# Geometric Properties of Heisenberg-Type Groups 

Adam Korányi*<br>Department of Mathematics<br>Washington University, St. Louis, Missouri 63130

## Introduction

Gauges, or equivalently, left-invariant pseudodistances on the Heisenberg group, have been used for a long time. It was, however, only in 1978 that Cygan [3] noted that one of these natural gauges actually induces a distance, i.e., a left-invariant metric space structure on the group.

Peter Greiner posed the problem of studying the notion of arc length associated to this metric; in particular, he asked whether there is a kind of infinitesimal metric giving rise to the same arc length.

Section 2 of the present paper gives an answer to this question. It is shown that there is a certain "contravariant Riemannian metric" in the sense of [10] (roughly speaking, a Riemannian metric in which some vectors can have infinite length), studied previously by Gaveau [6, 7], which induces the arc length in question.

We will work in the greater generality of H -type groups introduced recently by Kaplan [11]. This class includes among others the nilpotent parts $N$ in the Iwasawa decomposition $G=K A N$ of semisimple Lie groups of real rank one. In this especially interesting case the "contravariant Riemannian metric" $\left(M_{0}\right)$ which we construct is characterized (up to a factor) by being left-invariant under $N$, invariant under the centralizer $M$ of $A$ in $K$, and transforming under $A$ by a character. It is therefore the direct generalization of the standard metric on $\mathbf{R}^{n}$, which is characterized by the same properties when $\mathbf{R}^{n}$ is regarded as the $N$-part of $S O(n, 1)$.
In general, when an H-type group is not Abelian, $\left(M_{0}\right)$ arises as the limit of a family of ordinary Riemannian metrics ( $M_{c}$ ) $(c>0)$. In Section 3 we consider geodesic arcs with respect to these metrics. For $\left(M_{0}\right)$ on the Heisenberg group these were studied earlier by Gaveau [6,7] and for ( $M_{1}$ ) by Debiard [5] and Kaplan [12]. Besides some slight generalization of the previous results our goal here is to show that the ( $M_{c}$ )-geodesics joining two fixed points tend uniformly to the ( $M_{0}$ )-geodesic as $c \rightarrow 0$. From this one gets

[^0]a very simple proof of the fact that the shortest $\left(M_{0}\right)$-geodesics keep their minimizing property even in the class of piecewise $C^{1}$ curves.

In a short final section it will be shown that with the aid of the metrics ( $M_{c}$ ) one can construct simple examples which, similarly to the examples of Urakawa [14], show that there is no Faber-Krahn-type inequality connecting the Riemannian volume and the lowest eigenvalue of the Laplacian in the class of compact Riemann manifolds.

## 1. Lie Groups of Type H

Lie groups of type H; were introduced by Kaplan in [11]. They are defined as follows.

Let $v, z$ be real Euclidean spaces and let $j: z \rightarrow$ End $v$ be a linear map satisfying

$$
\begin{align*}
|j(Y) X| & =|Y||X|,  \tag{1.1}\\
j(Y)^{2} & =-|Y|^{2} I . \tag{1.2}
\end{align*}
$$

Now let $n=v+z$ and let the Lie algebra structure on $n$ be defined so that $z$ is the center and, for $X, X^{\prime} \in v$ and all $Y \in z$,

$$
\begin{equation*}
\left\langle Y,\left[X, X^{\prime}\right]\right\rangle=\left\langle j(Y) X, X^{\prime}\right\rangle . \tag{1.3}
\end{equation*}
$$

An equivalent definition [11] is to say that $n=v+z$ is a two-step nilpotent Lie algebra with center $z$ and such that for all $X \in v$ with $|X|=1$, $\operatorname{ad}(X)$ is a surjective isometry of the orthocomplement $v \ominus \operatorname{ker} \operatorname{ad}(X)$ onto $z$.
$N$ is a group of type H if it is simply connected and its Lie algebra is of type H . It is easy to see that such groups have a particularly simple representation theory, since the orbits of the coadjoint representation are parametrized by $v$ (one-point orbits) and $z-\{0\}$ (orbits that are affine subspaces isomorphic with $v$, permuted transitively by the authomorphism group of $N$ ). It is known that groups of type H have a natural gauge defined by

$$
\begin{equation*}
\exp (X+Y)=\left(|X|^{4}+16|Y|^{2}\right)^{1 / 4} \tag{1.4}
\end{equation*}
$$

for $X \in v, Y \in z$; by [4] this gauge satisfies

$$
\begin{equation*}
|g h| \leqslant|g|+|h| \tag{1.5}
\end{equation*}
$$

for all $g, h \in N$.
The following result is contained in [12]; we give here a simple proof which is independent of classification.

