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Abstract

The acute effects of the vascular-disrupting agent

5,6-dimethylxanthenone-4-acetic acid (DMXAA) were

investigated in vivo using intravital microscopy (IVM)

and magnetic resonance imaging (MRI). Changes in

vascular permeability and blood flow of syngeneic

CT-26 murine colon adenocarcinomas were assessed

at 4 and 24 hours after DMXAA treatment (30 mg/kg,

i.p.) and correlated with induction of tumor necrosis

factor-A (TNF-A), endothelial damage [CD31/terminal

deoxynucleotidyl transferase (TdT)], and treatment

outcome. Intravital imaging revealed a marked in-

crease in vascular permeability 4 hours after treatment,

consistent with increases in intratumoral mRNA and

protein levels of TNF-A. Parallel contrast-enhanced

MRI studies showed a f 4-fold increase in longitu-

dinal relaxation rates (#R1), indicative of increased

contrast agent accumulation within the tumor. Dual-

immunostained tumor sections (CD31/TdT) revealed

evidence of endothelial apoptosis at this time point.

Twenty-four hours after treatment, extensive hemor-

rhage and complete disruption of vascular architecture

were observed with IVM, along with a significant re-

duction in #R1 and virtual absence of CD31 immuno-

staining. DMXAA-induced tumor vascular damage

resulted in significant long-term (60-day) cures com-

pared to untreated controls. Multimodality imaging

approaches are useful in visualizing the effects of anti-

vascular therapy in vivo. Such approaches allow cross

validation and correlation of findings with underlying

molecular changes contributing to treatment outcome.
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Introduction

The growth and development of most solid tumors beyond a

few millimeters are contingent on the existence of a func-

tioning vascular network [1]. The vascular architecture of

tumors is characterized by immature blood vessels with com-

plex branching patterns and irregular geometries that contribute

to spatial and temporal variations in blood flow within the tumor

[2]. Tumor-associated endothelial cells are abnormally shaped,

with loose intercellular connections and focal openings that re-

sult in enhanced permeability, compared to normal tissues

[3]. These characteristics contribute to metastatic spread

and genetic instabilities within the growing tumor that often

have a detrimental effect on therapy [4,5]. However, structural

and functional differences between normal and tumor vessels

have also allowed the development of targeted therapeutics

that selectively destroys the tumor vasculature [6]. These

vascular-disrupting agents (VDAs) target the endothelial cells

of tumors [7] and are, therefore, not associated with multidrug

resistance—a characteristic associated with poor clinical prog-

nosis with chemotherapy.

The VDA 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is

a small molecule cytokine inducer that is currently undergoing

phase II clinical evaluation2 in the United States in combination

with chemotherapeutic agents such as docetaxel [7]. Because

VDAs such as DMXAA differ from traditional anticancer cyto-

toxics in their mechanism of action, they do not always result

in significant changes in tumor size [7,8]. Therefore, the present

clinical paradigm of monitoring tumor shrinkage may not be a

sensitive-enough measure of the true efficacy of these agents.

Abbreviations: VDA, vascular-disrupting agent; DMXAA, 5,6-dimethylxanthenone-4-acetic

acid; TNF-a, tumor necrosis factor-a; MRI, magnetic resonance imaging; IVM, intravital

microscopy; PECAM, pan endothelial cell adhesion molecule (CD31); TdT, terminal

deoxynucleotidyl transferase
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Furthermore, volume change is a nonspecific biomarker that

provides little or no information early on during the course of

treatment. It is, therefore, essential to identify and develop

early biomarkers that serve as reliable predictors of thera-

peutic outcome. Imaging-based approaches have proven

extremely useful in this regard as they provide early tumor-

specific information following treatment well before macro-

scopic changes in tumor volume become evident.

We have previously demonstrated the usefulness of

contrast-enhanced magnetic resonance imaging (MRI) in

evaluating the response of human tumor xenografts to

DMXAA [9]. The ability of MRI to provide whole-body infor-

mation with high temporal and spatial resolution in a non-

invasive manner is particularly beneficial as it allows serial

monitoring of tumor response to therapy, both in preclinical

model systems and in clinical settings. However, a single

imaging methodology or assay may not adequately reflect

the entire spectrum of events that contribute to tumor growth

or response to therapy [10]. Multimodality functional imag-

ing approaches, however, would allow a more comprehen-

sive evaluation of tumor response to VDAs such as DMXAA.

