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 r t i c l e i n f o a b s t r a c t 

If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-

interacting massive particle—WIMP), its present abundance, its scattering with matter in direct-detection 

experiments, its present-day annihilation signature in indirect-detection experiments, and its production 

and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is 

usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. 

In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge

and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective 

field theory to describe the WIMP–SM coupling. We consider both scalars and Dirac fermions as possible 

dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed 

calculation of dark-matter annihilations to all possible final states, including γγ, γZ , γh , ZZ , Zh , W 

+ W 

−, hh ,

and f f , and demonstrate the correlations among them. We compute the mass scale of the effective field

theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals. 
c © 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
 

. Introduction 

The identity of the dark-matter (DM) particle is one of the main 

utstanding mysteries in cosmology and particle physics. Many can- 

idates have been proposed. Among the numerous possibilities, we 

hoose in this paper to focus on the hypothesis that DM is a cold ther- 

al relic of the early universe, a weakly interacting massive particle 

WIMP). It is well known that the thermal relic abundance of such 

 dark-matter particle, with mass in the GeV to TeV range, can pro- 

ide the requisite DM mass density. At the same time, the weak but 

on-vanishing couplings between such a DM particle and Standard 

odel (SM) particles open up the possibility of detecting dark mat- 

er through astronomical observations (indirect detection), terrestrial 

xperiments (direct detection), and collider searches at the LHC. 

Both the thermal relic abundance and the signal in indirect- 

etection observations are controlled by the rate at which dark- 

atter particles annihilate into SM final states. In this paper, we focus 

n the scenario in which DM particles annihilate only (or dominantly) 

o two-body final states containing SM electroweak gauge bosons and 

iggs. While the ultimate goal would be to understand the complete 
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theory in which the DM is embedded and that would describe the 

DM–SM interactions, until the ultimate goal is realized we can study 

aspects of DM by employing an effective field theory (EFT) to describe 

the (non-renormalizable, low-energy) DM–SM interactions. 

In this paper, we consider dark-matter annihilation dominated 

by all possible SM di-boson final states, γ γ , γ Z , γ h , ZZ , Zh , W 

+ W 

−,

and hh . As we will discuss in detail later, sometimes gauge invari- 

ance requires us to include Standard Model fermions, f f , as final 

states. Dark-matter annihilation into fermions gives rise to a large 

class of indirect-detection signals, such as high-energy positron, an- 

tiproton, or neutrino fluxes. However, estimation of such signals (pos- 

sibly with the exception of the neutrino flux) typically suffers from 

large astrophysical uncertainties. At the same time, DM annihilation 

to two-body final states involving one or two mono-chromatic pho- 

tons (photon “lines”) likely provides the cleanest indirect signal of 

dark matter. Therefore, the scenario we consider has the best chance 

of producing an indisputable discovery of a WIMP through indirect 

detection. SM gauge invariance usually implies correlation between 

the photon channels, γ γ , γ h , and γ Z , and other di-boson channels 

ZZ , W 

+ W 

−, and Zh . In addition, annihilation into the hh final state 

can also give interesting signals. In this case, the annihilation could 

proceed through the so-called Higgs portal operator J DM 

H 

† H , in which 

J DM 

is a SM singlet, and the annihilation rate to the hh final state is 

correlated with the rates to the ZZ , W 

+ W 

−, and f f final states. Re- 

cently, it has been pointed out that radiation of electroweak gauge 

boson from the final state particles of dark matter annihilation could 

have additional interesting effects in certain cases [ 1 –3 ]. In this paper, 

we will focus primarily on 2 → 2 processes, and leave a detailed study 
cense.

http://dx.doi.org/10.1016/j.dark.2013.11.002
http://www.sciencedirect.com/science/journal/22126864
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1 Throughout, we use the notation for symmetrization and antisymmetrization of 
including such effects for a future work. 

It is not hard to imagine how our scenario can be (approximately)

realized. We first note that due to Gauge and Lorentz invariance, cou-

plings with only the dark matter particle and the Standard Model

particles must be non-renormalizable. The only exception is scalar

dark matter with Higgs portal couplings. Therefore, in a complete

theory, additional new states are almost always required to mediate

dark matter annihilation. The choice of the properties of these new

states, such as their spin and gauge quantum numbers, can lead to

very different dominant annihilation channels. Hence, the dominance

of di-boson final states is at least as plausible as that of the fermionic

final states. There are other potential arguments for di-boson domi-

nance. For example, di-boson final states can come from the SM gauge

field strength tensors, which have mass dimension two. At the same

time, SM fermonic final states come from operators with lowest mass

dimension three. The annihilation into di-bosons can also dominate if

the annihilation to fermions is suppressed by the velocity of DM parti-

cles. A well known example of this case is the Majorana fermion dark

matter, such as the neutralino LSP in the MSSM. Therefore, while there

are perfectly reasonable models in which annihilation into fermions

dominates, we would argue the scenario considered in this paper is

at least as well motivated. We also note a possibility in which the DM

particle has enhanced coupling to the top quark, but it is too light to

annihilate into t t [ 4 ] and annihilation proceeds through a loop process

into SM di-boson final states. Refs. [ 5 , 6 ] presented a similar scenario

with exotic heavy fermion loops. 

We will parameterize our ignorance of the detailed physics of

dark-matter annihilation by using an effective field theory approach,

manifestly preserving SM gauge symmetries. We assume that the

only light states at the weak scale are the DM and the SM particles.

In this case, we can integrate out the unknown new physics which

mediates the DM interaction with SM states, and study the signal

of DM annihilation using non-renormalizable operators of the form

O ∝ J  DM 

· J  SM 

, where the SM current J SM 

consists of W 

± , Z , γ , and

h . We could, in principle, also include gluons as possible final states.

However, in practice, the signal of this final state is similar to that

of the SM quarks. For simplicity, we will not consider it further in

our paper. We will only consider the cases in which both J DM 

and J SM

are SM gauge singlets. Moreover, we assume J DM 

only consists of the

neutral DM particle. In principle, the DM particle could also be part of

a multiplet. Therefore, we are implicitly assuming that the additional

states in the DM multiplet become heavy after electroweak symmetry

breaking and can be integrated out. 

Our study is motivated by the recent claims of a γ-ray line of

energy around 130 GeV in the Fermi data [ 7 –12 ], which could be

interpreted as a line from dark-matter annihilation at the galactic

center. But we consider the full range of possibilities and will not be

restricted only to the parameter space that can give such a signal. 

In the following, we first categorize all effective operators (up to di-

mension 8), suppressed by the new physics scale �. We then proceed

to compute the annihilation rates into all possible two-body SM final

states. We will focus on 2 → 2 annihilation processes: processes with

a larger number of particles in the final state, such as 2 → 3 processes,

while possibly important in certain cases, are typically subdominant

in comparison to 2 → 2 processes due to phase space suppression.

We then derive the value of � required to have the correct thermal

relic abundance. We also compute the strength of the indirect detec-

tion signals, with particular focus on a possible photon line from the

galactic center. 

Some of the topics studied in this paper have been considered

earlier [ 13 , 14 ]. However, there are some differences in emphasis be-

tween these works and our current work. In particular, Ref. [ 13 ] con-

sidered dark matter candidates that are charged under SU (2) L , as well

as effective operators that are not invariant under SU (2) L ; these con-

structions allow the possibility that the UV complete theory may have
already undergone electroweak symmetry breaking (EWSB). In con-

trast, we assume that the light Higgs field is solely responsible for

electroweak symmetry breaking, and include it in effective flied the-

ory. Ref. [ 14 ] mainly focuses on the gamma-ray line. While we are also

motivated by the gamma-ray line, we will also consider other signals.

We also include a detailed study of the thermal relic abundance. 

This paper is organized as follows: In the next section we describe

the notation used for the particles and couplings in the theories we

study. Section 3 discusses the types of operators, as well as the con-

tributions of the initial and final state operators to the square of the

matrix element. Section 4 contains the results for the annihilation

cross sections for all the two-body final states for all of the various

operators. Section 5 calculates the present-day annihilation cross sec-

tion into photons for sample masses of the DM, assuming the mass

parameter of the EFT is the value necessary to result in the observed

dark-matter density. We conclude in Section 6 . 

2. Particles and couplings 

We will consider the possibility that the WIMP is a complex

scalar particle, φ, or a Dirac or Majorana fermion, χ . We denote the

WIMP mass as M . The momenta of the annihilating WIMPs are de-

noted by p and p ′ . The spins of the initial-state fermionic WIMPS, if

present, will be denoted as s and s ′ . We will consider various bilin-

ears of fermionic WIMPS. We use bilinears formed with 1, γ 5 ≡ −( i /
4!) εμνρσ γ μγ νγ ργσ , γ μ, γ μ5 ≡ γ μγ 5 , and γ μν ≡ ( i / 2)[ γ μ, γ ν ]. 

For Majorana fermion WIMPs, using the basis v s 
′ 
( p ′ ) =

i [ u s 
′ 
( p ′ )] 

T 
γ2 γ0 , the only difference from Dirac fermions is that a

particle is identified with its antiparticle. It is conventional and con-

venient to put a factor of 1 / 2 for Majorana fermions into the bi-

linears χ . . . χ , due to the identification of particle and antiparti-

cle. Using the fact that γ μ T γ 0 γ 2 = γ 2 γ 0 γ μ, we have for Majorana

WIMPs 1 
2 
χγ μχ = 0 and 

1 
2 
χγ μνχ = 0, and the contributions of 1 

2 
χχ ,

1 
2 χγ 5 χ , and 

1 
2 χγ μ5 χ to M are the same as those of Dirac fermions,

but without the factor 1 / 2. 

The SM Higgs doublet is denoted as H , with vacuum expectation

value (vev) 〈 v 〉 / 
√ 

2 , where 〈 v 〉 = 246 GeV. The physical Higgs boson

is denoted as h . We will always work in the unitary gauge. 

Electroweak gauge bosons are the SU (2) W 

gauge fields W 

a for

a = 1, 2, 3, and the the U (1) Y hypercharge gauge field B . After the elec-

troweak symmetry breaking change of basis, we denote A μν ≡ 2 ∂ [ μA ν]

where A may be a photon, W , or Z boson, depending on the con-

text. 1 Note that A μν is defined with derivatives only, i.e., without

the structure constant term. The CP-violating electric dipole tensors

are ˜ W 

a 
μν ≡ W 

a ρσ ερσμν/ 2 and 

˜ B μν ≡ B 

ρσ ερσμν/ 2. If the final state

is two vector bosons AA 

′ , then m and m 

′ will denote their masses, k

and k ′ will denote their momenta, and r and r ′ will denote their po-

larizations. If the final state is Ah , k will denote the momentum of A

and k ′ will denote the momentum of h . 

We denote by C the coefficients in the EW mixing matrix: 

⎛ 

⎜ ⎜ ⎝ 

W 

1 

W 

2 

W 

3 

B 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

C 1 W 

+ C 1 W 

− 0 0 

C 2 W 

+ C 2 W 

− 0 0 

0 0 C 3 Z C 3 γ

0 0 C YZ C Yγ

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

W 

+ 

W 

−

Z 

γ

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

1 / 
√ 

2 1 / 
√ 

2 0 0 

i/ 
√ 

2 −i/ 
√ 

2 0 0 

0 0 cos θW 

sin θW 

0 0 − sin θW 

cos θW 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

W 

+ 

W 

−

Z 

γ

⎞ 

⎟ ⎟ ⎠ 

. 

(1)
indices 2 A [ μB ν] = A μB ν − A νB μ and 2 A { μB ν} = A μB ν + A νB μ
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Table 1 

Contributions to the matrix element from initial states. For fermions, the spins s , s ′ have been averaged. 

Mass dimension Operator Contribution to | M | 2 Notes 

2 φ † φ 1 

3 ( φ† ∂ μφ + h . c .) ( p + p ′ ) μ( p + p ′ ) μ

i ( φ† ∂ μφ − h . c .) ( p − p ′ ) μ( p − p ′ ) μ

3 χχ p · p ′ − M 

2 

χ iγ 5 χ p · p ′ + M 

2 

χγ μχ 2 p { μ p ′ μ} − g μμ( p · p ′ + M 

2 ) a 

χγ μ5 χ 2 p { μ p ′ μ} − g μμ( p · p ′ − M 

2 ) 

χγ μνχ 2( p · p ′ − M 

2 )( g μ[ μg ν] ν ) −
4 p [ μg ν][ ν p ′ μ] − 4 p ′ [ μg ν][ ν p μ] 

a 

a Operator vanishes for Majorana fermions. 

Table 2 

Contributions to the matrix element for SM final states that couple to scalar or pseudoscalar DM operators. The mass dimension of the SM operator is indicated. The polarizations 

have been summed over. The EW mixing-matrix factors are not explicitly included. A and ˜ A can be γ or Z for the U (1) Y case and additionally W 

+ W 

− for the SU (2) W case. 

