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Abstract: The theory for optimally assigning capacities to the links of a store and forward computer communication 
network is developed by the minimization of the maximum of two groupings of all link capacities previously assigned 
to the network. The MIN-MAX and MAX-MIN Algorithms developed have both local and global properties. The 
basic mathematical structure of the local section of the MIN-MAX Algorithm is derived from the Lagrange Multiplier 
technique for minimizing convex functions, or the Kuhn-Tucker method for c~nstrained minimization solutions, and 
the constraints imposed by the functional structure definitions. Since the MIN-MAX Algorithm attains the optimal 
minimized delay assignment by minimization of the Min-Max assignment, the aspects of its relation to the MAX-MIN 
Algorithms, the Min-Max inequality and the von Neumann Min-Max Theorem theory is explored. The global section 
of both algorithms offers an option for considering all possible, allowed link assignment combinations (2 n - 2) of the n 
capacities available to further minimize delay. 

Keywords: MIN-MAX algorithm, MAX-MIN algorithm, Lagrange multiplier, yon Neumann minimax theorem, 
capacity, topology, congestion, convex function, concave function, Kuhn-Tucker method 

1. I n t r o d u c t i o n  

Flow control procedures, congestion removal in a fair manner in store and forward computer 
communication networks, are implemented within software algorithms for managing resources 
and preventing total utilization of the network by a single user, or a group of users. This paper 
deals with the development of the theory for generating a sectional capacity assignment algorithm 
during a specific time interval for application to the local and global computer network 
topologies. The algorithm formulations are specifically generated for networks where congestion 
has been isolated to a section of the network. The optimal reassignment of the capacities for the 
links of these network sections is determined from the theoretical areas of optimimization theory 
[9] and the game theory min-max inequality [4,20] (max-min theory [2,3,5]). The global option for 
both algorithms via the binomial theorem, allows the consideration of all possible groupings 
(2 ~ - 2) of the n capacities to secure the most minimal delay. Previous research on link capacity 
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Fig. 1. Network example. 

assignment [1,6,14,18,19] does not compute the minimal assignment options derived here. 
Therefore, the main contribution of this work is to offer the network designer the delay 
minimization options available from the MIN-MAX and MAX-MIN Algorithms developed [11]. 

2. Problem statement 

The problem is to optimally assign capacities to the links of two sections of a computer 
communication network to offer effective flow control in these sections of the network by 
minimizing their maximum delay. This means that once the n links of concern in the network 
have been identified by their respective )~ (interarrival rate in msg/sec), /~i (service rate in 
bits/msg), V (total external arrival rate in msg/sec), and C i (link capacity in bits/sec), then the 
further grouping C A and C B ({ C i }A, (Ci)B) are elements of the space of all link capacities C O 
((C 1 .... .  C n) ~ C 0). Therefore, the difference between the MIN-MAX and MAX-MIN algorithmic 
methods [11] and those in previous store and forward computer network capacity assignment 
solutions [5,18] is basically in the tighter constraint on the delay minimization in each of the 
sections considered. Consult Fig. 1 for the sample network topology referenced in the derivations. 
To explore this problem from a theoretical point of view initially, the following assumptions are 
made for an M / M / 1  queuing system at each computer node: 

(1) each store and forward switching node has unlimited buffer storage, 
(2) FCFS message priority discipline. 
(3) independent, exponential interarrival distribution rate )~r 
(4) independent exponential service rate, #~, 
(5) constant average number of packets/msg, 
(6) error-free link transmission, 
(7) only queue mean waiting time delay (no node processing delay), 
(8) full duplex link transmission. 
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3. Min-max algorithm derivation 

The statement of the overall goal of the double constraint min-max allocation problem 
required to develop the MIN-MAX Algorithm is [6,18] 

min T ( n ) =  T ( C  1 . . . . .  C , ) =  ~ [h , / (~ , ( /~Ci-  Xi))] (1) 
i = l  

with, 

I m 

where, 

~'b,, = external arrival rate at node l destined for node m,Htm -- message path originating at node l 
and terminating at node m with, the global link delay for links ( i - -  1 . . . . .  k) in subnetwork A 
defined, 

k 

TA = E X,))] (2) 
i ~ l  

and, the global link delay for links (i = k + 1,. . . ,  n) in subnetwork B defined, 
tl 

r,-- E x,))] (3) 
i ~ k + l  

subject to the constraint 
n k n 

~-'~ C ,= Co= Ca + C , =  E C, + E C,. (4) 
i ~ l  i = 1  i = k + l  

The heuristic explanation of the local MIN-MAX Algorithm Options (1, 2, 3 and 4) is based on 
the expression, 

minimax[ TA, TB]]. (5) 