The utilization of such approaches would also provide com-

plementary information that can be cross-validated and

correlated with underlying molecular mechanisms that con-

tribute to eventual treatment outcome.

In this study, we used two advanced imaging techniques,

intravital microscopy (IVM) and contrast-enhanced MRI, to

visualize and quantitate acute changes in the vascular func-

tion of CT-26 murine colon adenocarcinomas following the

administration of a single dose of DMXAA. To a large extent,

the antivascular–antitumor effects of DMXAA are related to

the in situ production of the cytokine tumor necrosis factor-a

(TNF-a) [11]. However, recent studies have shown that

DMXAA results in a variety of pharmacodynamic effects

ranging from direct effects on the vascular endothelium to

macrophage activation and natural killer cell activity [12,13].

Therefore, in addition to IVM and MRI, the antivascular–

antitumor activity of DMXAA was assessed by: 1) dual

immunohistochemical staining of tumor sections for pan en-

dothelial cell adhesion molecule (PECAM; CD31) and

terminal deoxynucleotidyl transferase (TdT) for detecting en-

dothelial apoptosis; 2) measuring intratumoral mRNA and

protein levels of TNF-a in control and DMXAA-treated animals

using polymerase chain reaction (PCR) and enzyme-linked

immunosorbent assay (ELISA), respectively; and 3) monitor-

ing long-term (60-day) tumor growth following treatment.

Materials and Methods

Tumor Model System

All experimental studies were carried out in the CT-26 mu-

rine colon adenocarcinomamodel [14] implanted in pathogen-

free syngeneic BALB/c-AnNCr mice (Jackson Laboratory,

Bar Harbor, ME). Animals were housed in microisolator

cages in a laminar flow unit within the animal facility at Roswell

Park Cancer Institute (Buffalo, NY) and fed food and water ad

libitum. For all studies except IVM, 8- to 10-week-old female

mice were inoculated subcutaneously with 1 � 106 CT-26

tumor cells harvested from exponentially growing cultures

and used for experimentation f 7 to 8 days after inocula-

tion, when tumors had reached a diameter of 6 to 7 mm.

For IVM studies, f 5 � 105 tumor cells were injected within

dorsal skinfold window preparations, and studies were car-

ried out 10 to 12 days postimplantation. All studies were

performed in accordance with Institutional Animal Care and

Use Committee–approved protocols.

DMXAA

DMXAA powder was provided by Gordon Rewcastle

(University of Auckland, Auckland, New Zealand) and freshly

formulated in 5% sodium bicarbonate before intraperitoneal

injection at a dose of 30 mg/kg.

IVM

To visualize changes in vascular architecture and function

following DMXAA treatment, intravital imaging based on the

dorsal skinfold window preparation was used [15,16]. Briefly,

8- to 10-week-old female BALB/c mice (n = 5) were anesthe-

tized with a ketamine/xylazine mixture (10:1) at a dose of

1.0 ml/100 mg. Each mouse was shaved from the neck

down to the tail with a clipper and then depilated with Nair

(Church & Dwight Co., Inc, Princeton, NJ); the skin was

disinfected with hexidine and alcohol. The midline of each

animal was then marked with a sterile skin marker, and a ‘‘C’’

clamp was sutured onto the skin of the animal. A circular skin

flap f 10 mm in diameter was then raised on the dorsal

skinfold, leaving all vessels on the opposite side of the skin-

fold intact. A small amount of saline was periodically injected

to keep the surface moist. The two frames of the window

chamber were then mounted and secured onto the skin with

screws and sutures. Topical antibiotic was applied onto the

edges of the wound to prevent subsequent dermal infection.

Tumor cells (5� 105) were then injected into the fascia within

the preparation, and the chamber was filled with saline. A

glass cover slip was placed over the window preparation, and

a retaining ring was applied with pliers on top of the cover slip.

