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a b s t r a c t

In 1934 Malmheden [16] discovered an elegant geometric

algorithm for solving the Dirichlet problem in a ball. Although

his result was rediscovered independently by Duffin (1957) [8] 23

years later, it still does not seem to be widely known. In this paper

we return to Malmheden’s theorem, give an alternative proof of

the result that allows generalization to polyharmonic functions

and, also, discuss applications of his theorem to geometric

properties of harmonic measures in balls in Rn.

& 2010 Elsevier GmbH. All rights reserved.
1. Introduction

In 1934, Malmheden, a doctoral student of Riesz in Lund, proved that the value of a harmonic
function u at any point P in a disk, or in a ball in Rn, nZ3, can be computed from its values on the
boundary according to the following algorithm. Take an arbitrary chord L through P; calculate the
value at P of the linear function ‘ on L that interpolates the values of u at the endpoints of chord L;
and, finally, calculate the average of the values ‘ðPÞ over all chords L through P (cf. Theorem 2.1 for
the precise statement), [16], also see [3–7].

To fix the ideas, if we denote, say in R2, by AðyÞ the value at P obtained by linearly interpolating
the boundary values of a harmonic function u in the disk at the endpoints of the chord through P

making an angle y with the positive direction of the x-axis, Malmheden’s theorem yields that
uðPÞ ¼ ð1=2pÞ

R 2p
0 AðyÞdy. It follows then from Malmheden’s theorem that uðPÞrmaxyAðyÞ. In [4,5]

Barta attempted to extend the latter inequality to all convex, or even star-shaped regions. In [20],
Weinberger showed that no such inequality, even allowing a multiplicative factor on the right, can
bH. All rights reserved.
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hold at all points of a convex region unless the region is a disk. The analogous assertion is true in
higher dimensions. Thus, the converse to Malmheden’s theorem also holds; i.e., the assertion of his
theorem is correct only if the domain is a ball. (Note, in passing, that the complex-analytic version of
Malmheden’s theorem is well-known under the name of Bochner–Martinelli formula. It provides
holomorphic extensions of analytic functions from the boundaries of arbitrary smoothly bounded
domains in Cn and is obtained by averaging one-dimensional Cauchy integral representations—cf.,
e.g., [11].)

With this paper we hope to return the beautiful result of Malmheden to mathematical folklore
since it appears that the result is not widely known. Moreover, we present an alternative approach
to Malmheden’s theorem that allows us to generalize the result to the polyharmonic functions,
cf. [3,6,7]. We also present applications of Malmheden’s theorem yielding nice geometric properties
of the harmonic measure in balls in Rn.

Regarding the history of the result, it must be mentioned that Duffin [8] has rediscovered
Malmheden’s theorem more than two decades later. His proof, although obtained independently, is
essentially that of [16]. A slightly different approach to a two-dimensional version of Malmheden’s
theorem was rediscovered in [18,19], although the authors apparently did not know about the
papers [16,8]. Their approach is based on an interpretation of the Poisson integral representation due
to Schwarz [1, p. 170]. (Refs. [18,19] were kindly pointed out to us by the referee.) The referee also
pointed out yet another approach to Malmheden’s theorem via Schwarz’ idea that is based on
Kelvin’s transform.

The paper is organized as follows. In Sections 2 and 3 we give two different proofs of the
Malmheden theorem and its generalization to k-dimensional cross-sections of the ball passing
through a given point P. The first proof in Section 2 is essentially Malmheden’s original proof. The
second proof seems to be new and is the crux for further generalizations of Malmheden’s procedure
to polyharmonic functions. In Section 4 we show the converse, i.e., that balls are the only domains in
Rn for which Malmheden’s theorem holds. In Section 5 we discuss Malmheden’s theorem in relation
to some geometric properties of harmonic measure in the ball. In Section 6 we extend Malmheden’s
theorem to polyharmonic functions in Rn. In 2 dimensions this was done by Barta, cf. [3,6,7]; his
proof is quite different from ours. A different converse theorem, assuming that Malmheden’s
algorithm only reproduces harmonic functions at one point and, under additional condition of
central symmetry, implying that the domain is a ball is given in Section 7. We finish with some
additional remarks in Section 8.
2. A proof of Malmheden’s theorem

Let us begin in a more general setting. Let O be a convex open set in Rn with boundary G. Let f be a
continuous function on G, P 2 O. Draw a chord L through P intersecting G in exactly two points Q1,
Q2. Denote by f1, f2 the values of f at Q1, Q2, respectively. Interpolate the values f1, f2 by the unique
linear function on L that we denote by ‘. Clearly, ‘ is a continuous function of P and L. Holding P fixed
let u(P) denote the average of ‘ðPÞ over all lines L. u(P) is a continuous function in O. Note that if f is a
restriction of a linear function onto G, then f=u in O.

Clearly, uðPÞ-f ðQ0Þ when P-Q0, Q0 2 G.

Theorem 2.1 (Malmheden [16], Barta [8]). If O is a ball in Rn, then u is harmonic in O, and hence solves

the Dirichlet problem (for the Laplacian) in O with data f.