Mass dimension Operator In M as Contribution to | M | 2 

4 B μν B μν ; W 

a 
μν W 

a μν A μνA ′ μν if A = A ′ 32[( k · k ′ ) 2 + m 

2 m 

′ 2 / 2] 

2 A μνA ′ μν if A 
= A ′ 

4 B μν ˜ B μν ; W 

a 
μν

˜ W 

a μν A μν ˜ A ′ μν if A = A ′ 32[( k · k ′ ) 2 − m 

2 m 

′ 2 / 2] 

2 A μν ˜ A ′ μν if A 
= A ′ 

2 H † H hh ( s 
s−m 2 h 

) 
2 
(1 + 

2 m 2 h 
s 

) 
2 

ZZ 
4 ( k ·k ′ ) 2 + 8 m 4 Z 

( s−m 2 Z ) 
2 

W 

+ W 

− 4 ( k ·k ′ ) 2 + 8 m 4 W 
( s−m 2 W ) 

2 ∑ 

f f f 
∑ 

f 2 ( 
m f 

s−m 2 h 
) 

2 
( s − 4 m 

2 
f ) 

3

f

f

o

p

c

H

f

s

t

c

v

w

3

i

a

o

c

a

l

3

t

fi

p

c

c

m

i

t

 

. Initial and final-state matrix element factors 

Each SM gauge-invariant vertex operator can be written as a WIMP 

actor, which contains the initial state of WIMPs, multiplied by a SM 

actor, which contains SM particles. A consequence is if there is only 

ne vertex operator responsible for WIMP annihilation, then in com- 

uting the square of the matrix element, | M | 2 , we can compute the 

ontributions from the WIMP factor and the SM factor separately. 

owever, if a linear combination of vertex operators are responsible 

or WIMP annihilation, the different operators can connect the same 

et of initial and final states, and | M | 2 will consist of interference 

erms in addition to one term from each operator. Here, we avoid this 

omplication by ignoring possible linear combinations of multiple 

ertex operators. 

The initial-state WIMP factors are rather simple. For scalar WIMPs 

e can form J DM 

operators with mass-dimension 2 or mass-dimension 

. For fermion WIMPs, J DM 

operators have mass dimension 3. The 

nitial-state WIMP factors are discussed and listed in Section 3.1 . By 

ssumption, the final-state SM factors will only contain gauge bosons 

r Higgs bosons (or fermions in the case of tensor operators as dis- 

ussed in Section 3.2.3 ). They have mass-dimension 2, 4, or 5. They 

re discussed and listed in Section 3.2 . 

Given a vertex operator, there might be 2-to-3 or 2-to-4 annihi- 

ation processes. However, we will only consider 2-to-2 processes as 

-particle or 4-particle final states are suppressed by phase-space fac- 

ors. This also helps us avoid the complicated 3-particle or 4-particle 

nal state phase space integrals. 

We can classify the possible terms as products of scalar / 
seudoscalar terms, vector / axial vector terms, and tensor terms that 

an produce a di-boson final state. Since the DM mass we consider is 

lose to the electroweak symmetry breaking scale and the Higgs boson 

ass, we will preserve the manifest SU (2) L × U (1) Y gauge symmetry 

n the operators we consider to maintain a sensible power counting in 

he EFT. We group possible operators into Hermitian combinations. 
 

 

The scalar / pseudoscalar terms are 

φ† φ

χχ

χ iγ 5 χ

⎫ ⎪ ⎬ 
⎪ ⎭ ×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

H † H with final states hh , ZZ , W 

+ W 

−, f f 

B μν B μν with final states γ γ , γ Z , ZZ 

B μν ˜ B μν with final states γ γ , γ Z , ZZ 

W 

a 
μν W 

a μν with final states γ γ , γ Z , ZZ , W 

+ W 

−

W 

a 
μν

˜ W 

a μν with final states γ γ , γ Z , ZZ , W 

+ W 

− . 

(2) 

The H 

† H final state can appear in a renormalizible mass-dimension 4 

operator (with a φ† φ WIMP operator) or a mass-dimension 5 operator 

(with χχ or χ iγ 5 χ WIMP operators). This is the so called Higgs 

portal. Since we are interested in operators which can, in principle, 

give a photon line, we will not consider the operator φ† φH 

† H as part 

of our EFT. There are a total of 12 possible terms that lead to a photon 

in the final state: four terms of mass-dimension 6 and eight terms of 

mass-dimension 7. The initial-state contributions to | M | 2 are given 

in Table 1 , and the final-state contributions to | M | 2 are given in Table 

2 . 
Now we turn to the vector / axial vector terms. First consider the 

WIMP factor φ† ∂ μφ + h . c . Nonvanishing terms are 

(
φ† ∂ μφ + h.c. 

)
×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
B λμY H H 

† D λ H + h.c. 
)

with final state Zh (
W 

a 
λμ H † t a D λ H + h.c. 

)
with final state Zh 

i 
(

B λμY H H 
† D λ H − h.c. 

)
with final states γ Z , ZZ 

i 
(

˜ B λμY H H 
† D λ H − h.c. 

)
with final states γ Z , ZZ 

i 
(

W 

a 
λμ H † t a D λ H − h.c. 

)
with final states γ Z , ZZ , W 

+ W 

−

i 
(

˜ W 

a 
λμ H † t a D λ H − h.c. 

)
with final states γ Z , ZZ , W 

+ W 

− , 

(3) 

leading to four terms with a photon in the final state. We choose 

the hypercharge normalization so that Y H = 1 / 2. The operator 

( φ† ∂ μφ + h.c. ) × ( ̃  B λμY H H 

† D 

λ H + h.c. ) vanishes. This can be seen

by expressing it as ∂ μ( φ† φ) ∂ λ( H 

† H ) ̃  B λμY H . Integrating by parts, 

one moves ∂ μ onto ˜ B λμ and ∂ λ( H 

† H ). ∂ μ ˜ B λμ vanishes identi- 

cally, and ∂ μ∂ λ( H 

† H ) ̃  B λμ is a contraction between a term sym- 

metric in { λμ} with a term antisymmetric in [ λμ] and therefore 

vanishes. A similar argument applies to the term ( φ† ∂ μφ + h.c. ) ×
( ̃  W 

a 
λμ

H 

† t a D 

λ H + h.c. ). We also note that operator ( φ† ∂ μφ + h . c .)

× ( B λμY H H 

† D 

λH + h . c .) does not produce γ h final state at tree level,

because ∂ μA λμ vanishes for an on-shell photon. 
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Table 3 

Mass-dimension 5 contributions to the matrix element for mixed Higgs / gauge-boson final states. The polarizations have been summed over. The EW mixing-matrix factors are 

not explicitly included. These terms couple to vector / axial-vector WIMP operators. 

Operators In M as Contribution to | M | 2 

( B λμY H H 
† D λH + h . c .) A λμ∂ λh [ A = γ or Z ] −k μk μ m 

2 
h + 2( k · k ′ ) k { μk ′ μ} − ( k · k ′ ) 2 g μμ

( ̃ B λμY H H 
† D 

λ H + h.c. ) ˜ A λμ∂ λh [ A = γ or Z ] 
−k μk μm 

2 
h − k ′ μk ′ μm 

2 + 2( k · k ′ ) k { μk ′ μ} 
+ ( m 

2 m 

2 
h − ( k · k ′ ) 2 ) g μμ

i ( B λμY H H 
† D λH − h . c .) A λμZ λ [ A = γ ] k μk μ − ( k ·k ′ ) 2 

m 2 Z 
g μμ + 2 k ·k 

′ 

m 2 Z 
k { μk ′ μ} 

A λμZ λ [ A = Z ] k μk μ + k ′ μk ′ μ + 2( m 

2 
Z − ( k ·k ′ ) 2 

m 2 Z 
) g μμ + 2(2 k ·k 

′ 

m 2 Z 
+ 3) k ·k 

′ 

m 2 Z 
k { μk ′ μ} 

i( ̃ B λμY H H 
† D 

λ H − h.c. ) ˜ A λμ Z λ [ A = γ ] k μk μ − ( k ·k ′ ) 2 
m 2 Z 

g μμ + 2 k ·k 
′ 

m 2 Z 
k { μk ′ μ} 

˜ A λμ Z λ [ A = Z ] −2 ( m Z − k ·k ′ 
m Z 

) 
2 

g μμ + 4( k ·k 
′ 

m 2 Z 
− 1) k { μk ′ μ} 

( W 

a 
λμ H † t a D 

λ H + h.c. ) A λμ∂ λh [ A = γ or Z ] −k μk μ m 

2 
h + 2( k · k ′ ) k { μk ′ μ} − ( k · k ′ ) 2 g μμ

W 

+ W 

− k μk μ + k ′ μk ′ μ + 2( m 

2 
W − ( k ·k ′ ) 2 

m 2 W 
) g μμ + 2(2 k ·k 

′ 

m 2 W 
− 3) k ·k 

′ 

m 2 Z 
k { μk ′ μ} 

( ̃  W 

a 
λμ H † t a D 

λ H + h.c. ) ˜ A λμ∂ λh [ A = γ or Z ] 
−k μk μm 

2 
h − k ′ μk ′ μm 

2 + 2( k · k ′ ) k { μk ′ μ} 
+ ( m 

2 m 

2 
h − ( k · k ′ ) 2 ) g μμ

W 

+ W 

− 4( k ·k 
′ 

m 2 W 
+ 1) k { μk ′ μ} − 2 ( k ·k 

′ 
m W 

+ m W ) 
2 

i( W 

a 
λμ H † t a D 

λ H − h.c. ) A λμZ λ [ A = γ ] k μk μ − ( k ·k ′ ) 2 
m 2 Z 

g μμ + 2 k ·k 
′ 

m 2 Z 
k { μk ′ μ} 

A λμZ λ [ A = Z ] k μk μ + k ′ μk ′ μ + 2( m 

2 
Z − ( k ·k ′ ) 2 

m 2 Z 
) g μμ + 2(2 k ·k 

′ 

m 2 Z 
+ 3) k ·k 

′ 

m 2 Z 
k { μk ′ μ} 

W 

+ W 

− k μk μ + k ′ μk ′ μ + 2( m 

2 
W − ( k ·k ′ ) 2 

m 2 W 
) g μμ + 2(2 k ·k 

′ 

m 2 W 
+ 3) k ·k 

′ 

m 2 Z 
k { μk ′ μ} 

i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) ˜ A λμ Z λ [ A = γ ] k μk μ − ( k ·k ′ ) 2 
m 2 Z 

g μμ + 2 k ·k 
′ 

m 2 Z 
k { μk ′ μ} 

˜ A λμ Z λ [ A = Z ] −2 ( m Z − k ·k ′ 
m Z 

) 
2 

g μμ + 4( k ·k 
′ 

m 2 Z 
− 1) k { μk ′ μ} 

W 

+ W 

− 4( k ·k 
′ 

m 2 W 
− 1) k { μk ′ μ} − 2 ( k ·k 

′ 
m W 

− m W ) 
2 

Table 4 

SM “tensor” contributions. The polarizations have been summed over where appropriate. Since the terms have two indices, they can couple to tensor WIMP operators. Here, we 

only list the contributions to | M | 2 for B μν and W 

a 
μν . For ˜ B μν and ˜ W 

a 
μν , it is easier to contract the epsilon tensors with the SM term. This has the effect of changing − M 

2 to + M 

2 

in the last line of Table 1 . For the results of annihilation into di-boson final states in this table, the addition of all terms symmetric in { μν} and { μν} is understood. 

Operators In M as Contribution to | M | 2 Notes 

B μνY H H 
† H γ μνh −〈 v 〉 2 cos 2 θW g ννk μk μ

Z μνh 〈 v 〉 2 
( s−m 2 Z ) 

2 sin 2 θW [ −s 2 g νν ( k + 

m 2 Z 
s 

k ′ ) 
μ

( k + 

m 2 Z 
s 

k ′ ) 
μ

+ m 

2 
Z k μk μk ′ νk ′ ν ] ∑ 

f f f 
〈 v 〉 2 m 2 Z sin 2 θW 

2 ( s−m 2 Z ) 
2 {−(4 A 2 

fB 
+ 1) k μk μk ′ νk ′ ν + [ m 

2 
f − ( A 2 

fB 
+ 

1 
4 

) s] g νν P μ P μ} a , b 

W 

+ W 

− 〈 v 〉 2 m 2 Z sin 2 θW 

( s−m 2 Z ) 
2 [(1 − 4 

m 2 W 
s 

+ 12 
m 4 W 
s 2 

) k μk μk ′ νk ′ ν − 2(1 − 4 
m 2 W 

s 
) m 

2 
W g νν P ν P ν ] a 

W 

a 
μν H † t a H γ μνh −〈 v 〉 2 sin 2 θW g ννk μk μ

Z μνh 〈 v 〉 2 
( s−m 2 Z ) 

2 cos 2 θW [ −s 2 g νν ( k + 

m 2 Z 
s 

k ′ ) 
μ

( k + 

m 2 Z 
s 

k ′ ) 
μ

+ m 

2 
Z k μk μk ′ νk ′ ν ] ∑ 

f f f 
〈 v 〉 2 m 2 Z cos 2 θW 

2 ( s−m 2 Z ) 
2 {−(4 A 2 

fW 
+ 1) k μk μk ′ νk ′ ν + [ m 

2 
f − ( A 2 

fW 
+ 

1 
4 

) s] g νν P μ P μ} a , c 

W 

+ W 

− 〈 v 〉 2 
m 2 W 

{ m 

2 
W g νν [ m 

2 
W g μμ − k μk μ − k ′ μk ′ μ + 2 U W (1 − U W )(1 − 4 m 2 W 

s 
) P μ P μ] 

+ [1 − 2 U W (1 − 2 m 2 W 
s 

) + U 

2 
W (1 − 4 

m 2 W 
s 

+ 12 
m 4 W 
s 2 

)] k μk μk ′ νk ′ ν } 

a , d 

B μν Z μνh 16 

〈 v 〉 2 ( s−m 2 Z ) 
2 sin 2 θW [ −s 2 g νν ( k + 

m 2 Z 
s 

k ′ ) 
μ

( k + 

m 2 Z 
s 

k ′ ) 
μ

+ m 

2 
Z k μk μk ′ νk ′ ν ] ∑ 

f f f 
16 m 2 Z sin 2 θW 

〈 v 〉 2 2 ( s−m 2 Z ) 
2 {−(4 A 2 

fB 
+ 1) k μk μk ′ νk ′ ν + [ m 

2 
f − ( A 2 

fB 
+ 

1 
4 

) s] g νν P μ P μ} a , b 

W 

+ W 

− 16 m 2 Z sin 2 θW 

〈 v 〉 2 ( s−m 2 Z ) 
2 [(1 − 4 

m 2 W 
s 

+ 12 
m 4 W 
s 2 

) k μk μk ′ νk ′ ν − 2(1 − 4 
m 2 W 

s 
) m 

2 
W g νν P ν P ν ] a 

a P μ ≡ ( p + p ′ ) μ = ( k + k ′ ) μ , P 2 = s . 
b A fB ≡ 2 Q f (1 − m 

2 
W /s) ∓ 1 / 2, with − ( + ) for neutrinos and up-type quarks (charged leptons and down-type quarks). 

c A fW ≡ 2 Q f sin 2 θW m 

2 
Z /s ∓ 1 / 2, with − ( + ) for neutrinos and up-type quarks (charged leptons and down-type quarks). 

d U W ≡ 1 + m 

2 
W / ( s − m 

2 
Z ). 

Table 5 

Energies of products of WIMP annihilation. 