Proposition 1.1. The nilpotent part in the Iwasawa decomposition of a semisimple Lie group of real rank one is of type $H$.

Proof. Let $g=k+a+n$ be the Iwasawa decomposition at the Lie algebra level, let $\theta$ be the Cartan involution, let $\alpha$ and $2 \alpha$ denote the positive restricted roots, $g_{\alpha}, g_{2 \alpha}$ the corresponding root spaces, and $p, q$ their respective dimensions. We may assume $p, q=0$, for otherwise the proposition is trivial. Denoting the Killing form by $B$, we define $H_{\alpha} \in a$ by the condition $\alpha(H)=B\left(H, H_{a}\right)$ for all $H \in a$. As in [13], we define the number $b>0$ by

$$
\begin{equation*}
2 b^{2}=\alpha\left(H_{\alpha}\right)=B\left(H_{\alpha}, H_{\alpha}\right) \tag{1.6}
\end{equation*}
$$

(Incidentally, an easy computation shows that $4 b^{2}=(p+4 q)^{-1}$.)
Now we set $z=g_{2 \alpha}, v=g_{\alpha}$, we define the Eulidean structure on $n=v+z$ by

$$
\begin{equation*}
\left\langle Z, Z^{\prime}\right\rangle=-4 b^{2} B\left(Z, \theta Z^{\prime}\right) \tag{1.7}
\end{equation*}
$$

and for all $Y \in z, X \in v$ we set

$$
\begin{equation*}
j(Y) X=\operatorname{ad}(Y) \theta X \tag{1.8}
\end{equation*}
$$

We have to verify (1.1)-(1.3); this is done by computations similar to those in [9, pp. 54-55] and is based on the identity

$$
[Y, \theta Y]=B(Y, \theta Y) H_{2 \alpha}
$$

for $Y \in z$. In fact, using the Jacobi identity we find

$$
\begin{aligned}
j(Y)^{2} X & =[Y, \theta[Y, \theta X]]=[Y,[\theta Y, X]] \\
& =[[Y, \theta Y], X]=B(Y, \theta Y)\left[H_{2 \alpha}, X\right]=-2 \alpha\left(H_{\alpha}\right) B(Y, \theta Y) X,
\end{aligned}
$$

which proves (1.2). The invariance of the Killing form together with the final part of the computation just performed give

$$
B(j(Y) X, j(Y) X)=B(\theta X,[Y,[\theta Y, X]])=-2 \alpha\left(H_{\alpha}\right) B(Y, \theta Y) B(X, \theta X)
$$

proving (1.1). Finally (1.3) follows from the invariance of the Killing form:

$$
\begin{aligned}
\left\langle Y,\left[X, X^{\prime}\right]\right\rangle & =-4 b^{2} B\left(Y, \theta\left[X, X^{\prime}\right]\right) \\
& =-4 b^{2} B\left([Y, \theta X], \theta X^{\prime}\right)=\left\langle j(Y) X, X^{\prime}\right\rangle .
\end{aligned}
$$

Remark. The gauge defined by (1.4) is in this case equal to

$$
2\left(b^{4} B(X, \theta X)^{2}+4 b^{2} B(Y, \theta Y)\right)^{1 / 4}
$$

which, up to the factor 2 agrees with the gauge occurring in a natural way in [9, Theorem 1.14].