Proof. In view of the preceding remarks it remains to show that u is harmonic. Let L, P, Q1, Q2 be as
above, r1 ¼ jPQ1j, r2 ¼ jPQ2j. Then

‘ðPÞ ¼
r1f2þr2f1

r1þr2
: ð2:1Þ
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First, assume n=2. Let y be the (polar) angle that the chord L makes with the positive direction of the
x-axis, so r1ðyþpÞ ¼ r2ðyÞ and f1ðyþpÞ ¼ f2ðyÞ. Then, we have

uðPÞ ¼
1

2p

Z 2p

0
‘ðP,yÞdy¼

1

p

Z 2p

0

r2f1

r1þr2
dy: ð2:2Þ

Let j be the angle between the (inner) normal n to G at Q1 and the chord L. Then, comparing

infinitesimal arclengths on G and the circle of radius r1, centered at P, we observe that

r1 dy¼ cosjds, where ds is the arclength on G. Thus, from (2.2) it follows that

uðPÞ ¼
1

p

Z c

0

cosj
r1

f1 ds�
1

p

Z c

0

cosj
r1þr2

f1 ds, ð2:3Þ

where c is the length of G.

The first term in (2.3) is harmonic since cosj=r1 is nothing else but ð@=@nQ1
ÞlogjP�Q1j, so the first

integral is the ‘‘double layer’’ potential of f1 (cf. [13]). Finally, we use the hypothesis that G is a circle

of radius R. Then r1þr2 ¼ 2Rcosj, and the second integral is simply a constant, hence u is harmonic

in O.

In higher dimensions, the argument is almost identical. For the sake of clarity of notation, we take

n=3. Then, (2.2) and (2.3) become

uðPÞ ¼
1

2p

Z
G

r2f1

r1þr2
dy, ð2:20Þ

and, hence,

uðPÞ ¼
1

2p

Z
G

cosj
r2

1

f1 dS�
1

2p

Z
G

cosj
r1þr2

f1

r1
dS: ð2:30Þ

Here, dS is the surface area measure on G and dy is the solid angle measure at P. Once again, the first

integral is the double layer potential of f1, while when O is a ball of radius R, r1þr2 ¼ 2Rcosj, so the

second integral becomes a ‘‘single-layer’’ potential of f1, harmonic in O.

(Of course, (2.30) and (2.3) correspond to very well known representations of solutions of the

Dirichlet problem in the ball as sums of potentials of double and single layers in dimensions 3 and

higher, and as (up to an additive constant) a potential of a double layer in the disk (cf. [13,14]).) &

Let us sketch here a different proof of Theorem 2.1 that will allow us in Section 6 to generalize
Malmheden’s algorithm to biharmonic functions.

2nd Proof of Theorem 2.1. It is more convenient to translate our coordinate system so the origin is
now at P while O¼ fx 2 Rn : jx�cjo1g, where c : jcjo1 is the center of the ball. We wish to show
that for any homogeneous harmonic polynomial H in @O, Malmheden’s procedure produces the
number H(0). Clearly, this will imply the result since the restrictions of harmonic polynomials to the
sphere @O are dense in Cð@OÞ, while linearity of Malmheden’s algorithm yields the result for all
harmonic polynomials as long as it holds for homogeneous polynomials. Finally, since Malmheden’s
theorem obviously holds for linear polynomials we may assume that m :¼ deg H41, and need to
verify that the algorithm produces the number 0=H(P). Fix e a unit vector in Rn, and let L=Le be the
line through the origin parallel to e. Let t be the running coordinate on Le. Le meets @O at two points
Q1, Q2 where t is equal to the roots of the equation

jte�cj2 ¼ 1, t2�2/c,eStþðjcj2�1Þ ¼ 0: ð2:4Þ

Along Le, H(te)=tmH(e). If we denote by a, b 2 R the values of t corresponding to Q1, Q2 and
determined by (2.4), then the linear interpolant of H along the segment of Le between Q1 and Q2

equals

t�b

a�b
amþ

t�a

b�a
bm

� �
HðeÞ, ð2:5Þ
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and is equal at t=0 to

ðabÞ
½am�1�bm�1�

b�a
HðeÞ: ð2:6Þ

Now, we note from (2.4) that ab¼ jcj2�1, independent of the chosen vector e. (Of course, this is a
well-known theorem from the Euclidean geometry.) So the cofactor of H(e) in (2.6) is a symmetric
polynomial of degree m�2 of the roots a, b of (2.4). Hence, by a standard result on symmetric
functions, it is a polynomial of degree at most m�2 of the coefficients of the quadratic (2.4). Now
observe that the only coefficient dependent on e in (2.4) is that of t and it is of degree 1 in the
coordinates ej of e. Summarizing, the cofactor of H(e) in (2.6) is a polynomial in ej of degree at most
m�2. Hence, the cofactor as a function of e is orthogonal to the homogeneous harmonic polynomial
H(e) over the unit sphere, thus Malmheden’s procedure for H indeed produces 0=H(0). The last
assertion follows from the fact that a polynomial of any degree k (in our case, k=m�2) matches on
the sphere a harmonic polynomial of degree rk, which, of course, is the sum of homogeneous
harmonic polynomials. Homogeneous harmonic polynomials of different degrees are orthogonal on
the unit sphere, cf. e.g., [10,13,15]. The second proof is now complete. &