Following recovery, mice were transferred onto laminar flow

barrier cages containing food and water and placed in a

humidified temperature-controlled incubator (32jC). Tumor

growth within the window chambers was monitored every

24 hours, and experiments were carried outf 10 to 12 days

postimplantation, during which tumors grew to f 3 to 4 mm,

with a well-vascularized network visible within the window

chambers. Bright field images were digitally acquired using a

surgical microscope with a mounted color camera (Endure

Medical, Inc., Cumming, GA) before treatment and 4 and

24 hours after DMXAA administration.

Contrast-Enhanced MRI

All studies were performed using a 4.7-T/33-cm horizontal

bore MR scanner (GE NMR Instruments, Fremont, CA)

incorporating AVANCE digital electronics (Bruker Medical,

Billerica, MA), a removable gradient coil insert (G060; Bruker

Medical) generating a maximum field strength of 950 mT/m,

and a custom-designed radiofrequency transreceiver coil.
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Tumor-bearing mice (n = 7) were anesthetized using 4%

isoflurane (Abbott Laboratories, Chicago, IL), secured in a

mouse coil chamber, and positioned on the scanner. Anes-

thesia was maintained at 1% to 2% during imaging, and a

circulating water bath maintained at 37jC was used to

keep the animals warm inside the magnet. Preliminary

noncontrast-enhanced images were acquired before the

administration of the contrast agent to obtain regional

T1 measurements. The macromolecular MR contrast agent

MacroGd (PharmaIn, Buffalo Grove, IL) was administered

manually through tail vein injection at a dose of 0.1 mmol/kg

Gd. The agent is a long-circulating gadolinium-containing

macromolecule that consists of a monomethoxy ether of

polyethylene glycol attached to poly-L-lysine–Gd-DTPA

[17,18]. Following administration of the contrast agent, a

second set of scans was acquired, and longitudinal relaxa-

tion rates (R1) were calculated using a saturation recovery

fast spin-echo sequence with the following: effective time of

echo period (TEeff) = 10 milliseconds; repetition time (TR) =

250 to 6000 milliseconds; field of view (FOV) = 32 � 32 mm;

slice thickness = 1 mm; matrix size = 128 � 96; number of

averages = 3. In addition, whole-body magnetic resonance

angiography (MRA) was performed using a 3D spoiled gra-

dient recalled echo scan (matrix size = 192 � 128 � 128;

FOV = 48 � 32 � 32 mm; TE = 3 milliseconds; TR = 15 milli-

seconds; flip angle = 25j). Following pretreatment acquisi-

tions, animals were divided into treatment (n = 4) and control

groups (n = 3), and DMXAA (30mg/kg, i.p.) was administered

to the mice in the treatment group. The animals were imaged

4 and 24 hours after treatment, and the change in longi-

tudinal relaxation rates (DR1) was calculated and analyzed

for statistically significant differences between the control

and treatment groups.

Image processing and analysis were carried out using

commercially available software (Analyze PC, Version 5.00;

Biomedical Imaging Resource, Mayo Clinic, Rochester, MN).

Regions of interest (ROI) of tumors, kidneys, and muscle

tissues were manually drawn on the images and object

maps of the ROI constructed. The longitudinal relaxation rate

(R1 = 1/T1) for each ROI was computed using MATLAB

(Version 7.0; Math Works, Inc., Natick, MA), and source

codes were developed by RPCI Preclinical Imaging Re-

source (Buffalo, NY). To calculate DMXAA-induced changes

in vascular function, DR1 was calculated by subtracting

postcontrast R1 values calculated immediately after contrast

agent administration from those obtained 4 and 24 hours

after contrast agent administration in both control and

DMXAA-treated tumors.

Cytokine Measurements

Determination of mRNA and protein levels of TNF-a in

CT-26 tumors was performed using reverse transcription

(RT) PCR and ELISA, respectively. At different times after

DMXAA treatment, tumors were harvested and frozen for

processing. Total RNAwas extracted from tumors using RNA

STAT-60 (Tel-Test, Inc., Friendswood, TX). First-strand syn-

thesis was performed using a first-strand cDNA synthesis kit

(K1612; Fermentas, Inc., Hanover, MD) with 2 mg of total

RNA. PCR was performed using Platium Taq DNA polymer-

ase (InVitrogen Corporation, Carlsbad, CA) for 35 cycles.