M γ γ γ Z γ h ZZ ; W 

+ W 

− Zh 

E γ E γ E Z E γ E h E Z ; E W E Z E h 

130 GeV 130 GeV 114 GeV 146 GeV 100 GeV 160 GeV 130 GeV 116 Gev 144 GeV 

144 GeV 144 GeV 130 GeV 158 GeV 117 GeV 171 GeV 144 GeV 131 GeV 157 GeV 

155 GeV 155 GeV 142 GeV 168 GeV 130 GeV 180 GeV 155 GeV 143 GeV 167 GeV 

 

 

Now consider the remaining three WIMP vector operators
i ( φ† ∂ μφ − h . c .), χγ μχ , and χγ μ5 χ . All terms result in a photon
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n the final state. The operators are 

i 
(
φ† ∂ μφ − h.c. 

)
χγ μχ

χγ μ5 χ

⎫ ⎪ ⎬ 
⎪ ⎭ ×⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
B λμY H H 

† D 

λ H + h.c. 
)

with final states γ h, Zh (
˜ B λμY H H 

† D 

λ H + h.c. 
)

with final states γ h, Zh 

i 
(

B λμY H H 
† D 

λ H − h.c. 
)

with final states γ Z , ZZ 

i 
(

˜ B λμY H H 
† D 

λ H + h.c. 
)

with final states γ Z , ZZ (
W 

a 
λμ H † t a D 

λ H + h.c. 
)

with final states γ h, Zh , W 

+ W 

−(
˜ W 

a 
λμ H † t a D 

λ H + h.c. 
)

with final states γ h, Zh , W 

+ W 

−

i 
(

W 

a 
λμ H † t a D 

λ H + h.c. 
)

with final states γ Z , ZZ , W 

+ W 

−

i 
(

˜ W 

a 
λμ H † t a D 

λ H + h.c. 
)

with final states γ Z , ZZ , W 

+ W 

−, 

(4) 

or a total of 24 terms. 

The initial-state contributions to | M | 2 are given in Table 1 , and the 

nal-state contributions to | M | 2 are given in Table 3 . 

Finally, consider tensor-like couplings. There are 4 possible mass- 

imension 7 terms, and two possible mass-dimension 5 terms. 2 The 

on-zero tensor terms are of the form 

χγ μνχ ×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

B μν with final states Zh , W 

+ W 

−, f f 
˜ B μν with final states Zh , W 

+ W 

−, f f 
B μνY H H 

† H with final states γ h, Zh , W 

+ W 

−, f f 
˜ B μνY H H 

† H with final states γ h, Zh , W 

+ W 

−, f f 
W 

a 
μν H 

† t a H with final states γ h, Zh , W 

+ W 

−, f f 
˜ W 

a 
μν H 

† t a H with final states γ h, Zh , W 

+ W 

−, f f , 

(5) 

or a total of four terms leading to a photon in the final state. Although 

e are focusing on operators which lead to di-boson final states, we 

ave to include the fermonic final states in this case, as dictated by 

he structure of this class of operators (see Section 3.2.3 ). 

The initial-state contributions to | M | 2 are again given in Table 1 , 

nd the final-state contributions to | M | 2 are given in Table 4 . 

The 12 scalar / pseudoscalar plus 28 vector / axial vector plus 4 ten- 

or terms lead to a total of 44 possible terms with photons in the final 

tate. Some processes have two annihilation modes containing pho- 

ons, including γ γ , γ Z , or γ h . Therefore, a photon line with a given 

nergy can arise from different processes. An example using 130 GeV 

s the energy of the line is given in Table 5 . 

All final states for all the possible terms are calculated and given 

n Section 4 . The scalar / pseudoscalar terms are given in Tables 6 –9 , 

orted by initial operators. The vector / axial vector terms are given 

n Tables 10 –17 , again sorted by initial operators. Finally the tensor 

esults are in Tables 18 –20 . 

.1. Initial-state WIMP factors 

The initial-state WIMP factors appearing in annihilation matrix 

lements are shown in Table 1 , along with their contribution to | M | 2 . 
he mass-dimension (either 2 or 3) is indicated. 

Note that p · p ′ − M 

2 ∝ s − 4 M 

2 , where s = ( p + p ′ ) 2 = ( k + k ′ ) 2 is
he center-of-mass energy. In the nonrelativistic (NR) limit, s → 4 M 

2 

 M 

2 v 2 , so the scalar operator χχ will have an NR annihilation cross 

ection proportional to v 2 . 
2 Terms χγ μνχ B λμ B λν and χγ μνχW 

a 
λμW 

a λ
ν vanish because they are a product 

f an antisymmetric tensor ( γ μν ) and a symmetric tensor ( e.g., B λμ B λν ). Though less 

ransparent, terms of the form 

˜ B λμ B λν and ˜ W 

a 
λμW 

a λ
ν are only non-zero when μ = ν . 

o see this, notice that 2 B Y λμ
˜ B Y λν = B Y 

[ λμ] 
B Y 

[ ρσ ] 
ερσλ

ν , which is antisymmetric in both 

 μρ] and [ μσ ] (see this by exchanging λ ↔ ρ and λ ↔ σ ). Since μ is antisymmetric 

ith λ, ρ , σ , the only non-vanishing terms are those with μ = ν . 
3.2. Final-state SM factors 

3.2.1. Final-state SM operators coupling to scalar / pseudoscalar DM op- 

erators 

A possible “scalar” final state is H 

† H , which has mass-dimension 

2. In the unitary gauge H 

† H = ( 〈 v 〉 + h ) 2 / 2. Of course, there will be

no two-body final state containing a photon. The matrix element for 

the final-state hh is a sum of two contributions, the “direct” coupling, 

and the s -channel propagation of an h followed by its coupling to two 

h ’ s through the triple-Higgs vertex. The s -channel propagation of an 

h also leads to the possibility of two-body final states containing f f , 

W 

+ W 

−, and ZZ . The contributions to the matrix elements are give in 

Table 2 and all diagrams are shown in Fig. 1 . 

Also appearing in the matrix elements will be terms of the form 

BB , B ̃

 B , W 

a W 

a , or W 

a ˜ W 

a . The four factors represent mass-dimension 

4 operators, and the final contribution to | M | 2 has mass-dimension 

2. After electroweak symmetry breaking we must change basis to 

express the matrix element in terms of γ ’ s, Z ’ s, or W ’ s. Terms will 

appear as C YA C Y A ′ AA 

′ or C aA C aA ′ AA 

′ , where the A and A 

′ can be either

a photon or a Z boson (or W bosons in the case of SU (2) W 

) and the C s are

the coefficients of the EW mixing matrix. The diagrams representing 

the possible final states are shown in Figs. 2 and 3 . In these, and in all 

such diagrams, it should be understood that there are processes with 

gauge bosons replaced by their duals. The contributions to the matrix 

elements are give in Table 2 . 

3.2.2. Final-state SM operators coupling to vector / axial vector DM op- 

erators 

Mass-dimension 5 mixed Higgs / gauge-boson factors will be of 

the form of a gauge field times a product of the Higgs field times a 

derivative of the Higgs field. 

First consider the mass-dimension 5 terms coupling to hyper- 

charge. One of the possible terms is of the form ( B λμY H H 

† D 

λH + h . c .).

After symmetry breaking the terms responsible for 2-to-2 annihila- 

tion processes are C YA 〈 v 〉 A λμ∂ λh / 2, where A can be either a photon

or a Z boson. For the operator with B λμ replaced by ˜ B λμ, the result is 

the same with A λμ replaced by ˜ A λμ. These diagrams are illustrated in 

Fig. 4 . 

The other possible hypercharge term is i ( B λμY H H 

† D 

λH − h . c .). This

operator leads to terms of the form − C YA m Z 〈 v 〉 A λμZ λ/ 2, where A can

be either photon or Z boson. Note that no Higgs is produced in 2-to-2 

process for this operator. Again, for the operator with B λμ replaced 

by ˜ B λμ, the result is the same with A λμ replaced by ˜ A λμ. These final 

states are shown in Fig. 5 . 

Now consider the mass-dimension 5 terms coupling to SU (2) W 

fields. One of the possible terms is of the form ( W 

a 
λμ

H 

† t a D 

λ H + 

h.c. ). After symmetry breaking, terms involving a Higgs are −
C 3 A 〈 v 〉 A λμ∂ λh / 2, where A can be a photon or a Z . These terms

also have an annihilation channel into W 

+ W 

−, which has a factor 

i 〈 v 〉 m W 

( W 

+ 
λμ

W 

−λ − W 

−
λμ

W 

+ λ) / 2. (We ignore the structure constant 

term from the field strength tensor, since we are only interested in 

tree-level 2-to-2 processes.) The associated final-state diagrams are 

shown in Figs. 6 and 7 . 

The terms are given in Table 3 . All the terms have the correct 

structure to couple to χγ μχ , χγ μ5 χ , or φ† ∂ μφ terms. Also, all terms 

are proportional to the Higgs vacuum expectation value 〈 v 〉 2 and some 

terms are proportional to m 

2 
Z or m 

2 
W 

; we do not explicitly include these 

factors in the table, nor do we include factors of the electroweak 

mixing angles. All proper factors are included in the presentation of 

our final results in the next section. 

3.2.3. Final-state SM operators coupling to tensor DM operators 

Now we turn to final-state SM operators coupling to tensor DM 

operators. They will be of the form B or ˜ B multiplied by H 

† Y H H , and 
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Table 6 

Results for dimension-6 scalar operators for scalar-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 130 GeV for the 130 GeV line from γ γ final state, and 

M = 144 GeV if the 130 GeV line arises from the γ Z final state. 

Operator Final state �( s, M, m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

φ † φ B μνB μν γ γ * 4 s 
2 

�4 cos 4 θW ( 1289 GeV 
�

) 
4 

( 2938 GeV 
�

) 
4 

γ Z 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

0.403 × [ γ γ ] 

ZZ 4 s 
2 

�4 sin 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

0.038 × [ γ γ ] 

φ† φ B μν ˜ B μν γ γ * 4 s 
2 

�4 cos 4 θW ( 1288 GeV 
�

) 
4 

( 2938 GeV 
�

) 
4 

γ Z 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

0.403 × [ γ γ ] 

ZZ 4 s 
2 

�4 sin 4 θW (1 − 4 m 2 Z 
s 

) 0.032 × [ γ γ ] 

φ† φ W 

a 
μν W 

a μν γ γ * 4 s 
2 

�4 sin 4 θW ( 1508 GeV 
�

) 
4 

( 1606 GeV 
�

) 
4 

γ Z 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

4.516 × [ γ γ ] 

ZZ 4 s 
2 

�4 cos 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

4.782 × [ γ γ ] 

W 

+ W 

− 8 s 
2 

�4 (1 − 4 m 2 W 
s 

+ 

6 
m 4 W 
s 2 

) 

19.98 × [ γ γ ] 

φ† φ W 

a 
μν

˜ W 

a μν γ γ * 4 s 
2 

�4 sin 4 θW ( 1478 GeV 
�

) 
4 

( 1606 GeV 
�

) 
4 

γ Z 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

4.516 × [ γ γ ] 

ZZ 4 s 
2 

�4 cos 4 θW (1 − 4 m 2 Z 
s 

) 4.056 × [ γ γ ] 

W 

+ W 

− 8 s 
2 

�4 (1 − 4 m 2 W 
s 

) 18.35 × [ γ γ ] 

φ† φ W 

a 
μν W 

a μν γ γ 4 s 
2 

�4 sin 4 θW ( 1638 GeV 
�

) 
4 

0.205 × [ γ Z ] 

γ Z * 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

( 2511 GeV 
�

) 
4 

ZZ 4 s 
2 

�4 cos 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

1.172 × [ γ Z ] 

W 

+ W 

− 8 s 
2 

�4 (1 − 4 m 2 W 
s 

+ 

6 
m 4 W 
s 2 

) 

4.661 × [ γ Z ] 

φ† φ W 

a 
μν

˜ W 

a μν γ γ 4 s 
2 

�4 sin 4 θW ( 1618 GeV 
�

) 
4 

0.205 × [ γ Z ] 

γ Z * 8 s 
2 

�4 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

( 2511 GeV 
�

) 
4 

ZZ 4 s 
2 

�4 cos 4 θW (1 − 4 m 2 Z 
s 

) 1.065 × [ γ Z ] 

W 

+ W 

− 8 s 
2 

�4 (1 − 4 m 2 W 
s 

) 4.427 × [ γ Z ] 

∗ The process for the 130 GeV line. 

