ such that $W \subset E_{i_{1} i_{2}^{0} \ldots i_{l}^{0}}=f_{i_{1}^{0}} \circ f_{i_{2}^{0}} \circ \cdots \circ f_{i_{l}^{0}}(S)$ and W intersects at least two of $E_{i_{1} i_{2}^{0} \ldots i_{l}^{0}}, E_{i_{1} i_{2}^{0} \ldots i_{l}^{0}}, \ldots, E_{i_{1} i_{2}^{0} \ldots i_{l}^{0}}$. Therefore $f_{i_{l}^{0}}^{-1} \circ \cdots \circ f_{i_{2}^{0}}^{-1} \circ f_{i_{1}^{0}}^{-1}(W)$ intersects at least two of $f_{1}(S), f_{2}(S), \ldots, f_{8}(S)$. Note that $\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(f_{i_{1}}^{-1} \circ \ldots \circ f_{i_{2}}^{-1} \circ f_{i_{0}}^{-1}(W)\right)}{\left|f_{i_{l}^{0}}^{-1} \ldots \ldots \circ f_{i_{2}^{0}}^{-1} \circ f_{i_{1}^{0}}^{-1}(W)\right|^{\mid}}$.

By Case (1) and Case (2), there exists $W^{\prime} \subset S$ with $\left|W^{\prime}\right| \geq \frac{1}{27}$ such that

$$
\frac{\mu(W)}{|W|^{s}}=\frac{\mu\left(W^{\prime}\right)}{\left|W^{\prime}\right|^{s}}
$$

From Lemmas 1.3 and 1.4, it follows that
Lemma 1.5. $\sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset S,|U| \geq \frac{1}{27}, U\right.$ is closed $\}=\frac{1}{H^{s}(S)}$.

2. The proof of the main theorem

The following definitions are from [4].
If $E \subset R^{n}$, the δ - parallel body of E is the closed set of points within distance δ of E that is, $[E]_{\delta}=\left\{x \in R^{n}: \inf _{y \in E}|x-y|\right.$ $\leq \delta\}$.

The Hausdorff metric δ is defined on the collection of all non-empty compact subsets of R^{n} by $h(E, F)=\inf \{\delta: E \subset$ $[F]_{\delta}$ and $\left.F \subset[E]_{\delta}\right\}$.

Let $B\left(R^{n}\right)$ be the sets of all non-empty compact sets in R^{n}. Then the set $B\left(R^{n}\right)$ equipped with the above Hausdorff metric h becomes a complete metric space.

The convex hull of $U \subset R^{n}$ is the intersection of all the convex sets which contain U, and it is denoted by conv U.
Lemma 2.1. Let $\left\{A_{n}\right\}$ be a sequence of non-empty compact subsets of R^{n}. If $\left\{A_{n}\right\}$ converges to $A \subset R^{n}$ with the Hausdorff metric, then
(i) $\lim _{n \rightarrow \infty}\left|A_{n}\right|=|A|$,
(ii) $\lim _{n \rightarrow \infty} \sup \mu\left(A_{n}\right) \leq \mu(A)$.

Proof. (i) Because $\left\{A_{n}\right\}$ converges to A with the Hausdorff metric, for $\forall \varepsilon>0, \exists N>0$, when $n \geq N, h\left(A_{n}, A\right) \leq \varepsilon$, i.e. $A_{n} \subset A_{\varepsilon}$ and $A \subset\left(A_{n}\right)_{\varepsilon}$. Thus for $n \geq N$, we have $\left|A_{n}\right| \leq|A|+2 \varepsilon$ and $|A| \leq\left|A_{n}\right|+2 \varepsilon$, So (i) holds.
(ii) From (i), $A_{n} \subset A_{\varepsilon}$, so $\mu\left(A_{n}\right) \leq \mu\left(A_{\varepsilon}\right)$.