PCR products were then electrophoresed in 2% agarose

in the presence of ethidium bromide. For determination of

protein concentrations, tumor tissues were homogenized in

cell lysis buffer [CellLytic MTand Protease Inhibitor cocktail;

Sigma, St. Louis, MO (400:1)]. Supernatants were isolated,

and samples containing 40 mg of protein, as determined by

Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA),

were analyzed for TNF-a expression using an ELISA kit

(Quantikine; R&D Systems, Minneapolis, MN) specific for

the cytokine. The assays were performed in duplicate on

samples isolated from three to four mice for each time point.

Immunohistochemical Analyses

At different times after DMXAA treatment, tumors were

harvested and immediately placed in Tris-buffered zinc fixative

[0.1 M Tris–HCl buffer (pH 7.4) containing 3.2 mM calcium

acetate, 22.8 mM zinc acetate, and 36.7 mM zinc chloride]

for 18 hours. The samples were then transferred to 70%

ethanol, dehydrated, and embedded in paraffin. After conven-

tional deparaffinization and endogenous peroxidase quench-

ing, 5-mm-thick sections were stained for the PECAM CD31,

as described previously [9]. Slides were counterstained

with Harris hematoxylin (Poly Scientific, Bayshore, NY). TdT-

mediated nick end labeling was used to detect apoptosis in

tumor sections using the Apoptag plus Peroxidase in situ

detection kit (Chemicon International, Inc., Temecula, CA).

Assessment of Tumor Response

Following treatment, the dimensions of subcutaneous

tumors were measured with calipers every 1 to 3 days, and

tumor volumes were calculated using the formula: V = 0.52

(L � W 2), where L is the longest axis of the tumor and W is

perpendicular to the long axis. Animals were monitored until

tumors had reached a volume of 400mm3, at which time they

were humanely sacrificed. Regrowing tumors reached the

400-mm3 volume typically within 8 to 10 days. Animals were

considered cured if they remained tumor-free for at least

60 days after treatment. The median time to reach 400 mm3,

along with 95% confidence intervals, was estimated for

control and DMXAA-treated tumors using the method of

Kaplan and Meier [19].

Statistical Analysis

All measured values are reported as the mean ± standard

error of themean. Five animals (control group, two; treatment

group, three) were used for IVM studies. For immunohisto-

chemistry and cytokine measurements, at least three mice

each were used for the control and treatment groups. Seven

animals (control group, three; treatment group, four) were

used for MRI. Sixteen animals (control group, 10; treatment

group, 6) were used for tumor response studies. Two-tailed

t-test was used for comparing individual treatment groups

with controls. P = .05 was considered statistically signifi-

cant. The survival curves of untreated control and DMXAA-

treated animals were analyzed using log-rank test to test the

null hypothesis that the curves were identical. All statistical
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calculations and analyses were performed using Graph Pad

Prism (Version 4.00; San Diego, CA).

Results

Before imaging the antivascular effects of DMXAA in vivo,

intravital imaging was performed to observe differences in

vascular architecture between tumor and normal tissues. As

shown in Figure 1, the skin of a nontumorous BALB/c mouse

exhibited a highly organized vascular network with well-

defined branching patterns (control ). To observe changes in

vessel geometry during the early stages of tumor growth, serial

intravital images were acquired at different times after the

injection of CT-26 tumors (Figure 1). By day 4 after implanta-

tion of tumor cells in the window chambers, changes in the

geometry of host vessels were visible. The vessels appeared

dilated in several areas (yellow arrows), with some having a

high degree of tortuosity compared to day 1. These changes

became more obvious on day 6, after implantation with sig-

nificant vasodilation and increased tortuosity seen within the

window chambers (arrows). In comparison, the vessels of

nontumorous mice did not show such changes in vessel size

or tortuosity, highlighting the fact that these changes were

tumor-specific and associated with the induction of angio-

genesis [16]. On completion of baseline image acquisitions,

mice were injected with DMXAA (30 mg/kg, i.p.), and images

wereacquired 4 and24hours after treatment (n =3). As shown

in Figure 2, 4 hours after DMXAA treatment, significant vas-

cular leakage was seen within the window chamber, with signs

of hemorrhage (upper panel ). Twenty-four hours after treat-

ment, complete loss of vessel integrity, with severe hemor-

rhage visible in intravital images, was indicative of DMXAA-

induced vascular damage. Inspection of the skin around the

window chamber and at a distant site (mouse ear; not shown)

revealed no such change in vascular integrity or function, con-

firming the tumor-selective antivascular activity of DMXAA.

