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Gauges, or equivalently, left-invariant pseudodistances on the Heisenberg 
group, have been used for a long time. It was, however, only in 1978 that 
Cygan [3] noted that one of these natural gauges actually induces a distance, 
i.e., a left-invariant metric space structure on the group. 

Peter Greiner posed the problem of studying the notion of arc length 
associated to this metric; in particular, he asked whether there is a kind of 
infinitesimal metric giving rise to the same arc length. 

Section 2 of the present paper gives an answer to this question. It is shown 
that there is a certain “contravariant Riemannian metric” in the sense of 
[lo] (roughly speaking, a Riemannian metric in which some vectors can 
have infinite length), studied previously by Gaveau [6, 71, which induces the 
arc length in question. 

We will work in the greater generality of H-type groups introduced 
recently by Kaplan [ll 1. This class includes among others the nilpotent 
parts N in the Iwasawa decomposition G = KAN of semisimple Lie groups of 
real rank one. In this especially interesting case the “contravariant 
Riemannian metric” (M,) which we construct is characterized (up to a 
factor) by being left-invariant under N, invariant under the centralizer M of 
A in K, and transforming under A by a character. It is therefore the direct 
generalization of the standard metric on R”, which is characterized by the 
same properties when R” is regarded as the N-part of SO(n, 1). 

In general, when an H-type group is not Abelian, (M,) arises as the limit 
of a family of ordinary Riemannian metrics (M,) (c > 0). In Section 3 we 
consider geodesic arcs with respect to these metrics. For (M,) on the 
Heisenberg group these were studied earlier by Gaveau [6, 71 and for (M,) 
by Debiard [5] and Kaplan [ 121. Besides some slight generalization of the 
previous results our goal here is to show that the (AI,)-geodesics joining two 
fixed points tend uniformly to the (M,)-geodesic as c + 0. From this one gets 
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a very simple proof of the fact that the shortest (MJ-geodesics keep their 
minimizing property even in the class of piecewise C’ curves. 

In a short final section it will be shown that with the aid of the metrics 
(M,) one can construct simple examples which, similarly to the examples of 
Urakawa [ 141, show that there is no Faber-Krabn-type inequality 
connecting the Riemannian volume and the lowest eigenvalue of the 
Laplacian in the class of compact Riemann manifolds. 

1. LIE GROUPS OF TYPE H 

Lie groups of type H; were introduced by Kaplan in [ 111. They are 
defined as follows. 

Let u, z be real Euclidean spaces and let j: z + End u be a linear map 
satisfying 

I Awl = I YI Ia (1-l) 
j(Y)’ = -I Y 19. (1.2) 

Now let n = u + z and let the Lie algebra structure on IZ be defined so that z 
is the center and, for X, X’ E u and all YE z, 

(1.3) 

An equivalent definition [ 111 is to say that rt = u + z is a two-step 
nilpotent Lie.algebra with center z and such that for all XE u with 1x1 = 1, 
ad(X) is a surjective isometry of the orthocomplement v 0 ker ad(X) onto z. 

N is a group of type H if it is simply connected and its Lie algebra is of 
type H. It is easy to see that such groups have a particularly simple represen- 
tation theory, since the orbits of the coadjoint representation are 
parametrized by ZJ (one-point orbits) and z - (0) (orbits that are affine 
subspaces isomorphic with u, permuted transitively by the authomorphism 
group of N). It is known that groups of type H have a natural gauge defined 
by 

exp(X + Y) = (IX]” + 16 I Y12)1’4 (1.4) 

for X E u, YE z; by [4] this gauge satisfies 

for all g, h E N. 

Ig~IGlgl+lhl (1.5) 

The following result is contained in [12]; we give here a simple proof 
which is independent of classification. 
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PROPOSITION 1.1. The nilpotent part in the Iwasawa decomposition of a 
semisimple Lie group of real rank one is of type H. 