Therefore

$$
\lim _{n \rightarrow \infty} \sup \mu\left(A_{n}\right) \leq \lim _{\varepsilon \rightarrow 0} \mu\left(A_{\varepsilon}\right)=\mu(A)
$$

Proof of Theorem 0.1. By Lemma 1.5, there exists a closed set sequence $\left\{U_{i}\right\}$ in S, such that $\left|U_{i}\right| \geq \frac{1}{27}$ and $\frac{\mu\left(U_{i}\right)}{\left|U_{i}\right|^{s}} \rightarrow \frac{1}{H^{s}(S)}$, $i \rightarrow \infty$. Since S is compact, it follows that U_{i} is uniformly bounded. By the Blaschke selection theorem (see Theorem 3.16 of [4]), there exists a subsequence $\left\{U_{i_{k}}\right\}$ of $\left\{U_{i}\right\}$ such that $\left\{U_{i_{k}}\right\}$ converges to a non-empty compact set $W \subset S$ with the Hausdorff metric. Without loss of generality, we suppose U_{i} converges to W in the Hausdorff metric. By (i) of Lemma 2.1, $|W| \geq \frac{1}{27}$. By (ii) of Lemma 2.1,

$$
\lim _{i \rightarrow \infty} \sup \mu\left(U_{i}\right) \leq \mu(W)
$$

By the definition of upper limit, there exists a subsequence $\left\{U_{i_{j}}\right\}$ of $\left\{U_{i}\right\}$ such that $\lim _{i \rightarrow \infty} \sup \mu\left(U_{i}\right)=\lim _{j \rightarrow \infty} \mu\left(U_{i_{j}}\right)$. Thus by Lemma 1.5 , we have

$$
\begin{aligned}
\frac{1}{H^{s}(S)} \geq \frac{\mu(W)}{|W|^{s}} & \geq \frac{\lim _{i \rightarrow \infty} \sup \mu\left(U_{i}\right)}{\lim _{i \rightarrow \infty}\left|U_{i}\right|^{s}} \\
& =\frac{\lim _{j \rightarrow \infty} \mu\left(U_{i_{j}}\right)}{\lim _{j \rightarrow \infty} \mid U_{\left.i_{j}\right|^{s}}{ }^{s}}=\lim _{j \rightarrow \infty} \frac{\mu\left(U_{i_{j}}\right)}{\mid U_{i_{j} j^{s}}^{s}}=\frac{1}{H^{s}(S)}
\end{aligned}
$$

Set $V=\operatorname{conv}(W)$ which is the convex hull of $W . V \subset E_{0}$ is a closed convex set and $|V|=|W|, \mu(W) \leq \mu(V)$. So,

$$
\frac{1}{H^{s}(S)}=\frac{\mu(W)}{|W|^{s}} \leq \frac{\mu(V)}{|V|^{s}}
$$

By Lemma 1.1,

$$
H^{s}(S)=\frac{H^{s}(V \cap S)}{\mu(V)} \leq \frac{|V|^{s}}{\mu(V)}
$$

So,

$$
\frac{1}{H^{s}(S)}=\frac{\mu(V)}{|V|^{s}}
$$

That is $\sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset S\right.$ is closed $\}=\frac{1}{H^{s}(S)}=\frac{\mu(V)}{|V|^{s}}$, where $V \subset E_{0}$ is a closed convex set, $|V|=W \left\lvert\, \geq \frac{1}{27}\right.$.

Fig. 3.1.
By Lemma 1.1,

$$
\begin{aligned}
\frac{1}{H^{s}(S)} & \geq \sup \left\{\frac{\mu(U)}{|U|^{s}}: U \subset E_{0} \text { is closed }\right\} \\
& \geq \sup \left\{\frac{\mu(U)}{|U|^{s}}: \quad U \subset S \text { is closed }\right\} \\
& =\frac{1}{H^{s}(S)}=\frac{\mu(V)}{|V|^{s}},
\end{aligned}
$$

3. A description of the shape of V

For $n \geq 1$, let $S_{n}=\left\{f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(S): 1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq 8\right\}$.
The following proposition is from [5].
Proposition 3.1. For $n \geq 1,1 \leq k \leq 8^{n}$, let $\Delta_{1} \Delta_{2}, \ldots, \Delta_{k} \in S_{n}$ and μ be the common self-similar probability measure on S, $\mu\left(f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(K)\right)=\left(\frac{1}{8}\right)^{n}$.