Since T a and T s are convex, then max[T A, Ts] are convex. 
The possible conditions involved in solving Eq. (5) are: Option 1, T a > T s, Option 2, T s > Ta, 

Option 3, T a = T s. If the delays obtained for Options 1 and 2 are not sufficiently minimal for the 
avoidance of congestion, the additional Option 4 obtains a further minimization of the capacity 
assignment delay based on the goal statement 

m inmax[  minT~ , m i n T  s ]. (6) 
{ c ~ , c 8 }  [ ( c ,  . . . . .  G }  ( G + ,  . . . . .  C.}l 

Option 5, the Global Option, performs Options 1, 2, 3 or 4 for all possible groupings of the n 
capacity links examined to compute the lowest minimum delay for the network. Further 
description of the local and global options follows: 

Local M I N - M A X  Algorithm Options 

Objective 1: Assign capacities to links of subnetwork A to minimize Ta. 
Option 1: T a > T a. Using the Lagrange Multiplier minimization technique, and assuming that 
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T A > T n, formulate [6], 

where, 

(7) 

Then, 

i=k + l 
Y'. C~= Ca= C o -  C A. (14) 

( c , } ,  = (x,/~,,) + c ,  - (x;/~,~ . 
j = k + l  ' ~  1 

subject to the constraint 

(15) 

Objective 3: Assign capacities to links of both subnetworks A and B to minimize T, and T B. 

a = Lagrange Multiplier subject to the constraint, 
k 

~ c,= c, + Co- CB, (8) 
i ~ l  

to solve for { C~ }A = ((71 . . . . .  C k) and hold the { C i } B = (Ck + 1 . . . . .  C,) constant. 
Substituting for T~ from Eq. (2) in G, and setting OG/aC~ - 0 for i = 1 . . . . .  k, a is computed in 

terms of Ci: 

c, = ( +( /  CgT) (9) 

Then, obtaining the constraint in Eq. (8) by setting aG/~a  = O, 

k k 

Y'. (7,.= ~,, [ ( h J l ~ , ) + ( ~ / # , i ~ d ) ] = C A  (10) 
i - I  i = 1  

and recognizing, 

( ~ ) - 1  = cA - ~ x , / . ,  / / ~ ,  (11) 

the expression for { C~ }A is computed by substituting Eq. (1) into Eq. (3), 

[ ] {C~}A = [ ~ ) / # , ]  CA-- E ()~,/pt;) / E )~;/#,Y. (12) 
j = l  j = l  

Objective 2: Assign capacities to all links of subnetwork B to minimize T B. 

Option 2: T B > T A. Similarly, use the Lagrange Multiplier as in Option 1 to compute { C~ } B and 
hold the { (7,. }a constant. The Lagrangian equation is, 

a E C, C. (13) G = T B +  
i = k + l  
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Option 3: T A = T B. Here, the goal is to minimize T(n), subject to the constraints described by Eq. 
(4) and T A = T s written, 

k n 
E (XJ('I(I~,C~- X~)))= ~[~ (X,/('y(I.t~Ci- X~))), (16) 
i=l i=k+l 

Forming the Lagrangian for the equality constraints in Eqs. (4) and (16), 

G=TA+ T s +  f l[ i~_lC i - Co ] --1- o/[T A - Ts]. (17) 

Taking the OG/OC~ = O, i = 1 .. . . .  k, 

{C,}A=(¢(a+ 1 ) / f l ~ ) + ( h , / i z , )  (18) 

and 

Similarly, 

yields 

and 

h,~t,/3,(/ziC ~ - hi) 2 = f l / (a  + 1). (19) 

0G 
=0  f o r i = k  + l , . . . ,n  

{ C~}B= (¢(1 - oO/fl ~ ) +  (~.,/lz,) (20) 

x , . , / v ( . , c ,  - x , ) :  = f l / ( 1  - . ) .  (21)  