## 2. Arc Length and the Infinitesimal Metric

Let $N$ be a group of type H ; we will follow the notations of Section 1 . With the aid of the gauge (1.4) we define a distance function $d$ on $N$ by

$$
\begin{equation*}
d(g, h)=\left|h^{-1} g\right| \tag{2.1}
\end{equation*}
$$

(The triangle inequality follows from (1.5).)
If $\gamma(s)(s \in[a, b])$ is a curve in $N$, we consider the associated arc length: Letting

$$
\begin{equation*}
a=s_{0}<s_{1}<\cdots<s_{n}=b \tag{2.2}
\end{equation*}
$$

we write $\gamma_{k}=\gamma\left(s_{k}\right), d_{k}=d\left(\gamma_{k}, \gamma_{k-1}\right), \Delta s_{k}=s_{k}-s_{k-1}$. The length of $\gamma$ is

$$
l(\gamma)=\sup \sum_{k=1}^{n} d_{k}
$$

with the "sup" taken over all partitions (2.2) and is the same as "lim sup" for $\operatorname{Max}\left\{\Delta s_{k}\right\} \rightarrow 0$.

Since the exponential map is bijective, any curve can be written in the form $\gamma(s)=\exp (X(s)+Y(s))$ with some curves $X(x), Y(s)$ in $v$ and $z$, respectively. We identify $v, z$ with their tangent spaces and denote by $\dot{X}(s), \dot{Y}(s)$ the tangent vectors of $X(s), Y(s)$.

Proposition 2.1. Suppose $\gamma(s)=\exp (X(s)+Y(s))(s \in[a, b])$ is a $C^{2}$ curve. Then $l(\gamma)<+\infty$ if and only if

$$
\begin{equation*}
\dot{Y}-\frac{1}{2}[X, \dot{X}]=0 \tag{2.3}
\end{equation*}
$$

If (2.3) holds, we have

$$
\begin{equation*}
l(\gamma)=\int_{a}^{b}|\dot{X}(s)| d s \tag{2.4}
\end{equation*}
$$

Proof. Writing $X_{k}=X\left(s_{k}\right)$, the Campbell-Hausdorff formula gives

$$
d_{k}=\left|\exp \left(X_{k}-X_{k-1}+Y_{k}-Y_{k-1}-\frac{1}{2}\left[X_{k-1}, X_{k}\right]\right)\right|
$$

Using the notation $\Delta X_{k}=X_{k}-X_{k-1}$, etc., by (1.4) this can be rewritten as

$$
d_{k}=\left(\left|\Delta X_{k}\right|^{4}+16\left|\Delta Y_{k}-\frac{1}{2}\left[X_{k-1}, \Delta X_{k}\right]\right|^{2}\right)^{1 / 4}
$$

By Taylor's formula, with an obvious notation we have

$$
\Delta X_{k}=\dot{X}_{k-1} \Delta s_{k}+\ddot{X}_{k-1} \Delta s_{k}^{2}+o\left(\Delta s_{k}^{2}\right)
$$

and similarly for $\Delta Y_{k}$, with $o\left(\Delta s_{k}^{2}\right)$ being uniform over $[a, b]$. Therefore,

$$
\begin{aligned}
d_{k}= & \left\{\left|\ddot{X}_{k-1}+o(1)\right|^{4}+\left\lvert\, \frac{1}{s_{k}}\left(\dot{Y}_{k-1}-\frac{1}{2}\left[X_{k-1}, \dot{X}_{k-1}\right]\right)\right.\right. \\
& \left.+\frac{1}{2}\left(\ddot{Y}_{k-1}-\frac{1}{2}\left[X_{k-1}, \ddot{X}_{k-1}\right]\right)+\left.o(1)\right|^{2}\right\}^{1 / 4} \Delta s_{k} .
\end{aligned}
$$

Suppose that (2.3) holds. Then, differentiating, we also have

$$
\ddot{Y}-\frac{1}{2}[X, \ddot{X}]=0
$$

and $\sum d_{k}$ tends to the limit (2.4) as $\operatorname{Max}\left\{\Delta s_{k}\right\} \rightarrow 0$. On the other hand, if (2.3) fails, then on some subinterval $\dot{Y}-\frac{1}{2}[X, \dot{X}]$ will stay close to a constant non-zero vector, and hence $\sum d_{k}$ will be unbounded. This finishes the proof.

