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a b s t r a c t

We prove that there exists a closed convex set obtaining the maximum density for the
Sierpinski carpet S. That is, there exists a closed convex set V ⊂ E0, with |V | > 0, such
that sup

{
µ(U)
|U|s : U ⊂ E0, is closed

}
=

µ(V )
|V |s , where E0 is defined in the introduction and µ

denotes the unique self-similar probabilitymeasure on S. We give a reasonable description
about the shape of V .

© 2009 Elsevier Ltd. All rights reserved.

0. Introduction and the main result

The following famous fractal set is from [1]. Begin with a unit square E0 (with the inside) of side 1. Subdivide it into 9
smaller squares of side length 13 by trisecting the sides. For the next approximation E1, the trema to be removed is the center
square. That means 8 small squares remain. (The boundaries of these 8 squares must also remain, so that the set will be
compact.) Inductively, for n ≥ 1 continue in this way, at the nth stage replacing each square of En−1 by its 8 smaller squares
of side length

( 1
3

)n
to get En. We obtain E0 ⊃ E1 ⊃ · · · ⊃ En ⊃ · · ·. The non-empty set S =

⋂
∞

n=0 En is called the Sierpinski
carpet. For each n ≥ 0, En consists of 8n squares with side length 3−n. Any one of such squares is called a 3−n-basic square.
The Hausdorff dimension of S is s = dimH(S) = log3 8.
The Sierpinski carpet can be obtained as an iterated function system construction. It is made up of 8 parts, each similar

to the whole with contraction ratio 13 . Suppose that 8 similar contraction maps are fi, (i = 1, 2, . . . , 8). (see Fig. 0.1). Let
Sn = {fi1 ◦ fi2 ◦ · · · ◦ fin(S) : 1 ≤ i1, i2, . . . , in ≤ 8}.
Let µ denote the unique self-similar probability measure on S. It is easy to know that for any Borel set U ⊂ R2,

µ(U) = Hs(S ∩U)
Hs(S) . For any subset U ⊂ R

2, we define the density d(U) = µ(U)
|U|s .

In [2], it was showed that the maximum density sup{d(J) : J ⊂ [0, 1]} for a linear Cantor set is attained in the field of
sets generated by some stage basic intervals. However, it is not true in higher dimensional Euclidean spaces. In this paper,
we prove that

Theorem 0.1. For the Sierpinski carpet, there exists a closed convex set V ⊂ E0, with |V | > 0, such that sup{d(U) : U ⊂
E0, is closed} = d(V ).

1. Some lemmas

Let D ⊂ Rn be a non-empty set. E ⊂ Rn is a self-similar set defined by m similar contracting maps fi : D → D, with
contracting ratios, 0 < ci < 1, (i = 1, 2, . . . ,m) and satisfying open set condition, that is, there exists a non-empty open
set U for which we have fi[U] ∩ fj[U] = φ for i 6= j and U ⊇ fi[U] for all i. Then

dim
H
(E) = s, 0 < Hs(E) < +∞,

where s satisfies
∑m
i=1 C

s
i = 1, dimH(E) and H

s(E) denote the Hausdorff dimension and measure of E, respectively.
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Fig. 0.1. The construction of the Sierpinski carpet.

Lemma 1.1 ([3]). Suppose that E is a self-similar set satisfying the open set condition and s = dimH(E), then for any measurable
set U, we have

Hs(E ∩ U) ≤ |U|s.

Using the definition of the Hausdorff measure and the self-similarity of the Sierpinski carpet, we can obtain the following

Lemma 1.2.

Hs(S) = Hsδ(S) = inf

{∑
i

|Ui|s : {Ui} is a δ-closed cover of S

}

= inf

{∑
i

|Ui|s : {Ui}is a closed cover of S

}

= inf

{∑
i

|Ui|s :
⋃
i

Ui = S,Ui is closed

}
.

Lemma 1.3. sup
{
µ(U)
|U|s : U ⊂ S is closed

}
=

1
Hs(S) .

Proof. Set L = sup
{
µ(U)
|U|s : U ⊂ S is closed

}
.