3. An extension of Malmheden’s theorem to cross-sections of higher dimension

Theorem 2.1 has an almost immediate generalization if one replaces chords through a point P by
k-dimensional cross-sections. (For the notational convenience we shall often represent P in the
coordinate form as x¼ ðx1, . . . ,xnÞ.) More precisely, let O be a convex bounded domain in Rn with
smooth boundary G. Let P(x,y), x 2 O, y 2 G, denote the Poisson kernel for O, so any harmonic
function in O, continuous in O, can be represented by its boundary values f(y) on G as

uðxÞ ¼

Z
f ðyÞPðx,y dSðyÞ: ð3:1Þ

Let, as usual, the Green function in O be

gðx,yÞ ¼

�
1

2p
logjx�yjþuxðyÞ, n¼ 2,

1

on
jx�yj2�nþuxðyÞ, nZ3,

8>><
>>: ð3:2Þ

where ux(y) is harmonic in O, and gðx,yÞjy2G � 0. on denotes the area of the unit sphere in Rn. Then, as
is well-known,

Pðx,yÞ ¼
@

@ny
gðx,yÞ, ð3:3Þ

when ny is the inner normal to G at y 2 G. For O¼ fjxjo1g,

Pðx,yÞ ¼
1

on

1�jxj2

jx�yjn
ð3:4Þ

(cf. [13], e.g., for more details).
For n=1 there is a formula playing the role of (3.1) and (3.4), where the ‘‘domain’’ is the interval

[�1,1]. Then

1

2
f ð1Þ

1�x2

1�x
þ f ð�1Þ

1�x2

1þx

� �
¼

1

2
½f ð1Þð1þxÞþ f ð�1Þð1�xÞ�

is the linear function matching given data f at 71.
Fix k, 1rkon and consider a k-dimensional plane a through P. Oa :¼ O \ a is a convex domain in

Rk. Let Pa denote the Poisson kernel for Oa. Replacing in (3.1) P(x,y) by Pa, f by fa ¼ f ja\G, and dS(y) by
dSa, the Lebesgue measure on a \ G, yields the solution of the Dirichlet problem PaðfaÞ for Oa with the
data fa with respect to the k-dimensional Laplacian. Fix x 2 O and consider the Grassmann manifold
Gx(k,n) of all k-dimensional planes a through x. The orthogonal group SO(n) acts naturally on Gx(k,n)
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and the invariant Haar measure on SO(n) induces the unique normalized measure dmkðaÞ on Gx(k,n).
mkðaÞ is invariant with respect to all rotations of Rn with the center x.

Now keeping the notations from Section 2, and in view of the note following (3.4) regarding the
one-dimensional Poisson formula, we can restate Theorem 2.1 and rewrite (3.1). If O¼ fjxjo1g is the
unit ball, then any harmonic function u in O, continuous in O with ujG ¼ f can be represented via
solutions of one-dimensional Dirichlet problems on one-dimensional lines L passing through x 2 O.
Namely, denoting by fL :¼ f jL\G, we have

uðxÞ ¼

Z
L2Gxð1,nÞ

PLðfLÞdm1ðLÞ: ð3:5Þ

This yields an immediate corollary.

Theorem 3.1. Let O¼ fjxjo1g be the unit ball, f 2 CðGÞ, G¼ @O is the unit sphere. The harmonic extension

u of f to O can be represented in terms of harmonic extensions of f into k-dimensional sections of O:

uðxÞ ¼

Z
a2Gxðk,nÞ

PaðfajG\aÞðxÞdmkðaÞ: ð3:6Þ

Proof. From (3.5) and Fubini’s theorem we get

uðxÞ ¼

Z
L2Gxð1,nÞ

PLðfLjG\LÞdm1ðLÞ ¼

Z
a2Gxðk,nÞ

Z
L2a,x2L

PLðfLjG\LÞdm1ðLÞdmkðaÞ

¼

Z
a2Gxðk,nÞ

PaðfajG\aÞdmkðaÞ: &

4. The converse
Theorem 4.1. If O is a convex domain and the Malmheden procedure described in Section 2, produces for

each continuous function f the solution of the Dirichlet problem with data f, then O must be a ball.

For the sake of clarity, we restrict ourselves to the cases n=2,3. The extension to higher dimensions
is straightforward.

We shall use the notation from Section 2. The hypothesis implies that the function u(P) given by
(2.3) and (2.30) is a harmonic function of P. Note that the first term, as we have observed in Section 2,
is ALWAYS harmonic in O since it is equal to the double layer potential. Thus the hypothesis yields
that the second term is harmonic as a function of point P 2 O as well. Therefore the functions

ðiÞ
cosj
r1þr2

, ðiiÞ
cosj

r1ðr1þr2Þ
ð4:1Þ

are harmonic (as functions of P) in O.
Put the origin at the point Q1. Let P=r1t, where t is a point on the unit sphere centered at Q1.
Let us represent G :¼ @O near Q2 by its ‘‘polar’’ equation: r¼ rðtÞ, r¼ jQ1Q2j. Then, (4.1) yields

that functions

ðiÞ
/t,nQ1

S
rðtÞ , ðiiÞ

1

r1

/t,nQ1
S

rðtÞ , ð4:2Þ

where / ,S denotes the scalar product and nQ1
is the (inner) normal to G at Q1, are harmonic

functions of r1 and t.
In (i), the function depends on the polar angle t only, and being harmonic, forces it to be linear.