To proceed further, for every $c>0$ we introduce a Riemannian metric ( $M_{c}$ ) on $N$, by setting for $X \in v, Y \in z$,

$$
\|X+Y\|_{c}=\left(|X|^{2}+c^{-2}|Y|^{2}\right)^{1 / 2}
$$

( $X+Y \in n$ is regarded here as a left-invariant vector field.) As pointed out in [13], in the case of the rank one Iwasawa groups these are the only leftinvariant metrics invariant under the action of the subgroup $M$ (but they do not transform by a character of $A$, except in the degenerate case where $N$ is Abelian).

We define $\left(M_{0}\right)$ as the limit for $c \rightarrow 0$; this is a "contravariant Riemannian metric" in the sense of [10], the length of $X+Y$ is infinite in case $Y=0$. So the length $l_{0}(\gamma)$ with respect to $\left(M_{0}\right)$ of a curve $\gamma$ is finite if and only if the tangent $\dot{\gamma}(s)$ is in $v$ for all $s$.

We denote the length with respect to $\left(M_{c}\right)$ by $l_{c}(\gamma)$.
Proposition 2.2. For any $C^{1}$-curve $\gamma(s)=\exp (X(s)+Y(s)), s \in[a, b]$, we have, for $c>0$,

$$
l_{c}(\gamma)=\int_{a}^{b}\left(|\dot{X}|^{2}+\frac{1}{c^{2}}\left|\dot{Y}-\frac{1}{2}[X, \dot{X}]\right|^{2}\right)^{1 / 2} d s
$$

Furthermore, $l_{0}(\gamma)<+\infty$ if and only if (2.3) holds for all s. In this case

$$
l_{0}(\gamma)=\int_{a}^{b}|\dot{X}(s)| d s
$$

Proof. It is known that the differential $\exp _{*}$ of the exponential map at a point $Z$ is given by

$$
\frac{I-\exp (-\operatorname{ad} Z)}{\operatorname{ad} Z}=I-\frac{1}{2} \operatorname{ad} Z+\cdots
$$

(cf., e.g., [8, p. 95], where there is also a translation term which we do not need since we regard the Lie algebra as the set of left-invariant vector fields). The tangent vector $\dot{\gamma}(s)$ is the image of $\dot{X}(s)+\dot{Y}(s)$ under $\exp _{*}$ at $X(s)+Y(s)$, so

$$
\dot{\gamma}(s)=\dot{X}+\dot{Y}-\frac{1}{2}[X, \dot{X}]
$$

all other brackets being equal to zero. The proposition now follows from the definitions.

Remark. It follows that if a curve satisfies (2.3), then

$$
l_{c}(\gamma)=l_{0}(\gamma)
$$

for all $c>0$.

## 3. Geodesics

We consider the behaviour of the $\left(M_{c}\right)$-geodesics as $c \rightarrow 0$. Since the geodesics for $\left(M_{1}\right)$ and for $\left(M_{0}\right)$ have been studied earlier (at least in the case of the Heisenberg group) [12, 5-7], we omit most of the computations.

We will use the notations

$$
\begin{gathered}
m(x)=x-\sin x, \\
\mu(x)=\frac{d}{d x} \log m(x)=\frac{1-\cos x}{x-\sin x} .
\end{gathered}
$$

We note that $\mu(x)=\theta(x / 2)^{-1}$ with the $\theta$ of Gaveau [ 6, p. 112].
For $\left(M_{0}\right)$ we define a geodesic arc joining $e$ to the point $\exp \left(X_{1}+Y_{1}\right)$ as an extremal of the variation problem associated to minimizing the arc length. More exactly, this will be a curve $\gamma(s)=\exp (X(s)+Y(s)), s \in[0,1]$, with $X(0)=Y(0)=0, X(1)=X_{1}, Y(1)=Y_{1}$, minimizing the integral

$$
\int_{0}^{1}|\dot{X}| d s
$$

under the condition

$$
2 Y_{1}=\int_{0}^{1}[X, \dot{X}] d s
$$

( $Y(s)$ is then automatically determined by (2.3).) The Euler equation of this problem is obtained by introducing a $z$-valued Lagrange multiplier $\lambda$ and adding $\langle\lambda,[X, \dot{X}]\rangle$ to $X$. A simple computation using (1.3) gives the Euler equation

$$
\frac{\partial}{\partial s} \frac{\dot{X}}{|\dot{X}|}=2 j(\lambda) \dot{X}
$$

This equation can be integrated explicitly, similarly to the equation (17) in [12], and one finds the following geodesic arcs:

If $Y_{1}=0$ (this corresponds to $\lambda=0$ ), then

$$
\begin{equation*}
X(s)=s X_{1}, \quad Y(s)=0 \tag{3.1}
\end{equation*}
$$

If $Y_{1} \neq 0$, then, with the notation $Y_{1}^{\prime}=Y_{1} /\left|Y_{1}\right|$,

$$
\begin{align*}
& X(s)=\left(\exp a_{0} s j\left(Y_{1}^{\prime}\right)-I\right) W_{0} \\
& Y(s)=\frac{1}{2} m\left(a_{0} s\right)\left|W_{0}\right|^{2} Y_{1}^{\prime} \tag{3.2}
\end{align*}
$$

Here $a_{0}$ is a positive solution of

$$
\begin{equation*}
\mu\left(a_{0}\right)=\frac{\left|X_{1}\right|^{2}}{4\left|Y_{1}\right|^{2}} . \tag{3.3}
\end{equation*}
$$

(there are finitely many solutions if $X_{1} \neq 0$, with exactly one in $(0,2 \pi)$; if $X_{1}=0$, the solutions are $\left.a_{0}=2 k \pi, k=1,2, \ldots\right) W_{0}$ is determined in the case $X_{1} \neq 0$ by

$$
\begin{equation*}
X_{1}=\left(\exp a_{0} j\left(Y_{1}^{\prime}\right)-I\right) W_{0} \tag{3.4}
\end{equation*}
$$

while in the case $X_{1}=0, W_{0}$ is subject only to the condition

$$
\begin{equation*}
2\left|Y_{1}\right|=m\left(a_{0}\right)\left|W_{0}\right|^{2} \tag{3.5}
\end{equation*}
$$

and is otherwise arbitrary.
The length of the geodesic arc is

$$
\begin{equation*}
a_{0}\left|W_{0}\right| . \tag{3.6}
\end{equation*}
$$

(Note that in the case $X_{1}=0, a_{0}=2 k \pi$, this is $2\left(k \pi\left|Y_{1}\right|\right)^{1 / 2}$.)

To find the geodesic arcs with respect to $\left(M_{c}\right)$ one can use Kaplan's computations for ( $M_{1}$ ). The right-hand side of formula (10) in [12] giving the Riemannian connection has to be multiplied by $1 / c^{2}$ and corresponding modifications have to be made in the subsequent computations. One finds that the $\left(M_{c}\right)$-geodesic arcs joining $e$ to $\exp \left(X_{1}+Y_{1}\right)$ are given as follows.
(i) If $Y_{1}=0$, by (3.1).
(ii) If $Y_{1} \neq 0$ and $X_{1} \neq 0$, by

$$
\begin{align*}
& X(s)=\left(\exp a_{c} s j\left(Y_{1}^{\prime}\right)-I\right) W_{c}, \\
& Y(s)=\left(c^{2} a_{c} s+\frac{1}{2}\left|W_{c}\right|^{2} m\left(a_{c} s\right)\right) Y_{1}^{\prime} \tag{3.7}
\end{align*}
$$

where $a_{c}$ is a solution of

$$
\begin{equation*}
\mu\left(a_{c}\right)=\frac{\left|X_{1}\right|^{2}}{4\left(\left|Y_{1}\right|-c^{2} a_{c}\right)} \tag{3.8}
\end{equation*}
$$

satisfying $0<a_{c}<\left|Y_{1}\right| / c^{2}$ (there always exists exactly one solution in $(0,2 \pi)$, and for $c$ small enough there exist as many as for (3.3)); $W_{c}$ is determined by