The other two solution equations result from 8G/Ofl (Eq. (4)) and aG/aa (Eq. (16)). The 
expression for 1/Vrfl is obtained by substituting Eqs. (19) and (20) into Eq. (4), 

C,=Co=¢(a+ 1/fl ~ + Y', ()~,/#,) 
i z l  i=l i=l 

resulting in 

1/¢-fl = [ C° -  i=1~ (XJ~t,) - ,=k+l ~ ( X , / , ~ ) ] / [ ~ [  ~,., ~ ]  

Also, the expression for ¢(1-  a) / (a  + 1) is derived with the following steps by creating the 
equality in Eq. (16) from Eqs. (19) and (21): 

Step 1: Multiply the numerator of both sides of Eqs. (19) and (21) by X~ and the denominator by 
y. 

Step 2: Multiply both sides of the Step 1 alterations of Eqs. (19) and (21) by 1/~ i. 
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Step 3: Form the square root of both sides of the Step 2 alterations of Eqs. (19) and (21). 
Step 4: Sum both sides of Step 3 equations over their respective indices. 
Step 5: Equate equations in Step 4 per the Eq. (16) constraint, with the result 

J ( l -  a) / ( .  + 1)= , - k . l  (23) k 

i=1 
The following final C~ solutions for i = 1  ... .  , k  ({Ci}a) and i = k + l  . . . . .  n ({C~}B) are 

generated by substituting the expressions for 1 / ! /~  Eq. (22) and ~/(1 - a ) / ( a  + 1) Eq. (23) into 
Eqs. (18) and (20) for i = 1 . . . . .  k, 

= k + ( h , / t ~ , )  (24) 
{Ci}A [ ~" ~ ] + [  ~" ~ ] / j ~ l  

j=l j=k+l 

and for i = k + 1 ... .  , n, 

{c , } , ,=  + (x,/~,,). (25) 

Objective 4: Maximize the minimum delay between the minimization of T A and T a. 

Option 4: This further minimization technique for initial conditions T A < T B and T B < T A requires 
that the point where T A = T b be reached (refer to Eq. (16)). Therefore, Eq. (6) in an operations 
research interpretation is equivalent to 

maxmin[  m i n T A ,  m i n T  n ] (26) 
{c~,c~} l { c ,  . . . . .  G }  {c~+~ . . . . .  C~} 

because, both expressions yield the same capacity assignment for {Ci} a and {Ci}~. The 
derivation of the optimal C a and C B selection for T A = T B is determined by the following 
procedure: 

(a) substitute the values of (C i }A (Eq. (12)) into Eq. (2) and { C i }B (Eq. (15)) into Eq. (3), 

x, v ~, CA-,T__, Xj/~j 
i=1 j=l '= 

= x , / v  (Co - cA) - ( x j / . j  ~ . 

i=k+l j=k+l '= 1 
Now, moving terms constant with respect to 

(27) 

the i indexed summations outside of these 
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summations and cross multiplying, 

j = k + l  j = l  i 1 

(b) multiplying out terms in Eqs. (28) and rearranging to solve for C A, 

where 

C A 

j = k + l  J L j = l  j = k + l  

j = k + l  j = l  

C B 

C3C 4 

CIC 2 

CIC 2 

C3C 4 

CIC 3 C2C 4 

CIC 4 C2C 3 

C 1 C2C3C 4 

C 2 CIC3C 4 

C 3 C2C4CI 

C 4 C2C3C 1 

C2C3C 4 C 1 

CIC3C 4 C 2 

C2C4C 1 C 3 

C2C3C 1 C 4 

C2C 4 CIC 3 

ClC 4 

.2n_2 

2 

C2C 3 

CIC2C3C 4 

CIC2C3C 4 

Fig. 2. Global  algorithm example (n = 4). 

_2 n 

(28) 

(29) 
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Then, C a is computed from Eq. (4), {C/} A from Eq. (9), and {C,}B from Eq. (15). 