Yet, it must be single-valued, thus is a constant. Denote it by 1=2R. Thus, rðtÞ ¼ 2R/t,nQ1
S which is

an equation of a circle.
For (ii), a simple calculation, or a quick check with [13, p. 141, Ex. 4] yields that const=r1

(const=rn�2
1 , nZ3, in general) are the only homogeneous harmonic functions of degree �1 (2�n,

respectively). Hence, again, from (4.2), (ii) we infer that /t,nQ1
S=rðtÞ ¼ const, i.e., G is a sphere.
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Remark 4.2. Weinberger [20] actually showed a stronger converse. To fix the ideas, we shall
describe his result for n=2.

We keep the same notation as above. If Malmheden’s procedure produces the solution of the
Dirichlet problem, then putting the origin at point P 2 O, assuming O to be convex, and its boundary
G to be given in polar coordinates by G¼ fðrðyÞ,yÞ : 0ryr2pg, we can rewrite (2.2) from (2.1) as

uðPÞ ¼
1

2p

Z 2p

0

rðyÞuðrðyþpÞ,yþpÞþrðyþpÞuðrðyÞ,yÞ
rðyÞþrðyþpÞ

dy: ð4:3Þ

Eq. (4.3) implies

uðPÞrmax
y

rðyÞuðrðyþpÞ,yþpÞþrðyþpÞuðrðyÞ,yÞ
rðyÞþrðyþpÞ

: ð4:4Þ

Weinberger showed that if a weaker version of (4.4) with a constant factor on the right hand side
holds for any P 2 O, O being a convex domain, then O is a disk. This result refuted the conjecture of
Barta [5,6] that (4.4) should hold in general convex domains.

Remark 4.3. Going over the proof of Theorem 4.1, one immediately notes that the hypothesis can be
somewhat weakened:
(i)
 Instead of convexity, it suffices to assume that the domain O is star-shaped with respect to all
points Q in a neighborhood of the fixed boundary point Q1 2 @O. Equivalently, that placing the
origin at any such Q, the (smooth, say C2) boundary @O is given by the ‘‘polar’’ equation r¼ rðtÞ,
where t runs over the upper hemisphere of the unit sphere.
(ii)
 Instead of assuming that Malmheden’s algorithm successfully solves the Dirichlet problem for
any data f, it suffices to assume that merely for any continuous data supported in a neighborhood
of Q1. We omit the details.
5. Discussing Malmheden’s theorem and harmonic measure

We keep the same notation as in Section 2. If O is a convex domain in Rn and P is an interior point,
the metric ratio RP associated with the pair ðO,PÞ is the function defined on @O by:
RPðQ1Þ ¼ jPQ2j=jQ1Q2j, where Q2 denotes the second point of intersection with @O of the line L

joining P to Q1. As in Section 2, we note that RP is a continuous function on @O with values strictly
between 0 and 1. It is constant (i.e., identically equal to 1

2) if, and only if, P is a center of symmetry of
O (i.e., all chords through P are bisected there). Let wP denote the harmonic measure on @O evaluated
at P and AP denotes the subtended angle measure on @O with respect to P. Malmheden’s theorem
then can be reformulated as follows.

Theorem 5.1. If O is a ball, then for any P 2 O, RP is the Radon–Nikodym derivative of the harmonic

measure wP with respect to AP.

For the proof one only needs to apply Theorem 2.1 to the characteristic functions of arbitrary (say,
relatively open) subsets of @O.

Thus, Malmheden’s theorem can be seen as a procedure (when O is a ball) to compute harmonic
measure from ‘‘purely geometric’’ quantities, lengths and (solid) angles, by integration. Note that the
corresponding derivative when AP is replaced by surface measure on @O is given by CðPÞ=jPQ 1j

n, the
Poisson kernel (3.4) evaluated at P and Q1. For the unit ball centered at the origin O,
CðPÞ ¼ ð1=onÞð1�jOPj2Þ, where on is the surface area of the unit sphere—cf. [10,13]. Modulo the
known relation between measures Aw and the surface area measure Malmheden’s theorem is thus
equivalent to Poisson’s formula for the solution to Dirichlet’s problem for the ball.

Against this background it is interesting to note the following further connections between
harmonic and subtended angle measures in the ball, mediated by Malmheden’s theorem. It implies
other elegant properties of harmonic measure which, in dimensions 42, are rarely noted.
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Corollary 5.1. Let P be a point in the unit ball O :¼ fx : jxjo1g, and let a double cone KP with vertex at P

cut out ‘‘spherical caps’’ U and V from the unit sphere S. Let wP(E) denote the harmonic measure of a set

E � S evaluated at P. Then, wP(U)+wP(V) equals twice the (normalized) solid angle at the vertex P of KP.
(The normalizing factor equals 1=on, where on denotes the surface area of the unit sphere in Rn.)

Keeping the same notation as in Corollary 5.1, we also have the following.