ProoJ Let g = k + a + n be the Iwasawa decomposition at the Lie 
algebra level, let 9 be the Cat-tan involution, let a and 2a denote the positive 
restricted roots, g,, gZa the corresponding root spaces, and p, q their 
respective dimensions. We may assume p, q = 0, for otherwise the 
proposition is trivial. Denoting the Killing form by B, we define H, E a by 
the condition a(H) = B(H, H,) for all HE a. As in [ 131, we define the 
number b > 0 by 

2b* = a(H,) = B(H,, H,). (1.6) 

(Incidentally, an easy computation shows that 4b* = (p + 4q)-‘.) 
Now we set z=gZa, v=g,, we define the Eulidean structure on 

n=v+zby 

(Z, Z’) = -4b’B(Z, OZ’) (1.7) 

and for all YE z, X E v we set 

j(Y)X= ad(Y) 0X. (1.8) 

We have to verify (l.l)-(1.3); this is done by computations similar to 
those in [9, pp. 54-551 and is based on the identity 

[K OY] = BP’, 00 H,, 

for YE z. In fact, using the Jacobi identity we find 

j(u)*X= [K e[Y, WI = [y, w,xii 

= [[Y,OY],X]=B(Y,&‘)[H,,,X]=-2a(H,)B(Y,OY)X, 

which proves (1.2). The invariance of the Killing form together with the final 
part of the computation just performed give 

B(j(Y)X, j(Y)X) = B(BX, [Y, [OY, Xl]) = -2a(H,) B(Y, OY) B(X, OX) 

proving (1.1). Finally (1.3) follows from the invariance of the Killing form: 

(Y, [X, A-‘]) = -4b*B(Y, O[X, X’]) 

= -4b*B([Y, ex], exy= (j(Y)X,X’). 

Remark. The gauge defined by (1.4) is in this case equal to 

2(b4B(X, 6X)’ + 4b*B(Y, SY))“‘, 
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which, up to the factor 2 agrees with the gauge occurring in a natural way in 
[9, Theorem 1.141. 

2. ARC LENGTH AND THE INFINITESIMAL METRIC 

Let N be a group of type H; we will follow the notations of Section 1. 
With the aid of the gauge (1.4) we define a distance function d on N by 

d(g, h) = Ih-$1. (2.1) 

(The triangle inequality follows from (1.5).) 
If Y(S) (s E [a, bl) is a curve in N, we consider the associated arc length: 

Letting 

a = s, < s, < .a. < s, = b (2.2) 

we write yk = y(sJ, d, = d(y,, yk- ,), As, = sk - sk- 1. The length of y is 

l(y) = sup i d, 
k=i 

with the “sup” taken over all partitions (2.2) and is the same as “lim sup” 
for Max{As,} --t 0. 

Since the exponential map is bijective, any curve can be written in the 
form y(s) = exp(X(s) + Y(s)) with some curves X(x), Y(s) in v and z, respec- 
tively. We identify 0, z with their tangent spaces and denote by X(s), Y(s) the 
tangent vectors of X(s), Y(s). 

PROPOSITION 2.1. Suppose y(s) = exp(X(s) t Y(s)) (s E [a, b]) is a C2- 
curve. Then l(y) < to3 if and only if 

E’-f[X,it]=O. (2.3) 

If (2.3) holds, we have 

Z(y) =lb lit(s)1 ds. (2.4) 
a 

Proo$ Writing Xk = X(s,), the Campbell-Hausdorff formula gives 

dk=)exp(Xk-Xkpl t yk- yk-l-$[Xk-l,Xk])l. 

Using the notation AX, =X, -X,-r, etc., by (1.4) this can be rewritten as 

dk=(IAXk14+ 16]AYk--f[Xk-,,AXk]]2)1’4. 

607/56/l-3 
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By Taylor’s formula, with an obvious notation we have 

AX, = &- 1 As, + & 1 As; + o(As;) 

and similarly for AY,, with o(As:) being uniform over [a, b]. Therefore, 

4= I&-l +oU)14 + I I;,-, -+ [x,~,,~?~,] 

+f(~~-~-t[~~-,,~~-,l)+o(l)/21”4As*. 

Suppose that (2.3) holds. Then, differentiating, we also have 

i;-f[X,2]=0 

and C d, tends to the limit (2.4) as Max{As,} + 0. On the other hand, if 
(2.3) fails, then on some subinterval I’- 4 [X, Xi] will stay close to a 
constant non-zero vector, and hence C dk will be unbounded. This finishes 
the proof. 

To proceed further, for every c > 0 we introduce a Riemannian metric 
(M,) on N, by setting for XE u, YE z, 

11x+ YI(, = ([Xl’ + c-2 1 yj*y2. 

(X + YE n is regarded here as a left-invariant vector field.) As pointed out 
in [ 131, in the case of the rank one Iwasawa groups these are the only left- 
invariant metrics invariant under the action of the subgroup M (but they do 
not transform by a character of A, except in the degenerate case where N is 
Abelian). 