By Lemma 1.1, we have µ(U)
|U|s =

Hs(S ∩U)
Hs(S)|U|s ≤

1
Hs(S) , so L ≤

1
Hs(S) .

For each closed cover {Ui} of K with
⋃
i Ui = S, by the definition of L, we have

µ(Ui)
|Ui|s
≤ L, so

Hs(S) = Hs
(⋃

i

(S ∩ Ui)

)
≤

∑
i

Hs(S ∩ Ui) ≤ LHs(S)
∑
i

|Ui|s.

By Lemma 1.2, 1 ≤ LHs(S). Therefore L ≥ 1
Hs(S) . �

Lemma 1.4. Let W ⊂ S be a non-empty closed set with |W | < 1
27 . Then there exists a non-empty closed set W

′
⊂ S with

|W ′| ≥ 1
27 such that

µ(W )
|W |s

=
µ(W ′)
|W ′|s

.

Proof. Since |W | < 1
27 ,W at most intersects with three elements of {fi(S), (i = 1, 2, . . . , 8)}.

Case (1).W intersects three elements,∆11,∆
1
2,∆

1
3 of {fi(S), (i = 1, 2, . . . , 8)}

When |∆11 ∪∆
1
2 ∪∆

1
3| ≥ 1, |W | ≥

1
3 . This contradicts |W | <

1
27 .

So |∆11 ∪∆
1
2 ∪∆

1
3| < 1, (See Fig. 1.1)

IfW at least intersects four elements of {fi ◦ fj(S), (i, j = 1, 2, . . . , 8)}, then |W | ≥ 1
9 . This contradicts |W | <

1
27 . SoW

at most intersects three elements∆121,∆
1
22,∆

1
23 of {fi ◦ fj(S), (i, j = 1, 2, . . . , 8)} and |∆

1
21 ∪∆

1
22 ∪∆

1
23| <

1
3 (See Fig. 1.1).

By self-similarity, there exist a positive integer t and ∆1t , ∆
2
t , ∆

3
t ∈ St such that 3

t∆1t = ∆11, 3
t∆2t = ∆21, 3

t∆3t = ∆31
andW ⊂ ∆1t ∪ ∆

2
t ∪ ∆

3
t ,W intersects four elements of St+1 orW intersects three elements ∆

1
t+1, ∆

2
t+1, ∆

3
t+1, of St+1 but
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|∆1t+1 ∪∆
2
t+1 ∪∆

3
t+1| ≥

1
3t . SetW

′
= 3tW . Note that

µ(W )
|W |s

=
µ(3tW )
|3tW |s

.

We have |W ′| ≥ 1
9 >

1
27 and

µ(W )
|W |s =

µ(W ′)
|W ′|s .

Case (2).W intersects two elements,∆14,∆
1
5 of {fi(S), (i = 1, 2, . . . , 8)}.

Since |W | < 1
27 ,∆

1
4 and∆

1
5 have a common intersection point or∆

1
4 and∆

1
5 have a common side.

(a)∆14 and∆
1
5 have a common intersection point (See Fig. 1.2)

Similar to Case (1), by self-similarity, there exist a positive integer t1 and ∆1t1 , ∆
2
t1 , ∈ St1 such that 3

t1∆1t1 = ∆14,
3t1∆2t1 = ∆15, and W ⊂ ∆1t1 ∪ ∆

2
t1 , W at least intersects three elements of St1+1 or W intersects two elements ∆

1
t1+1
,

∆2t1+1, of St+1 but |∆
1
t1+1
∪∆2t1+1| ≥

1
3t1
. SetW ′ = 3t1W . Note that

µ(W )
|W |s

=
µ(3t1W )
|3t1W |s

.

We have |W ′| ≥ 1
9 >

1
27 and

µ(W )
|W |s =

µ(W ′)
|W ′|s .

(b)∆14 and∆
1
5 have a common side (See Fig. 1.3).

Since |W | < 1
27 ,W at most intersects with four elements of {fi ◦ fj(S), (i, j = 1, 2, . . . , 8)}

(b1)W intersects four elements∆21,∆
2
2,∆

2
3,∆

2
4 of {fi ◦ fj(S), i, j = 1, 2, . . . , 8}. Since |W | <

1
27 , |∆

3
1∪∆

3
2∪∆

3
3∪∆

3
4| <

1
9

(See Fig. 1.4).
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Similar to Case (1), by self-similarity, there exists a positive integer t2,
SetW ′ = 3t2W . We have |W ′| ≥ 1

27 and
µ(W )
|W |s =

µ(W ′)
|W ′|s .