Table 7 

Results for dimension-7 scalar operators for fermionic-WIMP annihilation. Indicated values of � for 
h 2 assume M = 130 GeV. Since � always has a factor of 1 − 4 M 

2 / s → v 2 / 4 in 

the non-relativistic limit, it will not have a measurable signals from present-day annihilation. 

Operator Final state �( s, M, m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χχ B μν B μν γ γ 2 s 
3 

�6 cos 4 θW (1 − 4 M 2 

s 
) ( 375 GeV 

�
) 

6 
[ σ v ] NR ∝ v 2 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

ZZ 2 s 
3 

�6 sin 4 θW (1 −
4 M 2 

s 
)(1 − 4 m 2 Z 

s 
+ 6 

m 4 Z 
s 2 

) 

[ σ v ] NR ∝ v 2 

χχ B μν ˜ B μν γ γ 2 s 
3 

�6 cos 4 θW (1 − 4 M 2 

s 
) ( 375 GeV 

�
) 

6 
[ σ v ] NR ∝ v 2 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

ZZ 2 s 
3 

�6 sin 4 θW (1 −
4 M 2 

s 
)(1 − 4 m 2 Z 

s 
) 

[ σ v ] NR ∝ v 2 

χχ W 

a 
μν W 

a μν γ γ 2 s 
3 

�6 sin 4 θW (1 − 4 M 2 

s 
) ( 416 GeV 

�
) 

6 
[ σ v ] NR ∝ v 2 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

ZZ 2 s 
3 

�6 cos 4 θW (1 −
4 M 2 

s 
)(1 − 4 m 2 Z 

s 
+ 6 

m 4 Z 
s 2 

) 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 4 s 
3 

�6 (1 −
4 M 2 

s 
)(1 − 4 m 2 W 

s 
+ 6 

m 4 W 
s 2 

) 

[ σ v ] NR ∝ v 2 

χχ W 

a 
μν

˜ W 

a μν γ γ 2 s 
3 

�6 sin 4 θW (1 − 4 M 2 

s 
) ( 411 GeV 

�
) 

6 
[ σ v ] NR ∝ v 2 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

ZZ 2 s 
3 

�6 cos 4 θW (1 −
4 M 2 

s 
)(1 − 4 m 2 Z 

s 
) 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 4 s 
3 

�6 (1 −
4 M 2 

s 
)(1 − 4 m 2 W 

s 
) 

[ σ v ] NR ∝ v 2 
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Table 8 

Results for dimension-7 scalar operators for fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 130 GeV for the 130 GeV line from γ γ final state, 

and M = 144 GeV if the 130 GeV line arises from the γ Z final state. 

Operator Final state �( s, M, m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χ iγ 5 χ B μν B μν γ γ * 2 s 
3 

�6 cos 4 θW ( 670 GeV 
�

) 
6 

( 1166 GeV 
�

) 
6 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

0.403[ γ γ ] 

ZZ 2 s 
3 

�6 sin 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

0.038[ γ γ ] 

χ iγ 5 χ B μν ˜ B μν γ γ * 2 s 
3 

�6 cos 4 θW ( 669 GeV 
�

) 
6 

( 1166 GeV 
�

) 
6 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

0.403[ γ γ ] 

ZZ 2 s 
3 

�6 sin 4 θW (1 − 4 m 2 Z 
s 

) 0.032[ γ γ ] 

χ iγ 5 χ W 

a 
μν W 

a μν γ γ * 2 s 
3 

�6 sin 4 θW ( 744 GeV 
�

) 
6 

( 780 GeV 
�

) 
6 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

4.516[ γ γ ] 

ZZ 2 s 
3 

�6 cos 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

4.782[ γ γ ] 

W 

+ W 

− 4 s 
3 

�6 (1 − 4 m 2 W 
s 

+ 

6 
m 4 W 
s 2 

) 

19.98[ γ γ ] 

χ iγ 5 χ W 

a 
μν

˜ W 

a μν γ γ * 2 s 
3 

�6 sin 4 θW ( 734 GeV 
�

) 
6 

( 780 GeV 
�

) 
6 

γ Z 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

4.516[ γ γ ] 

ZZ 2 s 
3 

�6 cos 4 θW (1 − 4 m 2 Z 
s 

) 4.056[ γ γ ] 

W 

+ W 

− 4 s 
3 

�6 (1 − 4 m 2 W 
s 

) 18.35[ γ γ ] 

χ iγ 5 χ W 

a 
μν W 

a μν γ γ 2 s 
3 

�6 sin 4 θW ( 813 GeV 
�

) 
6 

0.205[ γ Z ] 

γ Z * 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

( 1087 GeV 
�

) 
6 

ZZ 2 s 
3 

�6 cos 4 θW (1 − 4 m 2 Z 
s 

+ 

6 
m 4 Z 
s 2 

) 

1.172[ γ Z ] 

W 

+ W 

− 4 s 
3 

�6 (1 − 4 m 2 W 
s 

+ 

6 
m 4 W 
s 2 

) 

4.661[ γ Z ] 

χ iγ 5 χ W 

a 
μν

˜ W 

a μν γ γ 2 s 
3 

�6 sin 4 θW ( 806 GeV 
�

) 
6 

0.205[ γ Z ] 

γ Z * 4 s 
3 

�6 cos 2 θW sin 2 θW (1 − m 2 Z 
s 

) 
2 

( 1087 GeV 
�

) 
6 

ZZ 2 s 
3 

�6 cos 4 θW (1 − 4 m 2 Z 
s 

) 1.065[ γ Z ] 

W 

+ W 

− 4 s 
3 

�6 (1 − 4 m 2 W 
s 

) 4.427[ γ Z ] 

∗ The process for the 130 GeV line. 

Table 9 

Results for dimension-5 scalar operators for fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 130 GeV. 

Operator Final state �( s , M , m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χχ H † H hh 1 
4 

s 
�2 (1 −

4 M 2 

s 
) (1 − m 2 h 

s 
) 
−2 

(1 + 

2 m 2 h 
s 

) 
2 

( 581 GeV 
�

) 
2 

[ σ v ] NR ∝ v 2 

ZZ 1 
4 

s 
�2 (1 − 4 M 2 

s 
) (1 − m 2 h 

s 
) 
−2 

(1 −
4 m 2 Z 

s 
+ 

12 m 4 Z 
s 2 

) 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
2 

s 
�2 (1 − 4 M 2 

s 
) (1 − m 2 h 

s 
) 
−2 

(1 −
4 m 2 W 

s 
+ 

12 m 4 W 
s 2 

) 

[ σ v ] NR ∝ v 2 

∑ 

f f f S 5 
s 

�2 (1 − 4 M 2 

s 
) (1 − m 2 h 

s 
) 
−2 

[ σ v ] NR ∝ v 2 

χ iγ 5 χ H † H hh 1 
4 

s 
�2 (1 − m 2 h 

s 
) 
−2 

(1 + 

2 m 2 h 
s 

) 
2 

( 3305 GeV 
�

) 
2 

( 10742 GeV 
�

) 
2 

ZZ 1 
4 

s 
�2 (1 − m 2 h 

s 
) 
−2 

(1 − 4 m 2 Z 
s 

+ 

12 m 4 Z 
s 2 

) 

0.837[ hh ] 

W 

+ W 

− 1 
2 

s 
�2 (1 − m 2 h 

s 
) 
−2 

(1 − 4 m 2 W 
s 

+ 

12 m 4 W 
s 2 

) 

1.946[ hh ] 

∑ 

f f f S 5 
s 

�2 (1 − m 2 h 
s 

) 
−2 

0.006[ hh ] 

S 5 = 

∑ 

f ( m 

2 
f /s)(1 − 4 m 

2 
f /s) . 

Table 10 

Results for dimension-8 vector operators for scalar-WIMP annihilation. These terms can not produce a photon line. A value of M = 155 GeV is assumed. 

Operator Final state �( s , M , m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

( φ† ∂ μφ + h . c .) ×
( B λμY H H 

† D λH + h . c .) 

Zh 1 
16 

〈 v 〉 2 s 3 
�8 sin 2 θW 

m 2 Z 
s 

β2 
Zh 

( 204 GeV 
�

) 
8 

( 322 GeV 
�

) 
8 

( φ† ∂ μφ + h . c .) ×
( W 

a 
λμ H † t a D 

λ H + h.c. ) 

Zh 1 
16 

〈 v 〉 2 s 3 
�8 cos 2 θW 

m 2 Z 
s 

β2 
Zh 

( 237 GeV 
�

) 
8 

( 375 GeV 
�

) 
8 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] . 
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Fig. 1. Final-state dimension-2 diagrams of the form H † H that couple to scalar or pseudoscalar WIMP factors. 

Fig. 2. Final-state dimension-4 diagrams of the form B μνB μν that couple to scalar or pseudoscalar WIMP factors. 

Fig. 3. Final-state dimension-4 diagrams of the form W 

aμν W 

a 
μν that couple to scalar or pseudoscalar WIMP factors. 
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Table 11 

Results for dimension-8 vector operators for scalar-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 144 GeV necessary to produce a 130 GeV line in the 

γ Z final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

( φ† ∂ μφ + h . c .) ×
i ( B λμY H H 

† D λH − h . c .) 

γ Z 1 
8 

〈 v 〉 2 s 3 
�8 cos 2 θW 

m 2 Z 
s 

(1 − m 2 Z 
s 

) 
2 

( 301 GeV 
�

) 
8 

( 438 GeV 
�

) 
8 

ZZ 3 
8 

〈 v 〉 2 s 3 
�8 sin 2 θW 

m 2 Z 
s 

0.952[ γ Z ] 

( φ† ∂ μφ + h.c. ) ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 
γ Z 1 

8 
〈 v 〉 2 s 3 

�8 cos 2 θW 
m 2 Z 
s 

(1 − m 2 Z 
s 

) 
2 

( 288 GeV 
�

) 
8 

( 438 GeV 
�

) 
8 

ZZ 1 
4 

〈 v 〉 2 s 3 
�8 sin 2 θW 

m 2 Z 
s 

(1 − 4 m 2 Z 
s 

) 0.380[ γ Z ] 

( φ† ∂ μφ + h.c. ) ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 1 

8 
〈 v 〉 2 s 3 

�8 sin 2 θW 
m 2 Z 
s 

(1 − m 2 Z 
s 

) 
2 

( 371 GeV 
�

) 
8 

( 377 GeV 
�

) 
8 

ZZ 3 
8 

〈 v 〉 2 s 3 
�8 cos 2 θW 

m 2 Z 
s 

10.67[ γ Z ] 

W 

+ W 

− 3 
4 

〈 v 〉 2 s 3 
�8 

m 2 W 
s 

23.10[ γ Z ] 

( φ† ∂ μφ + h.c. ) ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 1 

8 
〈 v 〉 2 s 3 

�8 sin 2 θW 
m 2 Z 
s 

(1 − m 2 Z 
s 

) 
2 

( 336 GeV 
�

) 
8 

( 377 GeV 
�

) 
8 

ZZ 1 
4 

〈 v 〉 2 s 3 
�8 cos 2 θW 

m 2 Z 
s 

(1 − 4 m 2 Z 
s 

) 4.261[ γ Z ] 

W 

+ W 

− 1 
2 

〈 v 〉 2 s 3 
�8 

m 2 W 
s 

(1 − 4 m 2 W 
s 

) 10.60[ γ Z ] 

Table 12 

Results for dimension-8 vector operators for scalar-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV necessary to produce a 130 GeV line in the 

γ h final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

i ( φ† ∂ μφ − h.c. ) 

×( B λμY H H 
† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 216 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 − 4 M 2 

s 
) 

×[ β2 
Zh 

(1 + 

m 2 Z 
2 s 

) + 

6 m 2 z m 
2 
h 

s 2 
] 

[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( ̃ B λμY H H 

† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 216 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 − 4 M 2 

s 
) β2 

Zh 
[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 254 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 − 4 M 2 

s 
) 

×[ β2 
Zh 

(1 + 

m 2 Z 
2 s 

) + 

6 m 2 Z m 
2 
h 

s 2 
] 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 − 4 M 2 

s 
)(1 − 4 m 2 W 

s 
) ×

(1 + 

3 m 2 W 
s 

) 

[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( ̃  W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 259 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 − 4 M 2 

s 
) β2 

Zh 
[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 − 4 M 2 

s 
)(1 + 

2 m 2 W 
s 

) 

[ σ v ] NR ∝ v 2 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] . 