Option 5: Global MIN-MAX or MAX-MIN Algorithm. This formulation computes an overall 
minimal delay for the network by the computation of the previous four options for all distinct 
double groupings of the n capacity links examined for either the MIN-MAX Algorithm or the 
MAX-MIN Algorithm (refer to Section 4.) Refer to Fig. 2 for the combinations of capacities in 
the groupings C a, C B possible when there are a total of four capacities. The binomial coefficient 
theorem for two groupings composed together of n distinct entries yield 2" distinct combinations. 
Of the 2 n distinct combinations, only 2 n - 2 groupings entries yield 2" distinct combinations. Of 
the 2" distinct combinations, only 2" - 2 groupings are of interest in the algorithm since there 
will be two combinations of the two groupings where no capacities are in either grouping C A or 
C B. Refer to Fig. 3 for the overall MIN-MAX Algorithm flow chart. 

I ENTER: 'Ul,Yzm, YCo, C! .... I 
l=l ..... n 

IOPTIONS: ,,2 or| 10PTIONS}~t,~ rids [ ~PTIONS: ,,2 or.!] 
3 ond 5 (m*l) I 

Combination Algorithm f~r 2n combl~ot,ons ofn capocltles. , ,J 

p POTE: T, ,EO, ,, I 

~PTION I: COtlPUTE: {C1} A (EQ. 12),T, (EQ. I),(TA>TB).~-~ 

N ~ 
k+I,n'GT'TI,~--~ 

r 
-~ION 2: COMPUTE: {CI} B (EQ. 15), T! (EQ. ]), (TB>TA) 1 

IIOPTION 3: COt~PUTE: C I iEq. 2h,25) Ti(EQ. 1), (TA-T B) I 

I OPT,O  
N /Further TI ~ - - - - -~7  

/mlnlmlzotlon~ ' } 
[ OPTION 4: CO'~PUTE: (I) {cI} fr°mOPTION I °F2. ] 
(2) {CA}(EQ. 29), CB(Eq. 14), {CI}A(EQ. 12),(CI}~(EcI. 15),TI(EQ. ]) ,, 

t 

__•UTPUT OPTION I or l 
PTION 2 C l and T| OPTION 5: DETERMINE: Most Mlnlmol Deloy for I 

oll 2 n comblnotlons. 

Fig. 3. MIN-MAX capacity assignment algorithm. 
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4. Max-min algorithm derivation 

An approach from game theory is examined to obtain a purely mathematical structure for 
rain-max theory and its comparison to the MIN-MAX Algorithm in Section 3. The von 
Neumann Minimax Theorem [16], the min-max inequality [4,7,8,20] and the theory of max-min 
by Danskin [2,3], provide the mathematical basis for the MAX-MIN Algorithm [11] offering 
other minimization options. Refer to [20] for the formalism illustrating the development of these 
three mathematical tools from game theory. The min-max inequality is stated as [4,19], 

max min f ( A, B ) ~< min max f ( A, B ). (30) 
A B B A 

The von Neumann Minimax Theorem states that the equality, 

max rainy(A, B ) =  min maxf (A,  B ) = f ( A ,  B) (31) 
A B B A 

exists when the saddle point (A, B) exists on U x V. U___ R" and Vc_ R" are nonempty compact, 
convex sets where f :  U ×  V---, R are continuous. For the saddle point (A, B) to exist, for each 
fixed B, f (A,  B) is concave on U and for each fixed A, f (A,  B) is convex on V. For the capacity 
assignment problem posed here, this inequality means that maximizing over A (B constant) the 
most minimal assignment over B (A constant) results in a smaller or equal delay function 
f(A, B), as minimizing the maximum over the A subset. In terms of game theory, this means that 
the B player acts in full cognizance of the A player's initial conditions ((Ci)A). After the B 
player has made a move (here reassigned { Ci )B), the A player can react to the selection of the 
worst case (most maximal) of the B player's functions. 

Now, define, 

A={C~)A,B=(C,)  B and 

f(A,B)=f({C,}A,(C~}B)=T({C~}A,{C~}B) (Eq. (1)) 

with the constraint E~'_ 1C~ = Co. 

