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Abstract

We report measurements of the action associated with center vortices inSU(2) pure lattice gauge theory. In the lattice units t
excess of the action on the plaquettes belonging to the vortex is approximately a constant, independent on the latticea.
Therefore, the action of the center vortex is of orderA/a2, whereA is its area. Since the areaA is known to scale in the
physical units, the measurements imply that the suppression due to the surface action is balanced, or fine tuned to t
factor which is to be an exponential ofA/a2.
 2003 Published by Elsevier B.V.
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1. Monopoles and vortices

Lattice measurements allow for a direct study
field fluctuations in the vacuum state of Yang–Mi
theories. Generically, the probability to find a fie
configuration is a product of the entropy and act
factors:

(1)P = exp(S) · exp(−S),

whereS is the action and the entropy exp(S) is the
number of ways in which the field configuration c
be realized. Let us mention two simple examples
illustrate (1). In case of instantons, the (classical)
tion isSinst = 8π2/g2 while the entropy is provided b
counting small (quantum) fluctuations in the instan
background. Another example is the zero-point v
uum fluctuations. They are dominated by the ph
space, or by the entropy.
0370-2693  2003 Published by Elsevier B.V.
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These two examples demonstrate relevance to v
ous fluctuations of two distinct scales, that is of the
tice spacinga andΛ−1

QCD. The latter is in physical unit
and does not depend on the lattice. The lattice spa
serves as an ultraviolet cutoff. In particular the aver
action density〈s〉 is ultraviolet divergent,

(2)〈s〉 ∼ (
N2

c − 1
)
a−4,

whereNc is the number of colors.1 The ultraviolet
divergence,a−4, is due to the zero-point fluctuation
and is well known in field theory. On the other han
the quasi-classical fluctuations, like instantons,
driven to the infrared scale of orderΛ−1

QCD.
On the lattice, there were also observed fluctuati

which are defined as geometrical objects, tha
closed worldlines and closed surfaces. We mean

1 From now on we will consider only theSU(2) case,Nc = 2.
se.
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monopoles and center vortices, for review see, e
Ref. [1]. What is common for the monopoles a
vortices is that they are defined not within the origin
theory but within a projected theory. In case
monopoles one projects the originalSU(2) to U(1)

theory and in case of the P-vortices—toZ(2) gauge
theory. In more detail, the monopoles and P-vorti
are defined as follows.2 First, one fixes the maxima
Abelian gauge by maximizing the functional:

(3)RAbel =
∑

x,µ

Tr
[
Ux,µσ 3U+

x,µσ 3],

whereUx,µ are link matrices. Next, Abelian projectio
is made by replacing

Ux,µ → UAbel
x,µ = ζx,µ

|ζx,µ| ,

(4)ζx,µ = Tr
[(

1+ σ 3)Ux,µ

]
.

Then the monopoles are defined as the topolog
defects inUAbel

x,µ fields. By construction they form
closed worldlines on the dual lattice.

Since the functional (3) leaves theU(1) gauge
freedom unfixed one can fix the gauge further
maximizing

(5)Rcenter=
∑

x,µ

(
ReUAbel

x,µ

)2

with respect toU(1) gauge rotations. Then the max
mal center projection amounts to replacing

(6)UAbel
x,µ → Zx,µ = signReUAbel

x,µ .

Plaquettes constructed in a standard way fromZx,µ

have values±1. Finally, P-vortices are defined a
union of all the negative plaquettes and are clo
surfaces on the dual lattice.

Knowing only definitions of these geometric
objects, lines and surfaces, it is not easy to figure
what kind of physics can be revealed by their stud
However, there emerged phenomenology indica
that there are some physical objects detected thro
the projections. “Physical” in the present conte
means first of all that the area, (respectively, leng
of the percolating vortices (monopoles) is in physi

2 Throughout this Letter we consider only the case of so-ca
indirect maximal center gauge, see, e.g., Ref. [11].
units, see, e.g., [2,3]:

(7)Avort = 6ρvort · V4, ρvort ≈ 4 (fm)−2,

(8)Lmon= 4ρmon · V4, ρmon≈ 6 (fm)−3,

whereV4 = a4L4 is the volume of the lattice.
Note that at this stage we do not have yet a

information on the action and entropy factors enter
Eq. (1) and one is free to speculate theoretically ab
them. The common viewpoint is that there are obje
of the size of orderΛ−1

QCD behind mathematically
thin lines [4] or vortices [5] defined in the projecte
theories. The thin geometrical objects then mark th
bulky structures and their position within the “thick
fluctuations is more or less accidental. The o
indirect evidence in favor of the physical objects be
thin is that both monopoles and vortices genera
linear piece in the heavy quark potential even at sh
distances [6].