W

c

p

F

p

t

w

fi

w

C  

W  

m  

s  

s

a

 

a or ˜ W 

a multiplied by H 

† t a H . These processes will be more compli- 

ated to compute because the final states Zh , W 

+ W 

− and f f may be 

roduced through production of a single s -channel photon or Z (see 

igs. 8 and 9 ). An operator just containing a single B or a ˜ B can also 

roduce a diboson final state by producing a single photon or Z , which 

hen produces the two-body final states Zh , W 

+ W 

− and f f . 
Because the processes in this subsection are more complicated, 

e describe the calculation in a little more detail. We first express the 

elds involved in the operators in the unitary gauge: 

B μν H † Y H H = 1 

2 

( 〈 v 〉 + h ) 2 
2 

B μν = ( 〈 v 〉 + h ) 2 
4 

C YA A μν, 

W 

a 
μν H † t a H = − 1 

2 

( 〈 v 〉 + h ) 2 
2 

W 

3 
μν = − ( 〈 v 〉 + h ) 2 

4 

(
C 3 A A μν − 2 ig W 

+ 
[ μ

W 

−
ν] 

)
, 

(6) 

here A includes both the photon and the Z boson, A μν ≡ 2 ∂ [ μA ν] , 

 Y γ = C 3 Z = cos θW 

, −C YZ = C 3 γ = sin θW 

, and 〈 v 〉 / 
√ 

2 is the Higgs vev.

e will make use of the facts that 〈 v 〉 and the W and Z masses, m W 

and

 Z , are related by m W 

= m Z cos θW 

= g 〈 v 〉 / 2, and the SU (2) coupling

trength g is related to the EM coupling e via g = e / sin θW 

. In this

ubsection we will not separately consider the operators ˜ B μν H 

† Y H H 

nd 

˜ W 

a 
μν H 

† t a H . It is much more convenient just to use the results 
for B μνH 

† Y H H and W 

a 
μν H 

† t a H and let the epsilon tensor operate on 

the WIMP factors. 

First consider production of γ ( k ) h ( k ′ ) from an operator with the 

SM factor B μνH 

† Y H H . There is only vertex production in this case (see 

Fig. 8 ). Summing over the polarization of the photon, ∑ 

r,r ′ 
| M | 2 = −〈 v 〉 2 cos 2 θW 

g ννk μk μ + 

{
μν

} {
μν

}
. (7) 

Note that we use +{ μν} ( { μν} ) to indicate the addition of all terms 

symmetric in { μν} ( { μν} ), which will not contribute when combined 

with the tensor WIMP factor, which is antisymmetric in those in- 

dices. Production of γ ( k ) h ( k ′ ) from an operator with the SM factor 

W 

a 
μν H 

† t a H leads to a SM factor which differs only by the EW mixing 

term: ∑ 

r,r ′ 
| M | 2 = −〈 v 〉 2 sin 

2 θW 

g ννk μk μ + 

{
μν

} {
μν

}
. (8) 

Now turn to processes where there is an s -channel contribution. 

We start with the final state Zh from the operator B μνH 

† Y H H . The ma- 
trix element has contributions from vertex production and s -channel 
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Table 13 

Results for dimension-8 vector operators for scalar-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 144 GeV necessary to produce a 130 GeV line in the 

γ Z final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
χχ h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

i ( φ† ∂ μφ − h.c. ) ×
( B λμY H H 

† D 

λ H − h.c. ) 
γ Z 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) × (1 − m 2 Z 
s 

) 
2 

( 216 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 − 4 M 2 

s 
)(1 −

4 m 2 Z 
s 

) 

[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( ̃ B λμY H H 

† D 

λ H − h.c. ) 
γ Z 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) × (1 − m 2 Z 
s 

) 
2 

( 214 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 −

4 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) × (1 − m 2 Z 
s 

) 
2 

( 240 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 − 4 M 2 

s 
)(1 −

4 m 2 Z 
s 

) 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 − 4 M 2 

s 
)(1 −

4 m 2 W 
s 

) 

[ σ v ] NR ∝ v 2 

i ( φ† ∂ μφ − h.c. ) ×
( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) × (1 − m 2 Z 
s 

) 
2 

( 229 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 −

4 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 −

4 M 2 

s 
) (1 − 4 m 2 W 

s 
) 

2 

[ σ v ] NR ∝ v 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

) 
production mediated by a Z -boson with momentum P μ = ( p + p ′ ) μ
= ( k + k ′ ) μ (this definition of P μ implies that P 2 = s ). The total is 

iM = 〈 v 〉 sin θW k μ ε∗r 
ν ( k ) − i 

〈 v 〉 2 
2 

sin θW i P μ ( −i ) 
g νλ − P ν P λ/m 2 Z 

s − m 2 Z 
i 

g 2 〈 v 〉 
2 cos 2 θW 

g λρ ε∗r 
ρ ( k ) + {μν

}
. (9)

After some manipulation, the sum over the polarization of the abso-

lute value squared of the matrix element is 

∑ 

r 

| M | 2 = 

〈 v 〉 2 (
s − m 

2 
Z 

)2 
sin 

2 θW 

⎡ 

⎣ −s 2 g νν

( 
k + 

m 

2 
Z 

s 
k ′ 
) 

μ

×
( 

k + 

m 

2 
Z 

s 
k ′ 
) 

μ

+ m 

2 
Z k μk μk ′ νk ′ ν

⎤ 

⎦ + 

{
μν

} {
μν

}
. 

(10)

The result for the Zh final state from the operator W 

a 
μν H 

† t a H is

the same as the previous expression with the replacement sin 

2 θW 

→
cos 2 θW 

: 

∑ 

r 

| M | 2 = 

〈 v 〉 2 (
s − m 

2 
Z 

)2 
cos 2 θW 

⎡ 

⎣ −s 2 g νν

( 
k + 

m 

2 
Z 

s 
k ′ 
) 

μ

×
( 

k + 

m 

2 
Z 

s 
k ′ 
) 

μ

+ m 

2 
Z k μk μk ′ νk ′ ν

⎤ 

⎦ + 

{
μν

} {
μν

}
. 

(11)

Now consider the final state f f , for which there are only s -channel

processes (see Figs. 8 and 9 ). The amplitude for production of f ( k ) f ( k ′ )
from B μνH 

† Y H H is 

iM = i 
〈 v 〉 2 

2 
u s f ( k ) 

{ 
cos θW i P μ ( −i ) 

g νλ

s 

[
γ f f 

]λ − sin θW i P μ ( −i ) 
g νλ − P ν P λ/m 2 Z 

s − m 2 Z 

[
Zf f 

]λ} 
v s 

′ 
f ( k 

′ ) 

= − 1 

2 

〈 v 〉 m Z 
s − m 2 Z 

sin θW P μ u s f ( k ) γν

(
A fB ±γ 5 / 2 

)
v s 

′ 
f ( k 

′ ) + {μν
}
, 

(12)

with + for up-type quarks and neutrinos, and − for down-type quarks

and charged leptons. The vertex factors 

[
γ f f 

]λ = ig sin θW 

Q f γ
λ[

Zf f 
]λ = 

ig 

cos θW 

γ λ
[
−Q f sin 

2 θW 

± 1 

4 

(
1 − γ 5 

)] (13)
describe the coupling of photons and Z bosons to f f (again, + for up-

type quarks and neutrinos, and − for down-type quarks and charged
leptons). The factor A fB is defined as A fB ≡ 2 Q f (1 − m 

2 
W 

/s) ∓ 1 / 2, with

− ( + ) for neutrinos and up-type quarks (charged leptons and down-

type quarks). This leads to a sum over spin states of 

∑ 

s,s ′ 
| M | 2 = 〈 v 〉 

2 m 

2 
Z sin 2 θW 

2 
(

s − m 

2 
Z 

)2 

{
−
(

4 A 2 
fB 

+ 1 
)

k μk μk ′ νk ′ ν + 
[

m 

2 
f −

(
A 2 

fB 
+ 1 

4 

)
s 

]
g νν P μ P μ

}
+ { μν} {μν

}
. 

(14)

The production of f f from the operator W 

a 
μν H 

† t a H is similar. The

matrix element is 

iM = i 
〈 v 〉 2 

2 
u s f ( k ) 

{ 
sin θW i P μ ( −i ) 

g νλ

s 

[
γ f f 

]λ + cos θW i P μ ( −i ) 
g νλ − P ν P λ/m 2 Z 

s − m 2 Z 

[
Zf f 

]λ} 
v s 

′ 
f ( k 

′ ) 

= − 1 

2 

〈 v 〉 m Z 
s − m 2 Z 

cos θW P μ u s f ( k ) γν

(
A fW ±γ 5 / 2 

)
v s 

′ 
f ( k 

′ ) + {μν
}
, 

(15)

where A fW 

is defined as A fW 

≡ 2 Q f sin 

2 θW 

m 

2 
Z /s ∓ 1 / 2, with − ( + )

for neutrinos and up-type quarks (charged leptons and down-type
quarks). This leads to 

∑ 

s,s ′ 
| M | 2 = 〈 v 〉 

2 m 2 Z cos 2 θW 

2 
(
s − m 2 Z 

)2 {
−
(

4 A 2 fW + 1 
)

k μk μk ′ ν k ′ ν + 
[

m 2 f −
(

A 2 fW + 
1 

4 

)
s 

]
g νν P μ P μ

}
+ {μν

} {
μν

}
. 

(16)

Finally, let us turn to production of W 

+ W 

−. Production from the

operator B μνH 

† Y H H can only proceed via an s -channel process medi-

ated by a photon or a Z -boson with momentum P μ = ( p + p ′ ) μ = ( k

+ k ′ ) μ. The relevant coupling of the photon or Z to the W 

+ W 

− final
state is given by the factors 

[
γ W 

+ W 

−]λρσ = ig sin θW 

[ 
g ρσ (k ′ − k 

)λ + g λρ ( P + k ) σ − g λσ (P + k ′ )ρ ] [
Z W 

+ W 

−]λρσ = ig cos θW 

[ 
g ρσ (k ′ − k 

)λ + g λρ ( P + k ) σ − g λσ (P + k ′ )ρ ] . (17)

The matrix element is 

iM = i 〈 v 〉 
2 

2 
i P μ ( −i ) { 

cos θW 
g νλ

s 

[
γ W 

+ W 

−]λρσ − sin θW 
g νλ − P ν P λ/m 2 Z 

s − m 2 Z 

[
Z W 

+ W 

−]λρσ

} 
ε∗r 
ρ ( k ) ε∗r ′ 

σ ( k ′ ) + {μν
}
. 
(18
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Fig. 4. Final-state dimension-5 diagrams of the form ( B λμY H H 
† D λH + h . c .) that couple 

to vector or axial-vector WIMP factors. 

Fig. 5. Final-state dimension-5 diagrams of the form ( B λμY H H 
† D λH − h . c .) that couple 

to vector or axial-vector WIMP factors. 
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umming over polarizations leads to 

∑ 

r,r ′ 
| M | 2 = 〈 v 〉 

2 m 2 Z sin 2 θW (
s − m 2 Z 

)2 [ ( 
1 − 4 

m 2 W 

s 
+ 12 

m 4 W 

s 2 

) 
k μk μk ′ ν k ′ ν − 2 

( 
1 − 4 

m 2 W 

s 

) 
m 2 W g νν P ν P ν

] 
+ {μν

} {
μν

}
. 

(19) 

The W 

+ W 

− final state from the operator W 

a 
μν H 

† t a H is more com- 

licated still because the final state can be produced directly from the 
ource vertex (see Fig. 9 ). This produces an additional term in the 

mplitude, which results in a total of 

iM = 〈 v 〉 m W ε
∗r 
μ ( k ) ε∗r ′ 

ν
(
k ′ 
)− i 

〈 v 〉 2 
2 

i P μ ( −i ) 

{
sin θW 

g νλ

P 2 

[
γ W 

+ W 

−]λρσ

+ cos θW 
g νλ − P ν P λ/m 

2 
Z 

P 2 − m 

2 
Z 

[
Z W 

+ W 

−]λρσ

} 
ε∗r 
ρ ( k ) ε∗r ′ 

σ
(
k ′ 
)+ { μν} . 

(20) 

fter tedious calculation, 

∑ 

r,r ′ 
| M | 2 = 〈 v 〉 2 

m 2 W 

{ 
m 2 W g νν

[ 
m 2 W g μμ − k μk μ − k ′ μk ′ μ + 2 U W ( 1 − U W ) 

( 
1 − 4 m 2 W 

s 

) 
P μ P μ

] 

+ 
[ 

1 − 2 U W 

( 
1 − 2 m 2 W 

s 

) 
+ U 2 W 

( 
1 − 4 

m 2 W 

s 
+ 12 

m 4 W 

s 2 

) ] 
k μk μk ′ ν k ′ ν

} 
+ {μν

} {
μν

}
. 