C1 ! Directional 
Derivative 
Solution 

~ n e  )~1 

C 2 

s / 

F/ /I' 

T" / I*" 

Fig. 4. MAX-MIN algorithm solution space. 
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To attain the most minimal delay, the minimizing delay, the minimizing capacity assignment 
({C~}B) occurs after the maximizing assignment of {C~} A has been initially fixed. Then, to 
achieve a maximum, the { C~ }.4 are assigned the maximum values, 

{ C~ } AM ×̂ = ((~,//X~) + ()  (32) 

because of the nature of the T~ curve for each C~. Referring to Fig. 4, it is noted that the function 
T~ attains a minimum but not a maximum. Therefore, a specific saddle point doesn't exist for the 
von Neumann Minimax Theorem unless Eq. (32) has an ( defined. Then, a plane of defined 
saddle points can exist in a specific region. The conditions for the existence of the directional 
derivative require that the function is continuous in the region of the maximum. Therefore, the 
max[mat[on is performed on the { C~} a for a selected maximum ( (XJ/~ i )+  (). For the options 
listed in the MIN-MAX Algorithm, the following format for the MAX-MIN Algorithm is 
observed to provide the most minimal delay assignment of capacities: 

ENTER: Y~m,Y,u| Co, C| I 
1 

I OPTIONS l ,  2 or ond ! IOPTIONS 1, 2 or 3 I 

[=COMPUTE: TI,TA, TI} from Eels. 1,2,3. ] 

/~iiNIMiZE,,: Over {C l) A ({C1)B :onstont) using Ea,(9), obtain {el} A ,I 
½ 

1 

SUBSTITUTE: (1) {Cl} A assignment (EQ. 12) end l 

I (2) {CI} B - (XiAJi)+c in to  T 1 (EQ. 1). 

7-.. '  
Y 

I 'MINIMIZE: Over constant) using(Eq. 15), obtaln }BI {Ci}B( {C I }A {C i 
1 

i 

I 
SUBSTITUTE: (]) {Ci )B assignment (EQ. |5) arid 

(2) {C i }A " ( xl/u ) +c Into TI (EQ. 1). 

\OPTION 41 l 
OPTION 5: CHECK: for most minimal delaY for oll coral)in- l 

otlons of n link c~oocltles generated. l 
Fig. 5. MAX-MIN capacity assignment algorithm. 
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Option 1: T A > T  B. Evaluate T for (Ci} A at i = k + l  . . . . .  n and (Ci )B=((h i / l~ i )+f )  for 
i = 1  . . . . .  k, 

max min f ( { C i } ,4, ( Ci ) n ) ~< min max f ( { C~ ) A, { Ci ) B ). (33) 
{c,}~ (c,}~ {c,)~ {c,}. 

Option 2: T, > T A. Evaluate T for ( C~ )B a t j  = 1 . . . . .  k and ( Ci }A = (( X ~/#~) + () at i = k + 1 . . . . .  n, 

max minf({C~) A, {Ci}B)~< min maxf({C~)  A, {C~}B). (34) 
(C,}~ (c,}.  {C,}B (C,}A 

Option 3: T A = T,. Either Eq. (33) or Eq. (34). 

Option 4: Global Algorithm. Referring to Fig. 5 for the MAX-MIN Algorithm format, it is 
observed that the similarity to the MIN-MAX Algorithm is in the use of Eqs. (12) and (15) for 
obtaining the constrained minimization of f({ C~} A, { C~}n). The MAX-MIN Algorithm will, in 
most cases, compute a less optimal solution than the MIN-MAX Algorithm due to the 
maximization. 

5. Min-max and max-min solution for any number of capacity groupings 

In this section, the further derivation of the MIN-MAX and MAX-MIN Algorithm Theory for 
the generalization of any number  of groupings of capacities is formulated. A reformulation of the 
basic theory for two groupings of capacities from Sections 2 and 3 is provided before proceeding 
with the additional formalism for the general case of G K groupings. 