To correlate the intravital findings of tumor response

to DMXAA, contrast-enhanced MRI was performed in a

parallel study, using a separate cohort of animals (n = 7).

Whole-body MRA was performed to visualize changes in

tumor vascular function following DMXAA (Figure 2, middle

panel ). Consistent with intravital findings, the MRA of

DMXAA-treated tumors (n = 4) revealed a marked increase

in vascular permeability at 4 hours, compared to untreated

controls (n = 3). Change in enhancement following the

administration of the macromolecular MR contrast agent

was visualized and quantitated by measuring the change in

longitudinal relaxation rate DR1 (1/T1) in tumor and kidney

tissues. Kidneys were used as a surrogate measure of

contrast agent concentration in the blood. The calculated

temporal change in DR1 (tumor/blood) showed a f 7-fold

increase (P < .01) in DMXAA-treated animals (0.708 ± 0.109)

compared to untreated controls (0.129 ± 0.05) at this time

point (Figure 3). Subsequently, 24 hours after treatment,

whereas DR1 values continued to increase in untreated con-

trol tumors, mice treated with DMXAA showed a decrease

close to baseline levels reflective of DMXAA-induced reduc-

tion in vascular perfusion.

Immunohistochemical staining of CT-26 tumor sections

for the PECAM along with TdT (CD31/TdT) was performed to

Figure 1. Intravital microscopic images of normal and tumor-associated vasculature in a BALB/c mouse dorsal skin window chamber. Representative images of

normal host cutaneous vasculature (control) and vasculature associated with a growing CT-26 tumor within dorsal skinfold window chambers implanted in BALB/c

mice. Serial intravital images were acquired following the injection of CT-26 tumor cells to monitor changes in vessel geometry and architecture with tumor growth.

Arrows indicate corresponding areas in the images acquired at different times (days 1, 4, and 6) after tumor implantation that showed significant host vessel dilation

and increased tortuosity.
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correlate with changes in image-based parameters of vas-

cular function (Figure 2, bottom panel ). Tumor sections

obtained from untreated control mice showed well-defined

clusters of endothelial cellswith crispCD31staining (Figure 2,

left ). Strong TdT reactivity (arrows) was seen in CD31+ blood

vessels in CT-26 tumor sections 4 hours after treatment, in-

dicative of endothelial apoptosis (center). Twenty-four hours

after treatment, extensive TdT reactivity with virtual ab-

sence of identifiable CD31 reactive blood vessels was seen

(Figure 2, lower panel, right ). Regions of preexisting vessels

could be identified by a faint reddish blush (rectangles) in

tumor sections at this time point.

One of the major biological intermediates believed to

be responsible for the antivascular–antitumor activity of

DMXAA is TNF-a [11]. To determine whether changes in

vascular permeability corresponded with induction of TNF-a,

RT-PCR was performed on tumors at different times follow-

ing treatment (Figure 4A). Untreated control CT-26 tumors

did not show any upregulation of mRNA for TNF-a. In com-

parison, increased mRNA levels were detected in DMXAA-

treated tumors between 1 and 2 hours after treatment. To

further quantify intratumoral cytokine levels in control and

DMXAA-treated tumors, ELISA was performed on tumor tis-

sue extracts at 1, 2, and 4 hours after treatment (Figure 4B).

No significant change (P > .5) in TNF-a levels was seen in

DMXAA-treated tumors 1 hour after treatment (6.50 ± 0.866)

compared to untreated controls (8.25 ± 0.75). Consistent with

RT-PCR data, a marked increase (f 20-fold) in intratumoral

concentrations of TNF-a was detected at 2 hours after treat-

ment (285.8 ± 37.76; P < .001 vs control). TNF-a levels mea-

sured in tumors 4 hours after DMXAA treatment showed a

further increase (443.5 ± 48.52; P = .0001) compared to

untreated controls. The difference in TNF-a levels between

the 2-hour and the 4-hour time points was also statistically

significant (P < .05).