(21) 

he factor U W 

is defined as U W 

≡ 1 + m 

2 
W 

/ ( s − m 

2 
Z ). 

The final-state contributions given in Eqns. ( 7 ), ( 8 ), ( 10 ), ( 11 ), ( 14 ),

 16 ), ( 19 ), and ( 21 ) are given in Table 4 . All the terms have the correct

tructure to couple to χγ μνχ . 

We note that since we include SM gauge-boson interactions, oper- 

tors of the form χγ μνχ B μν and χγ μνχ ˜ B μν lead to final states Zh , 

f f , and W 

+ W 

−. The diagrams for these processes can be constructed 

y removing the Higgs vev ’ s from the diagrams with a photon or Z 

ropagator in Fig. 8 . Of course none of these processes lead to a photon 

n the 2 body final state. 

The final state Z ( k ) h ( k ′ ) matrix element from the SM term B μν is 

16 m 

2 
Z 

〈 v 〉 2 
(

s − m 

2 
Z 

)2 
sin 

2 θW 

[ 
−m 

2 
Z g νν P μ P μ + k μk μk ′ νk ′ ν

] 
, (22) 

lus terms symmetric in { μν} or { μν} . 
The contribution to final states W 

+ W 

− and f f from the operator 

 μν can be obtained from the operator B μνH 

† Y H H by removing a factor 

f ( 〈 v 〉 / 
√ 

2 ) 
4 
/ 4 (the factor of 4 is from removing Y 2 H ). 

The operator B μν is included in Table 4 . 
4. Results 

The annihilation cross section, σ ( s ), for WIMPs of mass M into a 

two-body final state with masses m and m 

′ is given in terms of a 

dimensionless factor �, which depends on s = ( p + p ′ ) 2 = ( k + k ′ ) 2 ,
the WIMP mass M , and the final state masses m and m 

′ as 

σ ( s ) = 1 

32 π M 

2 

√ 
4 M 

2 

s 

√ 
M 

2 

s − 4 M 

2 

√ 
1 − ( m + m 

′ ) 2 

s 

√ 
1 − ( m − m 

′ ) 2 

s 
�
(
s; M, m, m 

′ ) . (23) 

Physically, �( s ; M , m , m 

′ ) is given in terms of the matrix element M
by 

�
(
s; M, m, m 

′ ) = 

∫ 
d 


4 π

1 

4 

∑ 

s,s ′ 

∑ 

r [ ,r ′ ] 
| M | 2 f ermonic WI MP s 

= 

∫ 
d 


4 π

∑ 

r [ ,r ′ ] 
| M | 2 bo so nic WI MP s , 

(24) 

where initial spin states s and s ′ are averaged over for fermionic 

WIMPs, and polarizations r and r ′ of final-state bosons are summed 

over (if one of the final states is a spinless boson, the sum over r ′ is 
omitted). The integral 

∫ 
d 
 is the solid angle integration in the center 

of mass (CoM) frame with the extra factor of 1 / 2 understood if the 

two final state particles are identical. The �( s ; M ; m , m 

′ ) factors for

the various terms and processes are given in tables below. 
The nonrelativistic cross section, [ σ v ] NR , is obtained by the sub- 

stitution s → 4 M 

2 , unless s appears in the combination s − 4 M 

2 , in 

which case s − 4 M 

2 → M 

2 v 2 . This leads to the substitution 1 − 4 M 

2 / s
→ v 2 / 4. The nonrelativistic cross section is usually expressed as a an 

expansion in terms of v 2 : [ σ v ] NR = a + bv 2 + ···. Therefore, 

[ σ v ] N R = 
1 

32 π M 

2 

√ 
1 − ( m + m ′ ) 2 

4 M 

2 

√ 
1 − ( m − m ′ ) 2 

4 M 

2 
�
(

s = 4 M 

2 or s − 4 M 

2 = M 

2 v 2 ; M, m, m ′ 
)

= a + bv 2 . (25) 

For present annihilation in the galactic center to produce the pur- 

ported 130 GeV line, we need [ σ v ] NR ∼ 10 −27 cm 

3 s −1 = 8.59 ×
10 −11 GeV 

−2 . Annihilation in the galactic center has v ∼ 10 −3 , so we 

will assume annihilation at rest, and also assume that if �∝ 1 − 4 M 

2 / s 
= v 2 / 4, that present-day annihilation will be negligible. For χχ an- 

nihilation to particles of mass m and m 

′ , the energy of the particle of 

mass m is E = M + m 

2 / 4 M − m 

′ 2 / 4 M and the energy of the particle

of mass m 

′ is E = M + m 

′ 2 / 4 M − m 

2 / 4 M . Possible final states we

consider are γ γ , γ Z , γ h , ZZ , W 

+ W 

−, hh , and Zh . The 130 GeV line

could result from annihilation of a particle of mass 130 GeV for pho- 

tons from the γ γ final state, mass 144 GeV for photons from the γ Z 

final state, or mass 155 GeV for photons from the γ h final state. For 

some operators, the branching fraction into γ Z or γ h is larger than 

the fraction into γ γ . The energies of the other annihilation products 

are needed for the calculation of the continuum, which are given in 

Table 5 for WIMP masses of 130 GeV, 144 GeV, and 155 GeV. The 

values of �( s ; M , m , m 

′ ) as a function of � for arbitrary WIMP mass

are indicated in the Tables for the various operators. (Of course it is 

understood that the WIMP mass must be above threshold for a given 

process.) 
Also shown in Tables 6 –20 are the values of 
h 2 as a function of 

� for the various operators. The relic density depends on the total 

annihilation cross section. In terms of a and b , the early-universe 

freeze-out temperature, T F , may be expressed in terms of x F = M / T F 
by [ 15 ] 

x F = ln 

[ 
c ( c + 2 ) g 

√ 

45 

8 

MM Pl 

2 π3 
√ 

g ∗ ( x F ) 

a + 6 b/x F √ 

x F 

] 

= ln 

[ 
1 . 18 × 10 19 GeV 2 c ( c + 2 ) 

M 

130 GeV 

g 

2 

√ 

106 

g ∗
a + 6 b/x F √ 

x F 

] 
, 

(26) 

where for relic density calculation a and b are the values for the total 

annihilation cross section. We use c , the free parameter to fit the 

numerical results, of c ( c + 2) = 1, the number of degrees of freedom 
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Fig. 6. Final-state dimension-5 diagrams of the form ( W 

a 
λμ H † t a D 

λ H + h.c. ) that couple to vector or axial-vector WIMP factors. 

Fig. 7. Final-state dimension-5 diagrams of the form ( W 

a 
λμ H † t a D 

λ H − h.c. ) that couple to vector or axial-vector WIMP factors. 

Fig. 8. Final-state dimension-4 diagrams of the form B μνY H H 
† H that couple to tensor WIMP factors. We define P = p + p ′ . The vertex factors [ Zf f ], [ γ f f ], [ ZWW ], and [ γ WW ] are 

defined in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g is 2 for Dirac fermions and 1 for complex scalars, and assume the

effective number of degrees of freedom at freeze out is g * ( x F ) = 106.

Here we have assumed M = 130 GeV, but x F only has a logarithmic

dependence on M . The present value of 
h 2 is given in terms of a , b ,

and x F by [ 15 ] 3 


h 2 = 

2 . 08 × 10 9 x F GeV −1 

M Pl 

√ 

g ∗ ( x F ) ( a + 3 b/x F ) 
= 0 . 11 

1 . 50 × 10 −10 x F GeV −2 

a + 3 b/x F 
. (27)

If b = 0, pure s -wave annihilation, then [ σ v ] NR = a , and for M = 130

GeV we find x f = 22.86 (22.15) for fermions (scalars), and 


h 2 | b= 0 � 0 . 11 ×
{

3 . 44 f or g = 2 

3 . 33 f or g = 1 

}
× 10 −9 GeV −2 a −1 

+ cor r ections logari thmi c in M/ 130 GeV . 
(28)
3 Recall we have assumed either a complex scalar field or Dirac fermion—for self- 

conjugate dark matter the numerical coefficients would be 1 / 2 the values in Eq. ( 27 ). 

 

 

 

If a = 0, pure p -wave annihilation, then [ σ v ] NR = bv 2 = 6 bx −1 , and for

M = 130 GeV we find x f = 23.57 (22.86) for fermions (scalars), and 


h 2 | a= 0 � 0 . 11 ×
{

2 . 79 f or g = 2 

2 . 62 f or g = 1 

}
× 10 −8 GeV −2 b −1 

+ cor r ections logari thmi c in M/ 130 GeV . 
(29)

If the 130 GeV photon line with a signal strength of 10 −27 cm 

3 s −1 is

confirmed, our tables can be used to derive further information about

dark-matter annihilation. For a subset of the operators tabulated here,

the scales � in the last two columns of the tables are similar. This

means both the thermal freeze out and the indirect signal can be

described mainly by one of these operators. For example, this is the

case for operator χ iγ 5 χW 

a 
μν ˜ W 

aμν (see Tables 21 and 22 for more

examples). 

There are related signals and constraints. We have calculated

the production rates for all possible di-boson states. In addition to the
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Table 14 

Results for dimension-8 vector operators for Fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV necessary to produce a 130 GeV line in 

the γ h final state. 

operator final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μχ ×
( B λμY H H 

† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 + 

2 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 349 GeV 
�

) 
8 

( 541 GeV 
�

) 
8 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 + 

2 M 2 

s 
) 

×[ β2 
Zh 

(1 + 

m 2 Z 
2 s 

) + 

6 m 2 Z m 
2 
h 

s 2 
] 

0.222[ γ h ] 

χγ μχ ×
( ̃ B λμY H H 

† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 + 

2 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 348 GeV 
�

) 
8 

( 541 GeV 
�

) 
8 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 + 

2 M 2 

s 
) β2 

Zh 
0.184[ γ h ] 

χγ μχ ×
( W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 + 

2 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 410 GeV 
�

) 
8 

( 465 GeV 
�

) 
8 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 + 

2 M 2 

s 
) 

×[ β2 
Zh 

(1 + 

m 2 Z 
2 s 

) + 

6 m 2 Z m 
2 
h 

s 2 
] 

2.493[ γ h ] 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 + 

2 M 2 

s 
)(1 − 4 m 2 W 

s 
) ×

(1 + 

3 m 2 W 
s 

) 

11.12[ γ h ] 

χγ μχ ×
( ̃  W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 + 

2 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 419 GeV 
�

) 
8 

( 465 GeV 
�

) 
8 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 + 

2 M 2 

s 
) β2 

Zh 
2.061[ γ h ] 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 + 

2 M 2 

s 
)(1 + 

2 m 2 W 
s 

) 

14.36[ γ h ] 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] . 

Table 15 

Results for dimension-8 vector operators for Fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 144 GeV necessary to produce a 130 GeV line in 

the γ Z final state. 

operator final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μχ ×
i( B λμY H H 

† D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 + 

2 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

( 348 GeV 
�

) 
8 

( 542 GeV 
�

) 
8 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 + 

2 M 2 

s 
)(1 −

4 m 2 Z 
s 

) 

0.173[ γ Z ] 

χγ μχ ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 + 

2 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

( 346 GeV 
�

) 
8 

( 542 GeV 
�

) 
8 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 + 

2 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

0.103[ γ Z ] 

χγ μχ ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 + 

2 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

( 387 GeV 
�

) 
8 

( 466 GeV 
�

) 
8 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 + 

2 M 2 

s 
)(1 −

4 m 2 Z 
s 

) 

1.936[ γ Z ] 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 + 

2 M 2 

s 
)(1 −

4 m 2 W 
s 

) 

6.196[ γ Z ] 

χγ μχ ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 + 

2 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

( 370 GeV 
�

) 
8 

( 466 GeV 
�

) 
8 

ZZ 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 + 

2 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

1.160[ γ Z ] 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 + 

2 M 2 

s 
) (1 − 4 m 2 W 

s 
) 

2 

4.264[ γ Z ] 

c

i

s

c

Z  

t

hannel that gives the leading photon line signal, in many cases there 

s a subdominant channel which gives a second photon line. Observing 

uch a line with predicted energy and signal strength is a definitive 

onfirmation of the discovery and the underlying dynamics. 