5.1. Generalization of two groupings of capacities 

Let z = ( C  1 . . . . .  Ck), w = ( C k +  1 . . . . .  C,) be the capacities for two groups of links. The con- 
straint is that, 

c ,  + . . .  + + c k + l  + . . .  + c .  = Co. (35)  

The objective is to minimize over the choice of capacities C a . . . .  , (7, the maximum of (T a, T2), 
where 

k ~. hiY ra(z)  E x ,  , 1 , r2(w)  1 
i=l Yl, lAiCi- ~ki) i=k+l (]J, iC i -  h , ) "  (36) 

Therefore, it can now be stated that, minc  max[T a, T2]. Let 0 ~< x ~< 1, be such that 
k n 

)-". C~ = xC o , )-'. C, = (1 - x)Co. (37) 
i=l i=k+l 

For fixed x, the minimization of 7"1, T: is the standard capacity assignment problem, and we have 
to minimize 

min max[T , (z ) ,  T: (w)] ,  (38) 

The overall problem is 

mien{ min rn~n max[Ta(z) ,  Tz(w)] } . (39) 
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Note  that  T a depends  only on z, T 2 only on w. So, 

r r f i n { r f f ) n m i n m a x [ T l ( z ) '  T2(w)]}=nf ixxn{max[m}~nTl(z) '  w ~ (40) 

Each of the minzTl(Z ), minwT2(w ) is a ' s tandard '  capacity assignment  problem, solved with one 
Lagrange multiplier,  denoted  as a 2. Then  

oc, r~(z)+--  ~ C =o, 
"~ i = 1  

1 X~ Ot 2 ~k i 
~ - - . - ~  Ci* ~ . - - + - -  

v (~,c,-x,) ~ v 

F r o m  the constraint:  ~ k i = l C  i = XCo, we find 

(41) 

~1//2 (42) 

- 1  

( k ) ( ) ,  ~k~ k 
1 xC ° ~ Xl//2 --~_.w_ n - -  E ' 

i = 1  i = 1  

n ~ n r , ( z ) = ~ - '  x'/~ xCo n Ex,.; '  
z i = 1  

Similarly, 

(43) 

(44) 

(45) 

Note  that the system is stable, and the solution is valid only if C 7 > ~,J#~, i = 1 . . . . .  n, and hence 
k 

x C  o > ~,  X,/IZ,, (1 - x ) C  o > ~ X-2 (46) 
i = 1  i f k + l  ~ i  

The region of admissible x ' s  is: 0 < x o < x < x 1 < 1 where 
k n 

x o = Co 1Y'~ Xi~t71, x I = Co I ~ X,g71. (47) 
i ~ l  i = k + l  

Within the above region, min~Tl(z ) is mono tone  decreasing with x and minwT2(w ) is mono tone  
increasing. Hence, if we define: x,  by the equat ion 

rnin Ta ( z ) = rnin ~ ( w ) (48) 
g w 

we have 

Then  

(k )( )1( )( ) 
(49) 

 50/ 

is equal to min ,T l ( z  ) for x 0 < x ~< x s, and equal to minwT2(w ) for x s < x < x. Also, min ,T l ( z  ) is 
non-decreasing in x, and minwT2(w ) is mono tone  increasing in x. Thus,  the min imum of the 
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above expression is achieved for x = x,.  

x=Co + 
i=k+ 

"[i--~l'ift?l(i=k+l ~ ~2) 2- i = k + l  ~ ' i '?1( ~ ~1//2)] 2 i f f i l  
and the capacity assignment problem has been resolved for two groups. 

(54) 

5.2. Generalization for  m groupings o f  capacities 

For m groups G1,... ,Gin of delays, where C01 + • • • + Co, = Co; z k = (Cij , i ~ Gk), 

T k ( Z k )  ~ _ _  ~ , X ~ y  1 i [ /~ ,C0,-h , ]  ' k =  1 . . . . .  m. (52) 

Let x 1 + • • • + x m = 1, x~ >~ 0. Then, the objective is 

min max[Tl(z l ) ,  T 2 ( z 2 ) , . . . , T m ( z m ) ] .  (53) 
Co, ..... c0. 

Considering the subproblems: min Tk(z  k), under E ~  aC~ = XkC o, (standard capacity assignment 
subproblem), the solution to the subproblem, as before for group G k is 

Cfl = h i  + X'/2 (54) 
P~ ak 

where 

jL  iEG~ J 
(55) 

and therefore, 

m i n T k ( Z k ) = T  "1 ~ X 1/2 xkC  o -  
zk i E G k i 

Going back to the overall problem expressed in Eq. (38), 

min max [Tl(zl)  . . . . .  T,. ( z,.)] 
Co, ..... Co~ G, 

= min ( 
XI,...~X m 

1 
, k = 1 .  ( 5 6 )  