Corollary 5.2. If we consider a system of masses consisting of caps U, V, each endowed with the harmonic

measure wP(U), wP(V), respectively, then the center of mass is at P.

Remark 5.2. Corollary 5.1 is well known in 2 dimensions—cf. [17, Chapter IV, Section 2]—and can
be used to give an even shorter proof of Malmheden’s theorem. Corollary 5.2, even in the two
dimensional case, seems not to have been noticed before.

Proof of Corollary 5.1. Fix P 2 O. Let J= JP be the involution of S that maps a point x of the unit
sphere S onto the second point where the line Px meets S. Let f 2 CðSÞ be self-involutory with respect
to J, i.e., f(x)= f(Jx), let us denote by dAP the normalized solid angle measure at the vertex P. Then,
Theorem 2.1 implies thatZ

S
f ðxÞ dwPðxÞ ¼

Z
S

f ðxÞdAPðxÞ: ð5:1Þ

Thus, (5.1) holds for all self-involutory f 2 CðSÞ. But the characteristic function wU[V of the union U [ V

is obviously a bounded pointwise limit of the self-involutory (w.r.t. J) functions in CðSÞ. Hence, by the

bounded convergence theorem (5.1) also holds for wU[V . This is the conclusion of Corollary 5.1. &

Proof of Corollary 5.2. If ‘ðxÞ is a linear polynomial and f 2 CðSÞ,f ðxÞ ¼ f ðJxÞ, is self-involutory with
respect to JP, then the Malmheden algorithm applied to ð‘f ÞðxÞ (of course, w.r.t. P) produces

‘ðPÞ

Z
S

f ðxÞdAPðxÞ: ð5:2Þ

(This is seen at once since Malmheden’s algorithm preserves linear functions while f(x)= f(JPx)).

By Theorem 2.1 we have

‘ðPÞ

Z
S

f ðxÞdAPðxÞ ¼ ‘ðPÞ

Z
S

f ðxÞdwPðxÞ: ð5:3Þ

So, from (5.2) and Theorem 2.1, we therefore infer thatZ
S
‘ðxÞ � f ðxÞdwPðxÞ ¼ ‘ðPÞ

Z
S

f ðxÞdwPðxÞ:

Hence, for all linear functions ‘, we have

‘ðPÞ ¼

R
Sð‘ðxÞ � f ðxÞÞdwPðxÞR
Sf ðxÞdwPðxÞ

: ð5:4Þ

Substituting for ‘ the coordinate functions xj, j=1,y,n, we obtain from (5.4) at once that the center of

mass of the mass density f(x) dwP(x) is at P. Taking for f the characteristic function wU[V of the union

U [ V proves the corollary. &

Remark 5.3. (i) Corollary 5.1 has an independent proof in 2 dimensions. If P, with a slight abuse of
notation, denotes a complex number in D, D¼ fjzjo1g, it is straightforward to calculate the
involution JP(z) to be JPðzÞ ¼ ðP�zÞ=ð1�PzÞ. Consider an arc U on the unit circle T. Its harmonic measure
at P equals the harmonic measure of V=JP(U) evaluated at 0 (by conformal invariance of the harmonic
measure, since JP(P)=0). The harmonic measure of an arc V evaluated at the origin equals the central
angle associated with V normalized by the factor 1=2p. Thus, the harmonic measure wP(U) at P equals

wPðUÞ ¼
jV j

2p
, ð5:5Þ
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where jV j denotes the length of the arc V=JP(U). Hence, recalling that JP(V)=U, we conclude that

wPðUÞþwPðVÞ ¼
1

2p
ðjUjþjV jÞ ¼

1

p
ðAPÞ, ð5:6Þ

where AP stands for the angle subtended by either U or V w.r.t. P. (The last equality is, of course, a
corollary of Euclid’s theorem about angles formed by the two chords through a point in the disk which
states that their radian measure equals to the average of the radian measures of the subtending arcs of
the circle.) This gives a different proof of Corollary 5.1 in 2 dimensions.

(ii) From (i), one can easily deduce Theorem 2.1 for n=2. Indeed, Corollary 5.1 yields that for every

w 2D with, as before, Aw denoting the (normalized) subtended angle measure as seen from w, and

for every analytic polynomial P(z), we have

Z
T

PðxÞdAwðxÞ ¼
1

2
ðPð0ÞþPðwÞÞ: ð5:7Þ

(Recall that JwðzÞ ¼ ðw�zÞ=ð1�wzÞ, Jw(0)=w, Jw(w)=0.) Obviously, (5.7) then holds for all functions f

analytic in D and continuous in D. Let f be any such function. Parametrize the lines through w by

their intersection points z with the unit circle T. It is easy then by solving a system of linear

equations to find for the line ‘ :¼ ‘ðzÞ the linear interpolant for the values f ðzÞ, f(Jw(z)). At w it equals

w
f ðzÞ�f ðJwðzÞÞ

z�JwðzÞ
þ

zf ðJwðzÞÞ�f ðzÞJwðzÞ

z�JwðzÞ
: ð5:8Þ

Clearly for a fixed w 2 D and f analytic, say, in a neighborhood of D (5.8) produces an analytic function

F(z). Remembering that Jw maps 0 to w and w to 0, one easily calculates that F(0)=F(w)=f(w). Hence,

applying Malmheden’s procedure to f(z), z 2 T, and then using F(z) from (5.8) and (5.7) we obtain the

value f(w). Thus, Malmheden’s algorithm applied to, say, any polynomial in z, produces the ‘‘correct’’

value at w.