There are also channels which do not contain a photon, such as 

Z , Zh , W 

+ W 

−, hh , and f f . The strengths of these channels relative

o the photonic ones are also fixed by the operator, and they provide 
important additional signals. One of the most important signals is 

the continuum photon radiation off charge particles from the dark- 

matter annihilation. In our case, this is most relevant for the decay 

products of W , Z , h . If dark matter can directly annihilate into SM 

fermions, e.g., for the operator χγ μνχ B μνY H H 

† H , the continuum 

radiation from this operator is also relevant. If a single operator dom- 

inates the dark-matter annihilation, the relation between the signal 
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Table 16 

Results for dimension-8 axial-vector operators for Fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV necessary to produce a 130 GeV 

line in the γ h final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μ5 χ ×
( B λμY H H 

† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 222 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW { (1 − 4 M 2 

s 
)[ 

6 m 2 Z m 
2 
h 

s 2 

+ β2 
Zh 

(1 + 

m 2 Z 
2 s 

)] + β2 
Zh 

3 m 2 Z M 
2 

s 2 
} 

( 296 GeV 
�

) 
8 

χγ μ5 χ ×
( ̃ B λμY H H 

† D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 214 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW (1 − 4 M 2 

s 
) β2 

Zh 
[ σ v ] NR ∝ v 2 

χγ μ5 χ ×
( W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 260 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 
1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW { (1 − 4 M 2 

s 
)[ 

6 m 2 Z m 
2 
h 

s 2 

+ β2 
Zh 

(1 + 

m 2 Z 
2 s 

)] + β2 
Zh 

3 m 2 Z M 
2 

s 2 
} 

( 344 GeV 
�

) 
8 

W 

+ W 

−
1 

12 
〈 v 〉 2 s 3 

�8 (1 − 4 M 2 

s 
)(1 − 4 m 2 W 

s 
) 

×(1 + 

3 m 2 W 
s 

) 
[ σ v ] NR ∝ v 2 

χγ μ5 χ ×
( ̃  W 

a 
λμ H † t a D 

λ H + h.c. ) 
γ h 1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW (1 −
4 M 2 

s 
) (1 − m 2 h 

s 
) 

2 

( 258 GeV 
�

) 
8 

[ σ v ] NR ∝ v 2 

Zh 1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW (1 − 4 M 2 

s 
) β2 

Zh 
[ σ v ] NR ∝ v 2 

W 

+ W 

− 1 
12 

〈 v 〉 2 s 3 
�8 (1 − 4 M 2 

s 
)(1 + 

2 m 2 W 
s 

) 

[ σ v ] NR ∝ v 2 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] . 

Table 17 

Results for dimension-8 axial-vector operators for Fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 144 GeV necessary to produce a 130 GeV 

line in the γ Z final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μ5 χ ×
i( B λμY H H 

† D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW [(1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

+ 

6 m 2 Z M 
2 

s 2 
(1 − m 2 Z 

s 
) 

2 

] 

( 279 GeV 
�

) 
8 

( 402 GeV 
�

) 
8 

ZZ 
1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW [(1 − 4 M 2 

s 
)(1 − 4 m 2 Z 

s 
) 

+ 

18 m 2 Z M 
2 

s 2 
] 

0.952[ γ Z ] 

χγ μ5 χ ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 cos 2 θW [(1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

+ 

6 m 2 Z M 
2 

s 2 
(1 − m 2 Z 

s 
) 

2 

] 

( 269 GeV 
�

) 
8 

( 402 GeV 
�

) 
8 

ZZ 
1 

24 
〈 v 〉 2 s 3 

�8 sin 2 θW [(1 − 4 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

+ (1 − 4 m 2 Z 
s 

) 
12 m 2 Z M 

2 

s 2 
] 

0.380[ γ Z ] 

χγ μ5 χ ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW [(1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

+ 

6 m 2 Z M 
2 

s 2 
(1 − m 2 Z 

s 
) 

2 

] 

( 341 GeV 
�

) 
8 

( 346 GeV 
�

) 
8 

ZZ 
1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW [(1 − 4 M 2 

s 
)(1 − 4 m 2 Z 

s 
) 

+ 

18 m 2 Z M 
2 

s 2 
] 

10.67[ γ Z ] 

W 

+ W 

−
1 

12 
〈 v 〉 2 s 3 

�8 [(1 − 4 M 2 

s 
)(1 − 4 m 2 W 

s 
) 

+ 

18 m 2 W M 
2 

s 2 
] 

23.09[ γ Z ] 

χγ μ5 χ ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 
γ Z 

1 
24 

〈 v 〉 2 s 3 
�8 sin 2 θW [(1 − 4 M 2 

s 
)(1 + 

m 2 Z 
s 

) 

×(1 − m 2 Z 
s 

) 
2 

+ 

6 m 2 W M 
2 

s 2 
(1 − m 2 Z 

s 
) 

2 

] 

( 311 GeV 
�

) 
8 

( 346 GeV 
�

) 
8 

ZZ 
1 

24 
〈 v 〉 2 s 3 

�8 cos 2 θW [(1 − 4 M 2 

s 
) (1 − 4 m 2 Z 

s 
) 

2 

+ (1 − 4 m 2 Z 
s 

) 
12 m 2 Z M 

2 

s 2 
] 

4.261[ γ Z ] 

W 

+ W 

−
1 

12 
〈 v 〉 2 s 3 

�8 [(1 − 4 M 2 

s 
) (1 − 4 m 2 W 

s 
) 

2 

+ (1 − 4 m 2 W 
s 

) 
12 m 2 W M 

2 

s 2 
] 

10.60[ γ Z ] 
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Table 18 

Results for dimension-7 tensor operators for fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV necessary to produce a 130 GeV line in 

the γ h final state. 

Operator Final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μνχ B μνY H H 
† H γ h 1 

6 
〈 v 〉 2 s 2 

�6 cos 2 θW (1 − m 2 h 
s 

) 
2 

(1 + 

2 M 2 

s 
) 

( 540 GeV 
�

) 
6 

( 821 GeV 
�

) 
6 

Zh 
1 
6 

〈 v 〉 2 s 2 
�6 sin 2 θW [ β2 

Zh 
(1 + 

2 M 2 

s 
) 

+ 

m 2 Z 
4 s 

(1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

(25 − 14 m 2 Z 
s 

− 14 m 2 h 
s 

+ 

10 m 2 Z m 
2 
h 

s 2 
+ 

m 4 h 
s 2 

+ 

m 4 Z 
s 2 

)] 

0.591[ γ h ] 

W 

+ W 

−
1 

24 

〈 v 〉 2 m 2 Z s 
�6 sin 2 θW (1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×(1 − 4 m 2 W 
s 

)(1 + 

23 m 2 W 
s 

+ 

12 m 4 W 
s 2 

) 

0.043[ γ h ] 

∑ 

f f f 
1 

24 

〈 v 〉 2 m 2 Z s 
�6 sin 2 θW (1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fB 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fB 

− 1)] 

1.583[ γ h ] 

χγ μνχ ˜ B μνY H H 
† H γ h 1 

6 
〈 v 〉 2 s 2 

�6 cos 2 θW (1 − m 2 h 
s 

) 
2 

(1 + 

2 M 2 

s 
) 

( 457 GeV 
�

) 
6 

( 821 GeV 
�

) 
6 

Zh 
1 
6 

〈 v 〉 2 s 2 
�6 sin 2 θW [ β2 

Zh 
(1 + 

2 M 2 

s 
) 

+ 

m 2 Z 
4 s 

(1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

(25 − 14 m 2 Z 
s 

− 14 m 2 h 
s 

+ 

10 m 2 Z m 
2 
h 

s 2 
+ 

m 4 h 
s 2 

+ 

m 4 Z 
s 2 

)] 

0.184[ γ h ] 

W 

+ W 

−
1 

24 

〈 v 〉 2 m 2 Z s 
�6 sin 2 θW (1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×(1 − 4 m 2 W 
s 

)(1 + 

23 m 2 W 
s 

+ 

12 m 4 W 
s 2 

) 

[ σ v ] NR ∝ v 2 

∑ 

f f f 
1 

24 

〈 v 〉 2 m 2 Z s 
�6 sin 2 θW (1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fB 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fB 

− 1)] 

[ σ v ] NR ∝ v 2 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] 

A fB = 2 Q f (1 − m 

2 
W /s) ∓ 1 / 2, with − ( + ) for neutrinos and up-type quarks (electrons and down-type quarks). 

Table 19 

Results for dimension-7 tensor operators for fermionic-WIMP annihilation (continued). Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV necessary to produce a 130 

GeV line in the γ h final state. 

operator final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μνχ W 

a 
μν H † t a H γ h 1 

6 
〈 v 〉 2 s 2 

�6 sin 2 θW (1 − m 2 h 
s 

) 
2 

(1 + 

2 M 2 

s 
) 

( 680 GeV 
�

) 
6 

( 671 GeV 
�

) 
6 

Zh 
1 
6 

〈 v 〉 2 s 2 
�6 cos 2 θW [ β2 

Zh 
(1 + 

2 M 2 

s 
) 

+ 

m 2 Z 
4 s 

(1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

(25 − 14 m 2 Z 
s 

− 14 m 2 h 
s 

+ 

10 m 2 Z m 
2 
h 

s 2 
+ 

m 4 h 
s 2 

+ 

m 4 Z 
s 2 

)] 

6.629[ γ h ] 

W 

+ W 

−
〈 v 〉 2 s 2 

�6 { 1 
3 

(1 + 

2 M 2 

s 
)(1 − m 2 w 

s 
) − 6 m 2 W M 

2 

s 2 

+ 

1 
8 

(1 − 4 m 2 W 
s 

)(1 + 

8 M 2 

s 
) ϒ} 

23.25[ γ h ] 

∑ 

f f f 
1 

24 

〈 v 〉 2 m 2 W s 
�6 (1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fW 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fW 

− 1)] 

12.15[ γ h ] 

χγ μνχ ˜ W 

a 
μν H † t a H γ h 1 

6 
〈 v 〉 2 s 2 

�6 sin 2 θW (1 − m 2 h 
s 

) 
2 

(1 + 

2 M 2 

s 
) 

( 586 GeV 
�

) 
6 

( 671 GeV 
�

) 
6 

Zh 
1 
6 

〈 v 〉 2 s 2 
�6 cos 2 θW [ β2 

Zh 
(1 + 

2 M 2 

s 
) 

+ 

m 2 Z 
4 s 

(1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

(25 − 14 m 2 Z 
s 

− 14 m 2 h 
s 

+ 

10 m 2 Z m 
2 
h 

s 2 
+ 

m 4 h 
s 2 

+ 

m 4 Z 
s 2 

)] 

2.061[ γ h ] 

W 

+ W 

−
〈 v 〉 2 s 2 

�6 { 1 
3 

(1 + 

2 M 2 

s 
)(1 − m 2 w 

s 
) + 

6 m 2 W M 
2 

s 2 

+ 

1 
8 

(1 − 4 m 2 W 
s 

)(1 + 

4 M 2 

s 
) ϒ} 

14.36[ γ h ] 

∑ 

f f f 
1 

24 

〈 v 〉 2 m 2 W s 
�6 (1 + 

4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fW 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fW 

− 1)] 

[ σ v ] NR ∝ v 2 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] 

ϒ = 1 + 

m 2 W 
3 s 

(12 + 2 (1 − m 2 Z 
s 

) 
−1 

(13 + 12 
m 2 W 

s 
) + (1 − m 2 Z 

s 
) 
−2 

(1 + 

23 m 2 W 
s 

+ 

12 m 4 W 
s 2 

)) 

A fW = 2 Q f sin 2 θW m 

2 
Z /s ∓ 1 / 2, with − ( + ) for neutrinos and up-type quarks (electrons and down-type quarks). 
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Table 20 

Results for dimension-5 tensor operators for fermionic-WIMP annihilation. Indicated values of � for 
h 2 and [ σ v ] NR assume M = 155 GeV. 

Operator Final state �( s , M , m 1 , m 2 ) 
h 2 / 0.11 
[ σ v] N R 

10 −27 cm 3 s −1 

χγ μνχ B μν Zh 2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW (1 + 

8 M 2 

s 
)( β2 

Zh 
+ 

12 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

( 8418 GeV 
�

) 
2 

( 9365 GeV 
�

) 
2 

W 

+ W 

−
2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW (1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×(1 − 4 m 2 W 
s 

)(1 + 

23 m 2 W 
s 

+ 

12 m 4 W 
s 2 

) 

0.651[ Zh ] 

∑ 

f f f 
2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW (1 + 

8 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fB 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fB 

− 1)] 

24.01[ Zh ] 

χγ μνχ ˜ B μν Zh 2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW [(1 − 4 M 2 

s 
)( β2 

Zh 
+ 

12 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

( 837 GeV 
�

) 
2 

[ σ v ] NR ∝ v 2 

W 

+ W 

−
2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW (1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×(1 − 4 m 2 W 
s 

)(1 + 

23 m 2 W 
s 

+ 

12 m 4 W 
s 2 

) 

[ σ v ] NR ∝ v 2 

∑ 

f f f 
2 
3 

m 2 Z s 

〈 v 〉 2 �2 sin 2 θW (1 − 4 M 2 

s 
) (1 − m 2 Z 

s 
) 
−2 

×∑ 

f [4 A 
2 
fB 

+ 1 + 

4 m 2 f 
s 

(2 A 2 
fB 

− 1)] 

[ σ v ] NR ∝ v 2 

β2 
Zh 

= [1 − ( m h + m Z ) 
2 /s][1 − ( m h − m Z ) 

2 /s] 

A fB = 2 Q f (1 − m 

2 
W /s) ∓ 1 / 2, with − ( + ) for neutrinos and up-type quarks (electrons and down-type quarks). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strength of the photon line(s) and that of the continuum radiation is

fixed. If a photon line is observed and there is no obvious excess of

the continuum radiation, such relations can be immediately used to

put limits on potential operators responsible for dark-matter anni-

hilation. For example, assuming the 130 GeV photon line is indeed a

dark-matter signal, the constraints from the continuum radiation on

the annihilation cross section of various possible SM final states have

been studied in Ref. [ 16 ]. For dark-matter annihilation channels to

ZZ and W 

+ W 

−, the most conservative estimate constrain their rate

to be less then about 100 × σγ . At the same time, an estimate tak-

ing into account the shape of the distribution gives a much stronger

limit of about σ WW , ZZ < 10 × σγ . For example, the φ† φWW oper-

ators, with σ WW 

∼ 20 σγ , is already interesting in this regard. Ref.