Finally, to determine the effects of DMXAA-based anti-

vascular therapy on long-term treatment outcome, tumor-

bearing mice were injected with DMXAA (30 mg/kg) and

monitored for a period of 60 days following treatment for

tumor regrowth. Survival curves based on the Kaplan-Meier

method were generated for untreated controls and DMXAA-

treated animals. As seen in Figure 5, DMXAA resulted in

significant tumor control, with f 80% of the mice remaining

tumor-free at 60 days (P < .001).

Discussion

The essential role of the vasculature in malignant progres-

sion, combined with the differential characteristics of tumor

and normal vessels, has led to the development of thera-

peutics that either disrupt existing tumor vessels (VDAs) or

inhibit new vessel formation (antiangiogenics) [1,8]. These

Figure 2. IVM, contrast-enhanced MRI, and immunohistochemical assessment of CT-26 tumor response to DMXAA. Intravital (upper panel) and contrast-

enhanced MR (middle panel) images of CT-26 colon adenocarcinomas acquired before treatment (preRx), 4 hours after treatment with DMXAA (4 h), and 24 hours

after treatment with DMXAA (24 h). Imaging-based changes in vascular function correlated with immunohistochemical analysis (CD31/TdT) of tumor sections

(lower panel). Four hours after treatment, endothelial apoptosis (arrows) was visible in DMXAA-treated tumors. Ghost outlines of vessels were seen at 24 hours

after treatment (rectangles). Representative images of individual mice from each methodology have been shown.
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biological therapies that selectively target tumors differ fun-

damentally in their mechanism(s) of action from conventional

cancer chemotherapies and do not always result in tumor

shrinkage following treatment [7,8]. This is particularly impor-

tant as anatomical imaging-based approaches that have

traditionally been used to assess tumor response to chemo-

therapy or radiation therapy rely on volumetric change and

may not be beneficial in the evaluation of vascular-targeted

therapies. Furthermore, it is widely recognized that molec-

ular alterations within the tumor occur much before macro-

scopic changes in gross tumor volume can be detected. It is,

therefore, essential to use functional imaging techniques that

provide early quantitative end points reflective of underlying

biological change.

The purpose of this study was to assess the antivascular

effects of the VDA DMXAA in vivo using a multimodality

imaging approach and to correlate imaging-based changes

in vascular function with underlying molecular changes

that contributed to its antitumor effect. Using two advanced

imaging techniques, IVM and contrast-enhanced MRI, acute

vascular changes following DMXAA administration were

evaluated in a murine carcinoma model. Alterations in tumor

vascular permeability and perfusion following treatment

correlated with endothelial apoptosis, intratumoral levels of

TNF-a, and long-term tumor response.

Intravital imaging based on the dorsal skinfold window

chamber technique is an extremely useful method that allows

visualization of tumor vessels in real time at high resolution

[16]. The ability of IVM to allow a serial assessment of tumors

Figure 3. Temporal change in the longitudinal MR relaxation rate (DR1 tumor/

blood) of control and DMXAA-treated CT-26 tumors implanted in BALB/c

mice. Graph shows the change in T1 relaxation rates (DR1) over time of

untreated control tumors (squares) and tumors treated with 30 mg/kg DMXAA

following administration of the macromolecular contrast agent. Significant

differences in DR1 values (**P < .01; two-tailed t-test) were seen 4 hours after

DMXAA treatment (n = 3) compared to untreated controls (n = 3).

Figure 4. Induction of TNF-a at different times after DMXAA treatment. BALB/c

mice bearing subcutaneous CT-26 tumors were injected with DMXAA and, at

different times after treatment, tumors were excised for the determination of

mRNA (A) and protein levels of TNF-a (B) using PCR and ELISA, respectively.

Statistical analyses (two-tailed t-test) revealed significant differences be-

tween control and treatment groups at 2 and 4 hours after treatment

(***P < .001). At least three to four mice were used for each time point.