$$
X_{1}\left(\exp a_{c} j\left(Y_{1}^{\prime}\right)-I\right) W_{c}
$$

(iii) If $X_{1}=0$ and $Y_{1} \neq 0$, there is a geodesic arc given by

$$
\begin{equation*}
X(s)=0, \quad Y(s)=s Y_{1}, \tag{3.9}
\end{equation*}
$$

and there may be others, given by (3.7) and the solutions $a_{c}=2 k \pi$ $(k=1,2, \ldots, m)$ of (3.8) (i.e., of $\mu\left(a_{c}\right)=0$ ), such that $a_{c}<\left|Y_{1}\right| / c^{2}$; in this case $W_{c}$ is subject only to the condition

$$
\left|Y_{1}\right|-c^{2} a_{c}=\frac{1}{2} m\left(a_{c}\right)\left|W_{c}\right|^{2} .
$$

The length of the arc (3.7) is given by

$$
a_{c}\left(\left|W_{c}\right|^{2}+c^{2}\right)^{1 / 2}
$$

In the special case of $X_{1}=0$, denoting by $\gamma_{k}$ the arc (3.7) corresponding to $a_{c}=2 k \pi$, this gives

$$
l_{c}\left(\gamma_{k}\right)=2\left[k \pi\left(\left|Y_{1}\right|-k \pi c^{2}\right)\right]^{1 / 2}
$$

and one sees at once that

$$
l_{c}\left(\gamma_{1}\right)<\cdots<l_{c}\left(\gamma_{m}\right)<l_{c}\left(\gamma_{0}\right)
$$

exactly as in the case considered by Debiard [5].

The formulas of this section, together with translation invariance imply the following result.

Proposition 3.1. Let $n_{1}, n_{2} \in N$, and let $\gamma_{0}$ be an ( $M_{0}$ )-geodesic joining them. Then for all $c>0$ there exists an $\left(M_{c}\right)$-geodesic arc $\gamma_{c}$ joining $n_{1}$ to $n_{2}$, such that

$$
\lim _{c \rightarrow 1} \gamma_{c}(s)=\gamma_{0}(s)
$$

uniformly in $s$, and

$$
\lim _{c \rightarrow 1} l_{c}\left(\gamma_{c}\right)=l_{0}\left(\gamma_{0}\right) .
$$

Corollary. Given $n_{1}, n_{2} \in N$, an $\left(M_{0}\right)$-geodesic arc of minimal $l_{0}$ length has minimal $l_{0}$-length even in the class of piecewise $C^{1}$ curves joining $n_{1}$ to $n_{2}$.

Proof. Immediate from the well-known corresponding property of Riemannian metrics and from the remark after Proposition 2.2.

## 4. An Example in Riemannian Geometry

Let $M$ be an $n$-dimensional compact connected $C^{\infty}$-manifold. For any Riemannian metric on $M$ let $\mu_{1}$ denote the smallest non-zero eigenvalue of the Laplace-Beitrami operator and let $\operatorname{vol} M$ be the Riemannian volume. In [14] Urakawa showed that as the metric varies, the quantity $\psi=\mu_{1}(\operatorname{vol} M)^{2 / n}$ has no absolute upper bound, thereby answering a question of Berger. In [1] a general class of metrics furnishing similar examples was studied. Here we wish to point out that our family of metrics $\left(M_{c}\right)$ projected to compact quotients of the group $N$ also fit into this scheme. Furthermore, with the aid of some harmonic analysis on $N$ one can make all the calculations directly and so obtain what is probably the simplest possible example of the phenomenon in question.

For this let $N$ be a group as in Section 2, and let $\left\{X_{i}\right\},\left\{Y_{i}\right\}$ be orthonormal bases of $v, z$, respectively. For a co-compact subgroup $\Gamma$ of $N$ we still denote by ( $M_{c}$ ) the projection of $\left(M_{c}\right)$ to $\Gamma \backslash N$. Writing $\Delta_{1}=\sum X_{i}^{2}$, $\Delta_{2}=\sum Y_{i}^{2}$, it is clear that the Laplace-Beltrami operator for the metric $\left(M_{c}\right)$ is

$$
\Delta_{c}=\Delta_{1}+c^{2} \Delta_{2} .
$$

Since $\Delta_{1}$ and $\Delta_{2}$ commute, the eigenspaces of $\Delta_{c}$ are direct sums of the joint eigenspaces of $\Delta_{1}$ and $\Delta_{2}$.