[ 16 ] also gives limits on annihilation channels directly into a pair of

SM fermions. The strongest limit is on annihilation to b b , σb b < 10 σγ ,

with a similar constraint on τ + τ−. The operator χγ μνχW 

a 
μν H 

† t a H 

could already have interesting limits in this case. 

Since most of our operators contain at least two SM bosons, its

scattering with nuclei can only proceed through one-loop processes.

Therefore, the reach from direct detection is limited. The exceptions

are the dimension-7 operators in Tables 18 and 19 and the dimension-

5 operators in Table 20 . In fact, substituting both Higgs fields with

their vev ’ s, these are directly related to the dark-matter dipole opera-

tors studied in Refs. [ 17 , 18 ]. In this case, direct detection experiments

already set strong limit on the size of such operators. The limit on

operator containing ˜ B μν is much stronger. However, even for the op-

erator containing B μν , direct detection limits imply that � is larger

than what is required for producing the appropriate relic abundance

of dark matter. For it to be a viable DM candidate species, additional

annihilation channels would be necessary. 

Weak-scale dark matter can be produced directly at the LHC. There

have been experimental searches [ 19 –22 ] following the “Maverick”

effective field theory approach [ 23 –30 ]. These references assume an

effective field theory where the dark matter couples to quarks. In this

paper we have assumed that the DM sector couples to the SM sector

via electroweak gauge bosons and Higgs. The calculation in this case

involves different processes than in previous analyses where it was

assumed that the DM couples to the SM sector through quarks. For

the couplings explored in this paper are two basic channels (see Fig.

10 ). The first is a 2 → 3 process mediated by an off-shell SM boson,

 

 

 

with another boson in the final state. For example, this could pro-

duce mono-photon + missing transverse energy (MET) and mono-

Z + MET events. The ratio of the cross sections for these processes

are set for a given operator. The second channel, vector boson fusion,

starts with 2 SM gauge bosons radiating from the incoming quarks,

resulting j + MET or jj + MET events. Studies have been carried out

in both the mono- Z / mono- γ [ 31 ] and the vector-boson fusion [ 13 ]

channels. Both channels yield interesting limits. At the same time,

they have only focused on a limited set of operators and final states. 

5. Lines 

In this section we discuss the indirect detection signal without the

assumption of M = 130 GeV. We first note that there are two simple

limits, M < M Z / 2, and M � m h . In the first case the total annihilation

cross section is only into the γ γ final state. In the second case, the total

annihilation cross section is the sum of cross sections into all possible

final states, γ γ + ···. At the same time, in the limit M � m h , we

can ignore the masses of final-state particles. Therefore, the relative

signal strengths of different annihilation channels are independent of

M in this limit. 

In both limiting cases and in the non-relativistic limit v → 0, 

[ σT OT AL v ] N R = 

1 

32 π M 

2 
�T OT AL 

(
s = 4 M 

2 ; M; m 1 ; m 2 

)
[
σγ i v 

]
N R 

= 

1 

32 π M 

2 
�γ i 

(
s = 4 M 

2 ; M; 0; m i 

)

= [ σ v ] T OT AL 

�γ i 

(
s = 4 M 

2 ; M; 0; m i 

)
�T OT AL 

(
s = 4 M 

2 ; M; m 1 ; m 2 

) . 
(30)

We have assumed that the annihilation is pure s wave. If it is

pure p wave then the lines from clusters will be very weak be-

cause of the small value of v 2 . To have Ωh 2 = 0.11 requires

[ σ v ] TOTAL � (2.9–4.0) × 10 −9 GeV 

−2 for M between 10 GeV and

4 TeV for either complex scalars or Dirac fermions, and using

10 −27 cm 

3 s −1 � 8.564 × 10 −11 GeV 

−2 , then 

[
σγ i v 

]
N R 

10 −27 cm 

3 s −1 
� 40 

�γ i 

(
s = 4 M 

2 ; M; 0; m i 

)
�T OT AL 

(
s = 4 M 

2 ; M; 0; 0 
) , (31)

where i = γ , Z , or h . 

If M < M Z / 2, then the only available di-boson annihilation channel

is into γ γ . Another possible annihilation channel in this case is into

f f , where f includes all SM fermions except the top quark. Note that
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Table 21 

The cross section for γ -ray producing processes assuming � is the value necessary for scalar / pseudoscalar and tensor WIMP operators to result in 
h 2 = 0.11 in the dark-matter 

species. For M < m Z / 2, for all operators that have nonvanishing branching to two photons, [ σγγ v ] NR / 10 −27 cm 

3 s −1 � 40, and that is the only γ -ray producing process. For the γ γ

final state the photon energy is M , for the γ Z final state the photon energy is M − m 

2 
Z / 4 M ( M = 144 GeV produces a 130 GeV line), and for the γ h final state the photon energy is 

M − m 

2 
h / 4 M ( M = 155 GeV produces a 130 GeV line). 

Operator 
[ σγγ v] 

N R 

10 −27 cm 3 s −1 

[ σγ Z v] 
N R 

10 −27 cm 3 s −1 

[ σγ h v] 
N R 

10 −27 cm 3 s −1 

M ≤ m Z / 2 M = 130 GeV M � m h M = 144 GeV M � m h M = 155 GeV M � m h 

�−2 φ† φB μv B 
μv 

�−2 φ† φB μv ̃  B μv 

�−3 χ iγ 5 χ B μv B 
μv 

�−3 χ iγ 5 χ B μv ̃  B μv 

40 27–28 24 11–12 15 0 0 

�−2 φ† φW 

a 
μv W 

a μv 

�−2 φ† φW 

a 
μv 

˜ W 

a μv 

�−3 χ iγ 5 χW 

a 
μv W 

a μv 

�−3 χ iγ 5 χW 

a 
μv 

˜ W 

a μv 

40 1.3–1.4 0.7 6 5 0 0 

�−3 χγ μv χ B μv Y H H 
† H 

0 0 0 0 0 12 31 

�−3 χγ μv χ ˜ B μv Y H H 
† H 

34 

�−3 χγ μv χW 

a 
μv H 

† t a H 

0 0 0 0 0 0.9–1.2 2–4 

�−3 χγ μv χ ˜ W 

a 
μv H 

† t a H 

Table 22 

The cross section for γ -ray producing processes assuming � is the value necessary for vector WIMP operators to result in 
h 2 = 0.11 in the dark-matter species. For the γ Z final 

state the photon energy is M − m 

2 
Z / 4 M ( M = 144 GeV produces a 130 GeV line), and for the γ h final state the photon energy is M − m 

2 
h / 4 M ( M = 155 GeV produces a 130 GeV line). 

Operator 
[ σγγ v] 

N R 

10 −27 cm 3 s −1 

[ σγ Z v] 
N R 

10 −27 cm 3 s −1 

[ σγ h v] 
N R 

10 −27 cm 3 s −1 

M ≤ m Z / 2 M = 130 GeV M � m h M = 144 GeV M � m h M = 155 GeV M � m h 

�−4 ( φ† ∂ μφ + h.c. ) ×
i( B λμY H H 

† D 

λ H − h.c. ) 

0 0 0 20–29 21–25 0 0 

�−4 ( φ† ∂ μφ + h.c. ) ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 

�−4 ( φ† ∂ μφ + h.c. ) ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 

0 0 0 1–3 1–2 0 0 

�−4 ( φ† ∂ μφ + h.c. ) ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 

�−4 ( χγ μχ ×
i( B λμY H H 

† D 

λ H + h.c. ) 

0 0 0 0 0 33–34 31 

�−4 ( χγ μχ ×
i( ̃ B λμY H H 

† D 

λ H + h.c. ) 

�−4 ( χγ μχ ×
i( W 

a 
λμ H † t a D 

λ H + h.c. ) 

0 0 0 0 0 2–3 3.1 

�−4 ( χγ μχ ×
i( ̃  W 

a 
λμ H † t a D 

λ H + h.c. ) 

�−4 ( χγ μχ ×
i( B λμY H H 

† D 

λ H − h.c. ) 

0 0 0 35–36 31 0 0 

�−4 ( χγ μχ ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 

�−4 ( χγ μχ ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 

0 0 0 4–6 3.1 0 0 

�−4 ( χγ μχ ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 

�−4 ( χγ μ5 χ ×
i( B λμY H H 

† D 

λ H − h.c. ) 

0 0 0 19–25 ∝ m 

2 
Z / 4 M 

2 0 0 

�−4 ( χγ μ5 χ ×
i( ̃ B λμY H H 

† D 

λ H − h.c. ) 

�−4 ( χγ μ5 χ ×
i( W 

a 
λμ H † t a D 

λ H − h.c. ) 

0 0 0 1–2 ∝ m 

2 
Z / 4 M 

2 0 0 

�−4 ( χγ μ5 χ ×
i( ̃  W 

a 
λμ H † t a D 

λ H − h.c. ) 

a

o

n

o  

i

4

D

t tree level and to the leading order in 1 / �, the operators under 

ur consideration can mediate annihilation either into γ γ or f f , but 

ot both. Therefore, if the γ γ final state is available, the the ratio 

f the �’ s in Eq. ( 31 ) is unity and [ σγγ v ] NR / 10 −27 cm 

3 s −1 � 40

ndependent of the form of the operator (for M between 10 GeV and 

 TeV the coefficient is between 34 and 46 for complex scalars and 

irac fermions, with almost all of the difference due to the mass). 

For intermediate masses, the relative signal strengths of photon 
lines would depend on the dark-matter mass M . In Tables 21 and 22 , 

we collect results for the two limiting cases, as well as an example of 

an intermediate dark-matter mass (we choose M = 130 GeV). We see 

that the number of photon lines and their relative strengths provide 

sensitive diagnostic handles on the dynamics of dark-matter annihi- 

lation since different operators correspond to different numbers of 

photon lines and different values of [ σγγ v ] NR / 10 −27 cm 

3 s −1 . 

Since there is an uncertainty of the WIMP density at the galactic 
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Fig. 9. Final-state dimension-4 diagrams of the form W 

a 
μν H † t a H that couple to tensor WIMP factors. We define P = p + p ′ . The vertex factors [ Zf f ], [ γ f f ], [ ZWW ], and [ γ WW ] 

are defined in the text. 

Fig. 10. Feynman diagrams for production of a WIMP pair and a monophoton / mono- 

W / mono- Z (left diagram) or WIMP pair and a jet (right diagram). The WIMP pair would 

not be detected; its existence would be inferred by the missing transverse energy. In 

the right diagram (vector-boson fusion) at least one of the final-state quarks must 

produce a hard jet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

center (and the rate is proportional to the square of the density!), one

might argue that any operator with s -wave annihilation might give a

detectable signal. 

We stress that in our case where the DM couples to electroweak

gauge and Higgs bosons, the gamma-ray lines and the gamma-ray

continuum play a similar role to the role that direct detection plays

in the case that DM couples to quarks. 

6. Conclusions 

In this paper we considered the scenario in which dark matter

dominantly annihilates into Standard Model di-boson final states,

including at least one SM gauge boson. There are many possible ways

of realizing this scenario. We choose to take the effective field theory

approach in which unknown new physics has been integrated out.

In the resulting EFT, we have operators of the form �4 − d J SM 

· J DM 

,

where d is the dimension of operator J SM 

· J DM 

. The dependence of the

unknown new physics is through a single suppression scale �. 

We considered both scalar and fermionic dark-matter candidates,

which we chose to be a Standard Model singlet. We presented a com-

plete list of effective operators up to dimension 8, consistent with all

of the Standard Model gauge symmetries. Since a light Higgs boson

has already been discovered, we have included it in the low-energy

effective field theory as well, and used the formulation in which the

Standard Model electroweak gauge symmetries are linearly realized.

Since each operator we considered is gauge invariant and Hermitian,

it does not have to be related to other operators. In particular, any

single operator we considered could give the dominant contribution
to dark-matter annihilation. This is the simplifying assumption we

made in our phenomenological analysis. 

For each of the operators in this list we presented detailed calcu-

lations of the annihilation cross section into different possible final

states, including γ γ , γ Z , γ h , ZZ , W 

+ W 

−, and Zh . We then computed

the scale � necessary to produce the correct dark-matter relic abun-

dance. Motivated by the possible evidence of an 130 GeV photon line

in the Fermi data, we also calculated the scale necessary to produce

such a signal. We found several examples in which both the photon

line signal and the thermal relic abundance can be simultaneously

produced by a single effective operator. This could offer a compelling

simple explanation if the Fermi photon line is confirmed. In many

cases, such operators also predict the existence of additional photon

lines and other correlated indirect-detection signals, possibly provid-

ing further confirmation of the dark-matter signal and information

about the relevant operator. 

In general, even without the assumption about the 130 GeV photon

line signal, the study of this set of operators reveals many interesting

patterns of indirect-detection signals. In this paper, as a first step, we

presented the relative photon line signal strengths as a function of the

dark-matter mass. We found that the relative strengths can be very

different for different operators. Such differences can yield valuable

information about the underlying dark-matter annihilation process

if a signal is observed. Connections can also be made with direct

detection and LHC searches. We will leave this to a future study. 
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