On the other hand, one can try to measure the
tion and even the entropy associated with the geom
rical objects directly. Such measurements have b
performed mostly for the monopoles, see [7,8], a
the results can be interpreted only as fine tuning
Namely, both the action and the entropy are ultravio
divergent3 but cancel each other to orderΛQCD:

(9)

|Smon− Smon| =
∣∣(smon− smon)

∣∣ · L/a ∼ ΛQCD · L,

where L is the length of the monopole trajector
Moreover the action associated with the monopole
measured on the lattice (see Ref. [7] for details) a
turns out to be ultraviolet divergent. The entropy fac
is then easy to calculate,smon = ln7 and this factor
corresponds to the number of trajectories of the sa
lengthL.

In this Letter we extend the exploration of th
anatomy of the geometrically defined fluctuations
the case of vortices. Namely, we study the act
density both on the plaquettes belonging to the vo
and on the adjacent plaquettes as a function of
lattice spacinga. Our main result is that the exce

3 A caveat here is that we are interpreting the measurem
on the presently available lattices only and consider appear
of negative powers of the lattice spacinga as a sign of ultraviolet
divergence. The actual limita → 0 can be different if the observe
pattern changes at smallera.
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ex
of the action density on the vortex is independent
the lattice spacing if expressed in the lattice units:

(10)

〈Svort〉 − 〈Svac〉 = 0.540± 0.004 (lattice units),

where〈Svort〉 is the average value of the non-Abeli
action density on the plaquettes belonging to
vortex and〈Svac〉 is the plaquette action averaged ov
the whole lattice. Note that the action excess fo
particular value ofβ = 2.4 was first measured i
Refs. [13,14] and we agree with these results. O
main new point is the measurement of the action
the vortices as function of the lattice spacinga. We
also calculate the excess of the action on the plaqu
which are nearest to the P-vortex worldsheet. It tu
out that this quantity is more or less consistent w
zero, see next section.

2. Numerical results

We have performed our calculations in pureSU(2)

lattice gauge theory for 2.35 � β � 2.6. The lattice
spacinga is fixed using the standard values [10] of t
lattice string tension, which in physical units is

√
σ =

440 MeV. At each value ofβ we have considered 2
statistically independent configurations generated
symmetricL4 lattices. The lattice size wasL = 16 at
β = 2.35,L = 24 forβ = 2.4, 2.45, 2.5 andL = 28 at
β = 2.55, 2.6. The indirect maximal center gauge [1
was employed, and the definition of the gauge is gi
above.

To fix the maximal Abelian and the maximal ce
ter gauges we have used the simulated annealin
gorithm [12]. For maximal Abelian gauge 20 gau
copies of eachSU(2) field configuration were consid
ered and the simulated annealing algorithm was
plied to each copy. ForU(1) gauge fixing only the con
figuration which corresponds to the maximal value
the functional (3) was considered. Furthermore, o
one gauge copy of the Abelian configuration was ta
into account for fixing maximal center gauge, since
checked that P-vortex density varies by less than
for variousU(1) gauge copies.

First, we discuss the P-vortex density,ρ = 〈NPV/

(6L4a2)〉, where NPV is the number of plaquette
occupied by P-vortices. The dependence ofρ on the
lattice spacing is shown on the Fig. 1. Note that
Fig. 1. The density of P-vortices vs. lattice spacing.

quantities are in physical units. It is clearly seen thaρ

tends to the limit (7) asa → 0.
Next we consider the average action density,SPV,

on the plaquettes dual to those forming P-vorti
(we refer to these plaquettes as ‘P-vortex plaquet
below). It occurs that it is much larger then t
average plaquette action,Svac = β(1 − 〈TrUP 〉/2).
The dependence of the differenceSPV − Svac on the
lattice spacing is shown on Fig. 2 by circles.