Separating real and imaginary part yields Malmheden’s theorem in the disk, i.e., for n=2.

The following proposition can be viewed as a converse of Corollaries 5.1 and 5.2 combined.

Proposition 5.1. Let O be a bounded convex domain in Rn and P 2 O. Assume that the harmonic

measure wP ¼wð�,@O,PÞ on G :¼ @O at P satisfies the conclusions of Corollaries 5.1 and 5.2. Then, P is a

‘‘Malmheden’’ point for O, i.e., Malmheden’s algorithm (cf. Sections 1 and 2) applied to any continuous

function f 2 CðGÞ on G produces the value at P of the solution to the Dirichlet problem in O with data f on

G.

Proof. Let IðGÞ � CðGÞ consist of all self-involutory functions, i.e., such that f 2 CðGÞ and f(J(x))= f(x),
x 2 G. (Here, J= JP is as above, the involution of G induced by P.) Denote by R � CðGÞ the subset
of f 2 CðGÞ for which the Malmheden algorithm produces the desired value at P of the solution of
the Dirichlet problem with data f. Our hypothesis implies that R*fIðGÞg [ fð‘ � f Þ, f 2 IðGÞ,
‘ is a linear function of x1, . . . ,xng. We need to show that R contains all polynomials, i.e., is dense
in CðGÞ. Since R is obviously closed the proposition will then follow.

Fix a linear function ‘ðxÞ. Denote ‘# ¼ ‘3J. We have ‘2 ¼ ‘ � ð‘þ‘#Þ�‘ � ‘# and, since ‘þ‘#, ‘ � ‘# 2 IðGÞ,
our hypothesis implies that for any g 2 IðGÞ, ‘2 � g ¼ ‘ � ð‘þ‘#Þg�ð‘ � ‘#Þg 2 fIðGÞg [ fð‘ � f Þ,f 2 IðGÞg � R.

So, f‘2 � IðGÞg � R. An induction argument shows that f‘m � IðGÞg � R for any integer m. Since the linear

span of the set of powers of linear polynomials contains all polynomials the proposition follows. &

Remark 5.4. It seems a worthy question whether the two geometric properties of harmonic
measure enunciated in Corollaries 5.1 and 5.2 (i.e., the two hypotheses in Proposition 5.1) are
actually independent of each other. We suspect they are but have not been able to prove it.
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6. Malmheden’s theorem for polyharmonic functions

Let O be the unit ball in Rn. G :¼ @O is the unit sphere, and let f :¼f(x) be a smooth function, say
even real-analytic, in a neighborhood of G. Then as is well-known (cf. [10]) the Dirichlet problem for
the bi-harmonic operator

D2u¼ 0,

u¼ f , ru¼rf on G

(
ð6:1Þ

has a unique solution in O. Not going into technicalities, the reader may argue as follows.
As is well-known—cf. [2]—any function u : D2u¼ 0 in a domain O admits the so-called Almansi

expansion:

u¼ h1þjxj
2h2, ð6:2Þ

with h1 and h2 harmonic functions in O, uniquely defined by u. One can trivially adjust (6.2) when
O¼ fjxjo1g is a ball and rewrite (6.2) as

u¼H1þðjxj
2�1ÞH2, ð6:3Þ

H1, H2 being harmonic in O. Then, to solve the BVP (6.1), we need to solve two consecutive Dirichlet
problems: first, for H1 (= f on G), and then for H2 : ð@=@rÞðf�H1Þ ¼ 2H2, where @=@r stands for the radial
derivative. Uniqueness follows by application of Green’s formula making use of the bi-harmonic
Green’s function—cf., e.g., [12].

Now to formulate the analogue of Malmheden’s theorem for biharmonic functions (i.e., those for
which D2

¼ 0) we proceed as follows. The one-dimensional analog of the bi-Laplacian is the operator
ðd=dxÞ4, whose kernel consists of cubic polynomials. We can extend Malmheden’s procedure for a
fixed point P 2 O to solutions of (6.1). Again draw a chord L through P intersecting G¼ @O at points
Q1, Q2. Let t denote the real parameter along L, a and b being the values of t at Q1, Q2. Let C(t) denote
the (unique) cubic polynomial such that the functionals C(a), C0ðaÞ, C(b), C 0ðbÞ interpolate the
corresponding values of the data fLðtÞ :¼ f jL. (For derivatives of fL at a and b we take the values of the
directional derivatives of the data f along L at those points.) CL(P) is then the value of C at P. Holding
P 2 O fixed, let u(P) denote the average of CL(P) over all lines L. u(P) is, of course, a continuous
function in B. Also, if f(x) is a cubic polynomial, then u= f in O. Clearly, uðPÞ-f ðQ0Þ, ruðPÞ-rf ðQ0Þ

when P-Q0, Q0 2 G.

Theorem 6.1 (Barta [3,7]). If O is a ball in Rn, u is biharmonic in O, and hence solves (6.1).