= min  
X I . . . .  ,X m 

= min X I • .... X m 

min min . . . . .  min (max  [Tl(zl)  . . . .  , T,, (z,.)] }) Z 1 22 Z m ~ G] 

{max[ m~-'~ n Tl(z l ) '  min T2 ( z 2 ) ~ 2  . . . . .  min T,,(z.,)] } ~ . ,  

max xlCo I _ B1 . . . .  ' x,,,Co,,, - Bm 

where 

(z / Ak = y - 1  X1/2 , Bk = ~" X,lx-71. 
X i~Gk / i~Gk 

Refer to Fig. 6 for the graphical description of B k. 

(57) 

(58) 
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0 
~k/Cok 1 

Fig.  6. G r a p h i c a l  de sc r ip t i on  o f  m i n i m i z i n g  x v 

General properties for  G k 
Each  A k / (  XkCok -- Bk) = gk( x ) is concave. Therefore ,  

max - -  = 
l ~ k ~  xkCok-- BK 

is also a concave  funct ion.  This  means  that  for  { x; EkmlXk = 1, X k >1 0}, which  is a convex region, 
it has  a unique  min imum.  The  fol lowing is the p r o o f  that  s (x )  is concave.  Let x 1, x 2 be  two 
values of  x = ( x  1 . . . .  xm). Then,  s ( x )  = max/,{ gk(X)} where  

g,(otx  1 + ( 1 - - o t ) x 2 )  < agk (x l )  + ( 1 - - a ) g , ( x 2 ) .  (59) 

This  implies that  

m,ax { g , ( x )  } < a m a x g , ( x  1 ) ,  + (1 - a )  m , a x g , ( x 2 ) .  (60) 

T o  f ind the o p t i m u m  x, the minimizing x mus t  be  found.  W e  separa te  into regions in the same 
m a n n e r  as the saddle  poin ts  are de te rmined  for  the M A X - M I N  Algor i thm in Section 4. For,  
m = 3, a ,  = A,/COk bk = B,/COk. Then  (see also Fig. 7) 

a 1 ot 2 ot 1 0l 3 _ _ > _ _  - - > - -  

x 1 - b 1 x z - b: ' x 1 - b 1 x 3 - -  b 3 " 

So 

OtlX 2 - -  o [ lb  2 > G 2 x  1 - a 2 b l ,  a l X 3  - Ot lb  3 > a 3 x  I - 0(3. 

x 2 

\ 

3," 

\ 
I 

L ._ Xl 
0 ~ l 

1 
b I 

Fig.  7. G r a p h i c a l  de sc r ip t i on  o f  x I a n d  x 2. 
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Then, 

therefore, 

X 3 = 1 - x 1 - x 2 ~ al(1 - x 1 - x2) - alb  3 > a3x 1 - a3b 1, 

X l ( a  3 + Oil) + X 2 a  1 • a 1 "~ a 3 b  1 - Otlb3, 

a 2 X  1 - -  a l X  2 < a 2 b  I - a l b  2 . 

The opt imum solution is, therefore, given by 

A 1 A 2 A m  

xlCol - Ba x Co2 - B2 XmCom -- Bm 

- =--'a x~= +B~ Co ~, 

+ Y'-a, =1 '  

(61) 

m 

= a ,  Y ' . x i = l ,  (62) 
i = 1  

(63) 

1 1 - Bi (64) 

6. Conclusion 

In addition to the use of these algorithms when all parameters have initial condition values, the 
C i can be generated by using the (7,. expressions for the options considered. The methods 
proposed here for min-max and max-min criterion solutions offer further mathematical structure 
and therefore ensure more uniformity in the treatment of average transmission delay assignments 
for computer networks. These criteria offer an alternative to those presently used in conventional 
computer  networking capacity assignment solutions by Kleinrock [6] and Schwartz [18]. An 
important  practical application of this theory is the reallocation of capacity to ensure survivabil- 
ity during network component  error, failure, or total destruction. Also, when designing computer 
network congestion control consistent with security and privacy, game theory capacity reaUoca- 
tion algorithms for subnetwork areas can enable or prevent certain types of message flow. 
Further numerical experiments are required on specific network problems to determine the 
optimality of the various options under these conditions for the initial research results. 
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