Let $b_{k}=\min _{\Delta_{1}, \ldots, \Delta_{k} \in S_{n}}\left\{\frac{\left|\bigcup_{i=1}^{k} \Delta_{i}\right|^{s}}{k 4^{-n}}\right\}$, where the minimum is taken for all possible union of k elements of S_{n} and $a_{n}=$ $\min _{1 \leq k \leq 8^{n}}\left\{b_{k}\right\}$. Then for $n \geq 1, a_{n}$ decreases and $\lim _{n \rightarrow \infty} a_{n}=H^{s}(S)$.

Suppose that

$$
a_{n}=\min _{1 \leq k \leq 8^{n}} \min _{\Delta_{1}, \ldots, \Delta_{k} \in S_{n}}\left\{\frac{\left|\bigcup_{i=1}^{k} \Delta_{i}\right|^{s}}{k 8^{-n}}\right\}=\frac{\left|U_{k_{n}}\right|^{s}}{k_{n} 8^{-n}}
$$

where the $U_{k_{n}}$ is the union of some k_{n} elements of S_{n}.
Since

$$
\lim _{n \rightarrow \infty} a_{n}=H^{s}(S), \quad \frac{\mu(V)}{|V|^{s}}=\frac{1}{H^{s}(S)}=\frac{1}{\lim _{n \rightarrow \infty} a_{n}}
$$

Our basic idea is that by computing the values of a_{n}, we get the components of $U_{k_{n}}$ and the shapes of conv $\left(U_{k_{n}}\right)$. It is easy to know that conv $\left(U_{k_{n}}\right) \rightarrow V$ with the Hausdorff metric. So by means of the shape of conv $\left(U_{k_{n}}\right)$, we can know the shape of V.

It is easy to get that $a_{1}=\sqrt{2}^{s}, a_{2}=\frac{\sqrt{106}^{s}}{52}$ (See Fig. 3.1). Note that $U_{k_{2}}$ consists of 52 squares with side length $\frac{1}{9}$. In [6], two conjectures that $a_{3}=\frac{{\sqrt{\left(\frac{5}{9}\right)^{2}+1}}^{s}}{\frac{444}{512}}$ and $a_{4}=\frac{\left(\frac{2 \sqrt{2}}{27}\right)^{s}}{\frac{5}{512}}$ are given (see Figs. 3.2 and 3.3). Note that $U_{k_{3}}$ consists of 444 light black squares with side length $\frac{1}{27}$ and $U_{k_{4}}$ consists of 40 squares with side length $\frac{1}{81}$ in the small circle with diameter $\left(\frac{2 \sqrt{2}}{27}\right)^{s}$ in Fig. 3.3.

Fig. 3.2.

Fig. 3.3.
Therefore conv $\left(U_{k_{1}}\right)$ is a square. conv $\left(U_{k_{2}}\right)$ is an octagon (see Fig. 3.1). We conjecture that conv $\left(U_{k_{3}}\right)$ is a polygon with 12 sides and conv $\left(U_{k_{3}}\right)$ is an octagon (see Fig. 3.3). Note that conv $\left(U_{k_{3}}\right)$ is not symmetric. We conjecture that for $n \geq 4$, conv $\left(U_{k_{n}}\right)$ is always in the small circle of Fig. 3.3.

Acknowledgment

This project is supported by the NSF of Guangdong Province of China (No. 8151027501000053).

References

[^1]
[^0]: E-mail address: mcsjbg@mail.sysu.edu.cn.

[^1]: [1] K. Falconer, Techniques in Fractal Geometry, Wiley, New York, 1997.
 [2] E. Ayer, R.S. Strichartz, Exact Hausdorff measure and intervals of maximum density for Cantor set, Trans. Amer. Math. Soc. 351 (1999) $3725-3741$.
 [3] Z.L. Zhou, The Hausdorff measure of the self-similar set-The Koch Curve, Sci. China A 40 (1997) 103-107.
 [4] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, UK, 1985.
 [5] Baoguo Jia, Bounds of the Hausdorff measure of the Koch curve, Appl. Math. Comput. (2007) doi:10.1016/j.amc.2007.01.046.
 [6] Baoguo Jia, Bounds of the Hausdorff measure of Sierpinski carpet, Anal. Theory Appl. 23 (1) (2007) 1-15.