Proof. It is convenient to translate the coordinate system so O is a unit ball centered at some point c,
while P is now the origin. By a standard approximation argument we may assume that the data f(x)
is a polynomial since the latter are dense in the space C1ðGÞ of continuously differentiable functions
on G. Moreover, we may also assume that f(x) is a biharmonic polynomial since the latter are also
dense in the space of smooth biharmonic functions in the C1-metric. Lastly, by linearity of the
Malmheden operator, we may assume that f(x) is in fact a homogeneous biharmonic polynomial of
degree m43.

Let us separate the following one-dimensional interpolation lemma.

Lemma 6.1. Let ao0ob, m43 and C(t)=Cm(t) be the (unique) cubic polynomial interpolating the

values of tm and its first derivative at a and b. Then, Cm(0) is a homogeneous symmetric polynomial of

degree m. Moreover,

Cmð0Þ ¼ ðabÞ2qm�4ða,bÞ, ð6:4Þ

where qm�4 is a homogeneous polynomial of a and b of degree m�4.

Assuming the lemma and in view of our chain of reductions we need only show that for f(x):¼H(x),

H(x) being a homogeneous biharmonic polynomial of degree mZ4, the Malmheden algorithm

produces the number 0=H(P) (point P, recall, is at the origin). Let L, a, b be as described in the
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paragraph preceding Theorem 6.1. Note that ab is a constant that depends on P only as already noted

in Section 2 (cf. the argument below (2.6)). From this, (6.4) and since H is a homogeneous polynomial

it follows, by repeating the argument following (2.6), that for each line L through P¼ 0 defined by the

directional vector e 2 G, Malmheden’s procedure produces

constqm�4ðeÞHðeÞ ð6:5Þ

where the constant only depends on the point P.

Averaging (6.5) over all chords C, i.e., over all directional unit vectors e 2 G produces 0 as required.

To verify this last assertion we simply note, since H is homogeneous, (6.2) implies that

HðxÞ ¼ h1ðxÞþjxj
2h2ðxÞ, ð6:6Þ

where h1, h2 are homogeneous harmonic polynomials of degrees m and m�2 respectively. qm�4, as is

true for any polynomial—cf. e.g., [15]—can be matched on the unit sphere G by a harmonic

polynomial hq, deg hqrm�4om�2. From the well-known orthogonality of spherical harmonics

(see, e.g., [15,2,10,13]), we obtain our last assertion and, hence, Theorem 6.1 follows modulo

Lemma 6.1. &

Proof of Lemma 6.1. Let Cm(t) :¼C(t)=At3+Bt2+Ct+D match the function tm together with its first
derivatives at a and b, ao0ob.

Writing down four equations corresponding to these four interpolating conditions we see at once

(by Cramer’s Rule) that all the coefficients are rational functions of a, b of degree at most m+6

symmetric with respect to a and b (interchanging a and b merely permutes equations in the system).

Furthermore, solving this linear system of equations via Cramer’s Rule we also observe that each

coefficient A,y,D is a rational function of a and b for which the degree of the numerator is at most

m+6, while the degree of the denominator which is the determinant of the system is precisely 6.

Now these rational functions actually cannot have any finite poles for some complex values of a and

b since the Hermite interpolation polynomial Cm(t) exists and is unique for all complex values a, b.

Thus, all the zeros of denominators in the rational expressions for the coefficients A,y,D of Cm(t)

must cancel out. Hence, all the coefficients A,y,D of Cm(t) are actually polynomials of degree

(m+6)�6=m. Finally, since when a or b=0, D=D(a,b) must have a double zero at the origin, it follows

that D(a,b)=(ab)2qm�4(a,b), where qm�4 is a symmetric polynomial in a, b of degree rm�4. The

lemma is proved and the proof of Theorem 6.1 is now complete. &

Remark 6.2. (i) Obviously, the idea of the above argument originated from our second proof of
Malmheden’s original result—Theorem 2.1—given in Section 2.

(ii) Lemma 6.1 has a natural extension to higher order differential operators ðd=dtÞ2k, kZ3.

Accordingly, with rather obvious modifications Theorem 6.1 extends to polyharmonic operators

DkFcf : [3,7].

(iii) Theorem 3.1 also readily extends to polyharmonic operators.

(iv) We do not know whether the converse to Theorem 6.1, similar to Theorem 4.1, also holds for

polyharmonic functions.

7. Another converse to Malmheden’s theorem

Let, as before, O be a convex, bounded domain in Rn, G¼ @O, P 2 O. If Malmheden’s procedure
with respect to P as described in Section 2 applied to any, say, harmonic polynomial h yields the
value h(P), it does not seem to imply that O is a ball. The problem, of course, is that it does not allow
us to locate the center of the ball. However if one assumes that not only Malmheden’s procedure
applied to harmonic functions u in O yields the correct value u(P), but also O is centrally symmetric
with respect to P, one can conclude that O is a ball centered at P.