(b2)W intersects three elements of {fi◦ fj(S), (i, j = 1, 2, . . . , 8)} (See Fig. 1.5), by self-similarity, this belongs to Case (1).
(b3)W intersects two elements of∆21,∆

2
2

{fi ◦ fj(S), (i, j = 1, 2, . . . , 8)}.

When∆21,∆
2
2 have a common intersection point (See Fig. 1.6), by self-similarity, this belongs to Case (2)-(a).

When∆21,∆
2
2 have a common side, by self-similarity, this belongs to Case (2)-(b).

Case (3). If W only intersects a element of {fi(S), (i = 1, 2, . . . , 8)}, by self- similarity, there exist a positive inte-
ger l and i01, i

0
2, . . . i

0
l ∈ {1, 2, . . . , 8} such that W ⊂ Ei01 i02···i0l = fi01 ◦ fi02 ◦ · · · ◦ fi0l (S) and W intersects at least two of

Ei01i02···i0l 1, Ei01 i02···i0l 2, . . . , Ei01 i02···i0l 8. Therefore f
−1
i0l
◦ · · · ◦ f −1

i02
◦ f −1
i01
(W ) intersects at least two of f1(S), f2(S), . . . , f8(S). Note that

µ(W )
|W |s =

µ(f−1
i0l
◦···◦f−1

i02
◦f−1
i01
(W ))

|f−1
i0l
◦···◦f−1

i02
◦f−1
i01
(W )|s

.
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By Case (1) and Case (2), there existsW ′ ⊂ S with |W ′| ≥ 1
27 such that

µ(W )
|W |s

=
µ(W ′)
|W ′|s

. �

From Lemmas 1.3 and 1.4, it follows that

Lemma 1.5. sup
{
µ(U)
|U|s : U ⊂ S, |U| ≥

1
27 ,U is closed

}
=

1
Hs(S) .

2. The proof of the main theorem

The following definitions are from [4].
If E ⊂ Rn, the δ− parallel body of E is the closed set of points within distance δ of E that is, [E]δ = {x ∈ Rn : infy∈E |x− y|

≤ δ}.
The Hausdorff metric δ is defined on the collection of all non-empty compact subsets of Rn by h(E, F) = inf{δ : E ⊂

[F ]δand F ⊂ [E]δ}.
Let B(Rn) be the sets of all non-empty compact sets in Rn. Then the set B(Rn) equipped with the above Hausdorff metric

h becomes a complete metric space.
The convex hull of U ⊂ Rn is the intersection of all the convex sets which contain U , and it is denoted by convU .

Lemma 2.1. Let {An} be a sequence of non-empty compact subsets of Rn. If {An} converges to A ⊂ Rn with the Hausdorff metric,
then
(i) limn→∞ |An| = |A|,
(ii) limn→∞ supµ(An) ≤ µ(A).
Proof. (i) Because {An} converges toAwith theHausdorffmetric, for∀ε > 0, ∃N > 0,when n ≥ N , h(An, A) ≤ ε, i.e.An ⊂ Aε
and A ⊂ (An)ε . Thus for n ≥ N , we have |An| ≤ |A| + 2ε and |A| ≤ |An| + 2ε, So (i) holds.
(ii) From (i), An ⊂ Aε , so µ(An) ≤ µ(Aε).
Therefore

lim
n→∞

supµ(An) ≤ lim
ε→0

µ(Aε) = µ(A). �

Proof of Theorem 0.1. By Lemma 1.5, there exists a closed set sequence {Ui} in S, such that |Ui| ≥ 1
27 and

µ(Ui)
|Ui|s
→

1
Hs(S) ,

i → ∞. Since S is compact, it follows that Ui is uniformly bounded. By the Blaschke selection theorem (see Theorem 3.16
of [4]), there exists a subsequence {Uik}of {Ui}such that {Uik} converges to a non-empty compact set W ⊂ S with the
Hausdorff metric. Without loss of generality, we suppose Ui converges toW in the Hausdorff metric. By (i) of Lemma 2.1,
|W | ≥ 1

27 . By (ii) of Lemma 2.1,

lim
i→∞

supµ(Ui) ≤ µ(W ).