In order to probe the internal structure of t
vortices we measured the average action density
P-vortex worldsheet. In more details, we have stud
two types of the nearest plaquettes: the first ty
‘side plaquettes’, lie in the same plane as the P-vo
plaquette and have a common link with it; the seco
type, ‘closest plaquettes’, have a common link w
the P-vortex plaquette, but are perpendicular to it. T
two types of the plaquettes are depicted in Fig. 3. T
corresponding excess of the action is shown on Fi
by the up and down triangles.

Moreover, as first observed in [13,14], the vortic
and monopoles are strongly correlated with each o
for β = 2.4. We confirm the strong correlation o
the monopoles and vortices for other values ofβ .
Moreover, we measure the fraction ofSPV which
is due to the monopoles. We defineSmon

PV as the
average action density on the P-vortex plaque
which have a common link with a monopole trajecto
It turns out that the quantitySmon

PV − Svac (shown on
Fig. 2 by squares) is even larger thanSPV − Svac
implying that indeed a large fraction of the vort
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Fig. 2. The excess of the action on and around P-vortices.

Fig. 3. Two types of the nearest to P-vortex plaquettes (see the

action is due to the Abelian monopoles. If we exclu
the P-vortex plaquettes which touch the monop
trajectory, the corresponding average action is lo
thanSPV (diamonds on the Fig. 2).

3. Discussions

We see that at presently available lattices
vortices appear as infinitely thin objects with no si
of any internal structure.4 Our measurements allow t

4 See, however, footnote 3 for a reservation.
conclude that the vortex thickness is

(11)Rvort � 0.06 fm,

where 0.06 fm is the smallest lattice spacing used
our simulations. Note that a similar estimate of t
monopole size was obtained in [7].

Taken at face value, the lattice data imply th
we are dealing with infinitely thin (and in this sen
“fundamental”) strings which populate the vacuu
Assuming that at the ultraviolet scale the surfa
can be considered independent of the rest of
vacuum, the ultraviolet divergence of the action is
be canceled by a corresponding entropy factor:

(12)

|Svort − Svort| = |svort − svort| · A/a2 ∼ Λ2
QCD · A,

similar to the case of the monopoles [9].
It is worth emphasizing that we define thickne

of the vortex in terms of the distribution of the no
Abelian action. One can define the vortex thickn
in terms of the flux carried by the vortex. Then t
vortex seems not to be localized to the cutoff sca
The corresponding discussion can be found in Refs
11].

From the theoretical point of view, interpretatio
of the results obtained represents a challenge. Ind
if one introduces random surfaces on the lattice w
action proportional to the area they appear unsta
with respect to the decay into branched polym
(see, e.g., Ref. [15] for review). In other words, t
model of random surfaces collapses in fact to
theory of single non-interacting scalar particle. N
that this remark applies to the random surfaces w
limited genus. The genus of the percolating P-vortic
on the other hand, grows with the lattice volum
However, this growth is associated with the distan
of the orderΛ−1

QCD [16] while the instability mentioned
above develops at the ultraviolet scale, that is at
scale of the lattice spacinga.

The nearest extension of the bosonic string is
inclusion of an extrinsic curvature term [17]. Name
adding the curvature term one can get a fine tu
surfaces. Moreover, such a model is successful
phenomenological statistical description of strings
four dimensions5 [18].

5 Consideration of bosonic strings with extrinsic curvature a
model for P-vortices can be found in Ref. [19].
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A key to understanding the structure of the th
vortices could be provided by the observation of
strong correlation between the vortices and monop
(which are originally defined as independent geom
rical objects). In particular, basing on the fact that
monopole-associated plaquettes are “hotter” than
average (see Section 2) one is tempted to assume
the monopoles are associated with the ‘creases’ o
P-vortex worldsheet and correspond to the extrin
curvature term in the P-vortex action.

To summarize, we have observed surfaces wh
thickness is smaller than the presently available re
lution, a and whose area scales in the physical un
Moreover, the thickness is defined in terms of the o
inal non-Abelian action. The coexistence of the t
scales, that isa andΛQCD can be called fine tuning
A remarkable feature of the surfaces is that they
associated also with the monopole trajectories. In t
the monopoles condense and in this sense corres
to the tachyonic mode in the field-theoretical la
guage. Therefore, we can say that there are indicat
that in case of the four-dimensional gluodynamics
tachyonic mode is confined to a two-dimensional s
face.
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