For the case where $N$ is the Iwasawa group of a semisimple Lie group of real rank one, the joint diagonalization of $\Delta_{1}$ and $\Delta_{2}$ can be found in [13]. Since we are only interested in describing the simplest example, we may restrict ourselves to the case where $N$ is the three-dimensional Heisenberg group in its usual presentation as upper-triangular matrices, and we may take for $\Gamma$ the subgroup with integral entries.

It is clear from [13] that the eigenvalues of $\Delta_{2}$ on $\Gamma \backslash N$ are (up to an irrelevant factor coming from the normalization of the metric) the numbers $\lambda^{2}(\lambda=0,1,2, \ldots)$ with eigenfunctions of the form $\Phi(X) \exp (i \lambda|Y|)$. If $\lambda$ is 0 , $\Delta_{1}$ acts on $\boldsymbol{\Phi}(X)$ as the ordinary Laplacian of $\mathbf{Z}^{2} \backslash \mathbf{R}^{2}$, so its eigenvalues are $m^{2}+n^{2}(m, n \in \mathbf{Z})$. If $\lambda \neq 0$, the corresponding eigenvalues of $\Delta_{1}$ which give bounded eigenfunctions on $N$ are found in [13] to be $\lambda b(p+4 n)$ ( $n=0,1,2, \ldots$ ), where $b$ and $p$ are as in our Section 1. It follows that $\mu_{1}=$ $\min \left\{1, b p+c^{2}\right\}$.

Obviously, in the metric ( $M_{c}$ ) we have $\operatorname{vol}(\Gamma \backslash N)=c^{-1}$, so

$$
\psi=c^{-2 / 3} \min \left\{1, b p+c^{2}\right\},
$$

which is unbounded as $c$ varies, proving our statement.
We may note that the phenomenon of the crossing of eigenvalues observed in $[14,1]$ and leading to $\mu_{1}$ having exceptionally high multiplicity for a certain value of $c$ also occurs in our case.

## Acknowledgments

I wish to express my gratitude to Professors P. Greiner and I. Kupka for useful conversations on the subject of this paper.

## References

1. L. Bérard-Bergéry and J.-P. Bourgignon, Laplacians and Riemannian submersions with totally geodesic fibres, submitted for publication.
2. R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II, Interscience, New York, 1962.
3. J. Cygan, Wiener's test for the Brownian motion on the Heisenberg group, Colloquium Math. 39 (1978), 367-373.
4. J. Cygan, Subaddivity of homogeneous norms on certain nilpotent Lie groups, in Proc. Amer. Math. Soc., in press.
5. A. Debiard, Espaces $H^{p}$ au dessus de l'espace Hermitien hyperbolique de $C^{n}(n=1) . I I$, J. Funct. Anal. 40 (1981), 185-265.
6. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées souselliptiques sur certains 'groupes nilpotents, Acta Math. 139 (1977), 95-153.
7. B. Gaveau, Systèmes dynamiques associés à certains opérateurs hypoelliptiques, Bull. Sci., Math., $2^{e}$ sér. 102 (1978), 203-229.
8. S. Helgason, "Differential Geometry and Symmetric Spaces," Academic Press, New York, 1962.
9. S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
10. R. Hermann, "Topics in General Relativity," Interdisciplinary Mathematics, Vol. V, Math. Sci. Press, 1973.
11. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE gencrated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.
12. A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, submitted for publication.
13. A. KorányI, Some applications of Gelfand pairs in classical analysis, to appear in "Harmonic analysis and group representations", CIME, Cortona, 1980.
14. H. Urakawa, On the least eiganvalue of the Laplacian for compact group manifolds, $J$. Math. Soc. Japan (1979), 209-226.

[^0]:    * Partially supported by N.S.F. Grant MCS-79-20062.