We define (M,) as the limit for c --t 0; this is a “contravariant Riemannian 
metric” in the sense of [lo], the length of X + Y is infinite in case Y = 0. So 
the length lo(y) with respect to (it4,) of a curve y is finite if and only if the 
tangent y(s) is in 2, for all s. 

We denote the length with respect to (M,) by l,(y). 

PROPOSITION 2.2. For any Cl-curve y(s) = exp(X(s) + Y(s)), s E [a, b], 
we have, for c > 0, 

l,(y)+-: i”l’+fl ~+[X,zt]~ 2)1’2ds. 

Furthermore, l,(y) < +CCI if and only if (2.3) holds for all s. In this case 
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ProoJ It is known that the differential exp, of the exponential map at a 
point Z is given by 

I - exp(-ad Z) 
ad Z 

=I-+adZ+ . . . 

(cf., e.g., [S, p. 951, where there is also a translation term which we do not 
need since we regard the Lie algebra as the set of left-invariant vector fields). 
The tangent vector f(s) is the image of A!(s) + Y(s) under exp, at 
X(s) t Y(s), so 

all other brackets being equal to zero. The proposition now follows from the 
definitions. 

Remark. It follows that if a curve satisfies (2.3), then 

4(Y) = lo(Y) 

for all c > 0. 

3. GEODESICS 

We consider the behaviour of the (MC)-geodesics as c-+ 0. Since the 
geodesics for (M,) and for (M,) have been studied earlier (at least in the 
case of the Heisenberg group) [ 12,571, we omit most of the computations. 

We will use the notations 

m(x) = x - sin x, 

p(x) = $-log m(x) = 
1 -cosx 
x - sin x * 

We note that ,u(x) = 8(x/2)-’ with the B of Gaveau [6, p. 1121. 
For (A&,) we define a geodesic arc joining e to the point exp(X, t Y,) as 

an extremal of the variation problem associated to minimizing the arc length. 
More exactly, this will be a curve y(s) = exp(X(s) + Y(s)), s E [0, 11, with 
X(0) = Y(0) = 0, X(1) = X, , Y( 1) = Y, , minimizing the integral 
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under the condition 

2Y,= 
I 

l [X,II;]ds. 
0 

(Y(s) is then automatically determined by (2.3)) The Euler equation of this 
problem is obtained by introducing a z-valued Lagrange multiplier d and 
adding (A, [X,X]) to X. A simple computation using (1.3) gives the Euler 
equation 

ax 
- -- = 2j(A)lr'. 
as 1x1 

This equation can be integrated explicitly, similarly to the equation (17) in 
[ 121, and one finds the following geodesic arcs: 

If Y, = 0 (this corresponds to A = 0), then 

X(s) = sx, ) Y(s) = 0. (3.1) 

If Y, # 0, then, with the notation Y; = Y, /I Y, 1, 

X(s) = (exp a,sj(Y;) -I) IV,, 

Y(s) = $+2,s) 1 woIZY;. 
(3.2) 

Here a, is a positive solution of 

(3.3) 

(there are finitely many solutions if X, # 0, with exactly one in (0, 271); if 
X, = 0, the solutions are a0 = 2kx, k = 1, 2,... .) W, is determined in the case 
X, f 0 by 

X, = (exp a, j(Yi) - 1) W, (3.4) 

while in the case X, = 0, W, is subject only to the condition 

w,I=~(~o)IWo12 (3.5) 

and is otherwise arbitrary. 
The length of the geodesic arc is 

a0 I WoI* 

(Note that in the case X, = 0, a, = 2kn, this is 2(kn 1 Y, I)“‘.) 

(3.6) 
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To find the geodesic arcs with respect to (MC) one can use Kaplan’s 
computations for (M,). The right-hand side of formula (10) in [ 121 giving 
the Riemannian connection has to be multiplied by l/c* and corresponding 
modifications have to be made in the subsequent computations. One finds 
that the (MC)-geodesic arcs joining e to exp(X, + Y,) are given as follows. 

(i) If Y, = 0, by (3.1). 

(ii) If Y, # 0 and X, # 0, by 

X(s)= (expa,sj(Y;)-I) WC, 

Y(s) = (c2ucs + f ( Wc12rn(U,S)) Y; 
(3.7) 

where a, is a solution of 

(3.8) 

satisfying 0 < a, < (Y, I/c’ (there always exists exactly one solution in 
(0, 2x), and for c small enough there exist as many as for (3.3)); WC is deter- 
mined by 

X,(exp a,.C) -4 WC. 