Figure 5. Long-term treatment outcome following antivascular therapy.

BALB/c mice bearing subcutaneous CT-26 tumors were injected with 30 mg/

kg DMXAA, and tumor growth was monitored for 60 days after treatment.

Kaplan-Meier survival curves of untreated controls (n = 10) and DMXAA-

treated animals (n = 6). A significant difference in survival was seen between

control and treatment groups (**P < .01; log-rank test).
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is particularly useful in studying molecular events asso-

ciated with angiogenesis and the response of tumors to anti-

angiogenic or antivascular therapies [16,20]. In the present

study, vascularization of CT-26 tumors within the dorsal skin-

fold window chamber was clearly visualized, with changes

in vascular architecture visible as early as 2 days after im-

plantation (Figure 1). Intravital imaging showed evidence of

altered permeability 4 hours after DMXAA administration.

This is in agreement with a previous study by Zhao et al.

[21], in which, using Evans blue extravasation, it was dem-

onstrated that the major mechanism of action of DMXAAwas

increase in tumor vascular permeability. Twenty-four hours

after treatment, complete destruction of tumor vascular ar-

chitecture was seen with IVM, consistent with previous

preclinical reports of reduction in vascular perfusion and on-

set of necrosis at this time point [21,22]. Intravital imaging

offers the ability to directly visualize angiogenesis and tumor

vascular response to treatment in a live animal; however, due

to its invasive nature and the requirement of a specialized

surgical preparation of tissues, it cannot be readily translated

into the clinical setting. To validate IVM findings, parallel

studies were carried out using MRI.

Contrast-enhanced MRI is a noninvasive imaging tech-

nique that provides functional images of the tumor vasculature

in animal models and is routinely used in humans [23].

Although resolution of individual tumor vessels is difficult with

MRI, the technique offers excellent tissue contrast and pro-

vides whole-body renderings that allow the simultaneous

evaluation of tumor and normal tissues. Several preclinical

and clinical studies have used dynamic contrast-enhanced

(DCE) MRI to assess the response of tumors to VDAs such

as DMXAA and CA4P, with limited success [22,24]. A ma-

jority of these DCE-MRI studies have been performed using

small molecule MR contrast agents, typically Gd-DTPA, to

estimate parameters of tumor vascular permeability (K trans)

and blood flow (area under the curve) following treatment.

However, reduction in these parameters has only been in-

consistently observed in preclinical studies, particularly with

DMXAA [24,25]. Even in the phase I clinical trial of DMXAA,

DCE-MRI parameters did not reveal a dependable dose re-

sponse in patients, questioning the true clinical utility of the

technique [25]. In comparison, several studies have reported

the usefulness of macromolecular MR contrast agents for

measuring changes in the permeability and perfusion of tu-

mors in response to inhibitors of angiogenesis [18,26]. In this

study, we used one such macromolecular contrast agent

that exhibits a longer intravascular distribution compared to

Gd-DTPA [17]. The long half-life and low first-pass elimina-

tion of the agent allowed themonitoring of changes in vascular

permeability/perfusion with a single injection. The agent has

been shown to be nonimmunogenic, capable of producing

superior quality images with high contrast-to-noise ratio, and

useful in the assessment of antiangiogenic therapies [17,18].

The selective destruction of the tumor vasculature leading

to the secondary ischemic necrosis of tumor cells is the

fundamental basis of the antitumor activity of DMXAA [13].

The development of DMXAA was based on the selective

induction of TNF-a in situ [11]. TNF-a is a pleiotropic cytokine

that is produced mainly by activated cells of monocyte/mac-

rophage lineage [27]. TNF-a has been shown to cause the

necrosis of tumors in experimental animals, primarily through

toxic effects on the tumor vasculature [28]. The antivascular

effects ofDMXAAare, therefore, believed to be, at least in part,

related to the effects of TNF-a [11]. The induction of TNF-a

following DMXAA treatment has been studied extensively in

murine tumors and human tumor xenografts [11,29]. In our

study, intratumoral measurements of TNF-a showed a strong

correlation to observed changes in vascular permeability

(Figure 4). This is not surprising as the effects of TNF-a on

the vascular endothelium have been previously shown to

include changes in the shape and motility of endothelial cells,

upregulation of adhesion molecules such as E-selectin, and

the recruitment and activation of leukocytes [28,30,31]. These,

in turn, result in the initiation of vascular injury, loss of vascular

tone, and increase in endothelial permeability.