By the definition of upper limit, there exists a subsequence {Uij}of {Ui}such that limi→∞ supµ(Ui) = limj→∞ µ(Uij). Thus
by Lemma 1.5, we have

1
Hs(S)

≥
µ(W )
|W |s

≥

lim
i→∞

supµ(Ui)

lim
i→∞
|Ui|s

=

lim
j→∞

µ(Uij)

lim
j→∞
|Uij |s

= lim
j→∞

µ(Uij)

|Uij |s
=

1
Hs(S)

.

Set V = conv (W )which is the convex hull ofW . V ⊂ E0 is a closed convex set and |V | = |W |, µ(W ) ≤ µ(V ). So,

1
Hs(S)

=
µ(W )
|W |s

≤
µ(V )
|V |s

.

By Lemma 1.1,

Hs(S) =
Hs(V ∩ S)
µ(V )

≤
|V |s

µ(V )
.

So,
1
Hs(S)

=
µ(V )
|V |s

.

That is sup
{
µ(U)
|U|s : U ⊂ Sis closed

}
=

1
Hs(S) =

µ(V )
|V |s , where V ⊂ E0 is a closed convex set, |V | = W | ≥

1
27 .
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Fig. 3.1.

By Lemma 1.1,

1
Hs(S)

≥ sup
{
µ(U)
|U|s

: U ⊂ E0 is closed
}

≥ sup
{
µ(U)
|U|s

: U ⊂ S is closed
}
,

=
1
Hs(S)

=
µ(V )
|V |s

. �

3. A description of the shape of V

For n ≥ 1, let Sn = {fi1 ◦ fi2 ◦ · · · ◦ fin(S) : 1 ≤ i1, i2, . . . , in ≤ 8}.
The following proposition is from [5].

Proposition 3.1. For n ≥ 1, 1 ≤ k ≤ 8n, let ∆1∆2, . . . ,∆k ∈ Sn and µ be the common self-similar probability measure on S,
µ(fi1 ◦ fi2 ◦ · · · ◦ fin(K)) =

( 1
8

)n
.

Let bk = min∆1,...,∆k∈Sn

{
|
⋃k
i=1 ∆i|

s

k4−n

}
, where the minimum is taken for all possible union of k elements of Sn and an =

min1≤k≤8n{bk}. Then for n ≥ 1, an decreases and limn→∞ an = Hs(S).
Suppose that

an = min
1≤k≤8n

min
∆1,...,∆k∈Sn


|

k⋃
i=1
∆i|

s

k8−n

 =
|Ukn |

s

kn8−n
,

where the Ukn is the union of some kn elements of Sn.
Since

lim
n→∞

an = Hs(S),
µ(V )
|V |s

=
1
Hs(S)

=
1

lim
n→∞

an
.

Our basic idea is that by computing the values of an, we get the components of Ukn and the shapes of conv (Ukn). It is easy to
know that conv (Ukn)→ V with the Hausdorff metric. So by means of the shape of conv (Ukn), we can know the shape of V .
It is easy to get that a1 =

√
2
s
, a2 =

√
106

s

52 (See Fig. 3.1). Note that Uk2 consists of 52 squares with side length
1
9 . In [6],

two conjectures that a3 =

√(
5
9

)2
+1
s

444
512

and a4 =

(
2
√
2

27

)s
5
512

are given (see Figs. 3.2 and 3.3). Note that Uk3 consists of 444 light black

squares with side length 1
27 and Uk4 consists of 40 squares with side length

1
81 in the small circle with diameter

(
2
√
2

27

)s
in Fig. 3.3.
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Fig. 3.2.

Fig. 3.3.

Therefore conv (Uk1) is a square. conv (Uk2) is an octagon (see Fig. 3.1). We conjecture that conv (Uk3) is a polygon with 12 sides
and conv (Uk3) is an octagon (see Fig. 3.3). Note that conv (Uk3) is not symmetric. We conjecture that for n ≥ 4, conv (Ukn) is
always in the small circle of Fig. 3.3.
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