(iii) If X, = 0 and Y, # 0, there is a geodesic arc given by 

X(s) = 0, Y(s) = s Y, ) (3.9) 

and there may be others, given by (3.7) and the solutions a, = 2kn 
(k = 1, 2 )...) m) of (3.8) ( i.e., of ,u(u,) = 0), such that a, < ] Y, I/c’; in this case 
WC is subject only to the condition 

( Y, ( - c2u, = I,m(u,) [ W,l’. 

The length of the arc (3.7) is given by 

a,(/ W,(‘+ c2y2. 

In the special case of X, = 0, denoting by yk the arc (3.7) corresponding to 
a, = 2kz, this gives 

I&) = 2 [kn(l Y, I - kxc2)] 1’2 

and one sees at once that 

l&l) ( *** < 4hn) < ~,h) 

exactly as in the case considered by Debiard [5]. 
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The formulas of this section, together with translation invariance imply the 
following result. 

PROPOSITION 3.1. Let n,, n, f N, and let y0 be an (M,)-geodesic joining 
them. Then for all c > 0 there exists an (M,)-geodesic arc y, joining n, to n2, 
such that 

Fy Y,(S) = IJo(s) 

uniformly in s, and 

COROLLARY. Given n, , n2 EN, an (M,)-geodesic arc of minimal l,- 
length has minimal l,-length even in the class of piecewise C’ curves joining 
n, to n,. 

Proof. Immediate from the well-known corresponding property of 
Riemannian metrics and from the remark after Proposition 2.2. 

4. AN EXAMPLE IN RIEMANNIAN GEOMETRY 

Let M be an n-dimensional compact connected C”“-manifold. For any 
Riemannian metric on M let pi denote the smallest non-zero eigenvalue of 
the Laplace-Beltrami operator and let vol M be the Riemannian volume. In 
[ 141 Urakawa showed that as the metric varies, the quantity 
~=/i1(volM)2’” has no absolute upper bound, thereby answering a question 
of Berger. In [ 1] a general class of metrics furnishing similar examples was 
studied. Here we wish to point out that our family of metrics (M,) projected 
to compact quotients of the group N also fit into this scheme. Furthermore, 
with the aid of some harmonic analysis on N one can make all the 
calculations directly and so obtain what is probably the simplest possible 
example of the phenomenon in question. 

For this let N be a ‘group as in Section 2, and let (Xi}, { Yi} be 
orthonormal bases of u, z, respectively. For a co-compact subgroup r of N 
we still denote by (M,) the projection of (M,) to T\N, Writing A, = C Xf, 
A, = JJ Yf, it is clear that the Laplace-Beltrami operator for the metric (M,) 
is 

A,=Al+c2A2. 

Since A, and A, commute, the eigenspaces of A, are direct sums of the joint 
eigenspaces of A, and A,. 
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For the case where N is the Iwasawa group of a semisimple Lie group of 
real rank one, the joint diagonalization of A, and A, can be found in [ 131. 
Since we are only interested in describing the simplest example, we may 
restrict ourselves to the case where N is the three-dimensional Heisenberg 
group in its usual presentation as upper-triangular matrices, and we may 
take for T the subgroup with integral entries. 

It is clear from [13] that the eigenvalues of A, on T\N are (up to an 
irrelevant factor coming from the normalization of the metric) the numbers 
I* (A = 0, 1,2,...) with eigenfunctions of the form Q(X) exp(i3, ( Yi). If A is 0, 
A, acts on Q(X) as the ordinary Laplacian of Z*\R*, so its eigenvalues are 
m* + ,* (m, n E Z). If Iz # 0, the corresponding eigenvalues of A, which give 
bounded eigenfunctions on N are found in [ 131 to be Ab(p + 4n) 
(n = 0, 1, 2,...), where b and p are as in our Section 1. It follows that p, = 
min{ 1, bp + c*}. 

Obviously, in the metric (M,) we have vol(T\N) = c- ‘, so 

y=c -“’ min{ 1, bp f c*}, 

which is unbounded as c varies, proving our statement. 
We may note that the phenomenon of the crossing of eigenvalues observed 

in [ 14, l] and leading to ,u~ having exceptionally high multiplicity for a 
certain value of c also occurs in our case. 
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