Although the major mechanism of action of DMXAA is be-

lieved to be the induction of TNF-a in situ, recent studies have

shown evidence of direct drug toxicity to the vascular endo-

thelium [12]. Reductions in tumor blood flow have been

observed early on after the administration of DMXAA, much

before changes in plasma or tumor TNF-a levels can be

measured [12]. This has been attributed to direct drug-

induced endothelial damage that results in a cascade of

events ranging from exposure of basement membrane to

platelet activation to serotonin release and changes in vas-

cular permeability [12,13]. In a previous study by Ching et al.

[12], induction of endothelial cell apoptosis has been ob-

served within 30 minutes of the administration of 25 mg/kg

DMXAA to Colon-38 tumor-bearing mice without any detect-

able apoptosis of tumor cells. In the same study, endothelial

cell apoptosis was also reported to have been observed in a

breast carcinoma biopsy from a patient in the phase I trial

of DMXAA. In the murine carcinomamodel used in our study,

a similar evidence of endothelial apoptosis was seen 30 min-

utes after DMXAA (data not shown). In our study, tumor

sections dual-stained for CD31/TdT showed clear evidence

of endothelial apoptosis at 4 hours (Figure 2), indicating that

the increased vascular permeability seen at this time point is

a cumulative effect of both direct drug effects on the endo-

thelium and indirect effects mediated by cytokine induction.

Twenty-four hours after DMXAA treatment, CT-26 tumor

sections showed a virtual absence of CD31 reactivity indic-

ative of significant vascular damage, further highlighting the

relationship between endothelial damage and reduction in

vascular perfusion. Taken together, the results of our study

show that DMXAA resulted in an early dramatic increase in

vascular permeability that is visible after a few hours of

treatment, consistent with endothelial damage and increased

cytokine induction. These changes subsequently led to com-

plete disruption of vascular architecture, reduction in blood

flow, and a high percentage of tumor cures.

In conclusion, multimodality imaging of the vasculature

with a high degree of correlation is feasible in vivo and is

a useful tool in the assessment of antivascular and anti-

angiogenic therapies. Although a number of functional imag-

ing techniques are currently being studied or are in progress,
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there has been little validation of imaging methodologies

with accepted molecular surrogates of disease process or

treatment outcome. In this report, we have demonstrated

the usefulness of a multimodality approach using two com-

plementary advanced imaging techniques, IVM and MRI,

to understand and characterize response to antivascular

therapy in an experimental tumor model. Although quantita-

tive estimates of changes in vessel geometry (lumen size or

diameter) were not performed, to the best of our knowledge,

this is the first study wherein direct visualization of the re-

sponse of individual tumor vessels to DMXAA using IVM has

been reported. Studies aiming to visualize and quantitate

functional changes in tumor vessels (vascular resistance and

red blood cell velocity) in response to DMXAA treatment are

currently being planned in our laboratory. One limitation of our

study was the use of separate cohorts of animals for IVM

and MRI studies. Although the window chambers used in

the study are nonmagnetic, preliminary MRI studies car-

ried out on animals implanted with these titanium-based

window chambers revealed significant artifacts at the tissue–

chamber interface, which prevented the accurate visualiza-

tion of corresponding areas on the same group of animals

with both techniques.We are currently exploring the potential

utility of an MR-compatible window chamber that allows the

simultaneous assessment of tumor vascular response to

therapy using MRI and IVM within the same animal. Prelim-

inary studies have revealed encouraging results with good

correlation between the two techniques [32]. Studies aiming

to develop image-based algorithms that will allow coregis-

tration of functional images from multiple imaging techniques

are also ongoing in our laboratory. We believe that the suc-

cessful development of these coregistration algorithms will

enable the utilization of complementary imaging techniques

to make meaningful comparisons between different results

obtained and to provide insights into the mechanism(s) of

action of vascular-targeted therapies in vivo.
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