The driving force for this result is the following useful observation regarding harmonic measures.
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Lemma 7.1. Let O1cO2 be two smoothly bounded domains of equal volume in Rn, and assume also that

O1 \O2a| and @O1 \ @O2a|. Suppose that O1 and O2 are both star-shaped with respect to the point

O 2 O1 \O2. Let w1, w2 be harmonic measures on @O1, @O2, respectively, evaluated at O. Let E1 ¼ @O1\O2

be the portion of @O1 that lies outside O2, while F2 ¼ @O2 \O1 is the portion of @O2 that lies inside O1.
Similarly, define E2 ¼ @O2\O1, and F1 ¼ @O1 \O2.

Then,

w1ðE1Þow2ðF2Þ, ð7:1Þ

and, similarly,

w2ðE2Þow1ðF1Þ: ð7:2Þ

(Both inequalities are strict.)

Proof. We just prove (7.1); the proof of (7.2) is identical.

Let U ¼O1 \O2, then @U*F1 [ F2. Note that in view of the hypothesis U is also star-shaped w.r.t. O

and so, in particular, is connected. On @U the (harmonic) functions w1(E1;x), w2(F2;x) satisfy (by the

maximum principle) the following:

w1ðE1; xÞjF1
¼ 0, w1ðE1; xÞjF2

r1,

w2ðF2; xÞjF1
Z0, w2ðF2; xÞjF2

¼ 1: ð7:3Þ

Moreover, each one of the two inequalities in (7.3) is strict at least on some set of positive harmonic

measure. Thus,

w2ðF2; xÞ4w1ðE1; xÞ ð7:4Þ

on @U. The maximum principle—cf., e.g., [10,13,17]—for bounded harmonic functions yields that

(7.4) holds everywhere in U. This proves (7.1). &

Theorem 7.1. Let O be star-shaped domain in Rn and O 2 O be a point in O. Assume also that O is

centrally symmetric w.r.t. O. If the Malmheden algorithm applied to O reproduces the values at O of all

functions harmonic in O and continuous in O, then O is a ball centered at O.

Proof. First, observe that Lebesgue bounded convergence theorem immediately extends the
hypothesis to all bounded harmonic functions whose boundary values are pointwise limits of a
sequence of uniformly bounded continuous functions on @O. Thus, in particular, the conclusion
applies to harmonic measures of smoothly bounded open subsets of @O (or, to subarcs in 2
dimensions). Let B be the ball centered at O with same volume as O. If B¼O there is nothing to
prove. Then, BaO and since VolðBÞ ¼VolðOÞ, @B \ @Oa|. Since the Malmheden algorithm applies to O
at O, and O is centrally symmetric with respect to O, the proof of Corollary 5.1 implies that the
harmonic measure on @O evaluated at O is identical with the normalized solid angle measure
subtended from O. Thus, applying Lemma 7.1 to the configuration O1 ¼O, O2 ¼ B and O 2 O \ B, we
arrive at a contradiction, since both harmonic measures on @O and @B at O equal to the solid angle
measure subtended from O and hence, must be the same for the sets E1 ¼ @O\B and F2 ¼ @B \O and,
respectively, for E2 ¼ @B\O and F1 ¼ @O \ B. This contradicts (7.1)–(7.2).

Therefore, O must equal B and the theorem is proved. &

8. Concluding remarks
(i)
 Theorems 2.1 and 3.1 admit a nice probabilistic interpretation, e.g., in R3. Informally, it reduces
to the following. Consider three ‘‘Brownian travelers’’ departing from a point P in the unit ball B

in R3. The first moves according to the laws of standard Brownian motion, the second chooses at
random a plane through P and follows the Brownian motion in that plane; the third chooses at
random a line through P and follows the Brownian motion on that line. All of these travelers will
reach the unit sphere S :¼ @B with probability 1. Malmheden’s theorem asserts that for any
portion E � S, the probability that the first contact with S occurs in the set E is the same for all
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three travelers, i.e., the observer registering the exiting travelers has no way of knowing how
they arrived to the unit sphere from P.
(ii)
 Theorem 2.1 and, a more general Theorem 3.1, certainly suggest connections to integral
geometry. Indeed, the Malmheden algorithm reminds of the inversion formula for Radon
transform which reconstructs functions from their integrals over hyperplanes, or more generally,
k-planes. According to this formula, the value of a function at a point coincides, after applying a
certain power (a half integer in even dimensions) of the Laplace operator to the average of the
Radon data through the point.
The Radon inversion formula delivers representation of functions as continuous sums (i.e.,
integrals) of the so-called plane waves, i.e., of functions which are constant on families of parallel
planes. Similarly, Theorem 3.1 can be interpreted in an analogous manner with the role of plane
waves played by ‘‘harmonic k-waves’’. Here, by harmonic k-waves we understand functions
which are harmonic on parallel k-dimensional planes.
More precisely, fix the natural number k, 1rkrn. Denote by Dk the partial Laplace operator
acting only on the first k variables:

Dk ¼
Xk

j ¼ 1

@2

@x2
j

:

For every rotation o 2 SOðnÞ we denote by Do
k the ‘‘rotated’’ partial Laplacian:

ðDo
k gÞðxÞ :¼ Dkðg3o�1ÞðoxÞ:

It is not hard to show then that the Laplace operator coincides with the average of the rotated
partial Laplacians, i.e.,

DgðxÞ ¼

Z
SOðnÞ

Do
k gðxÞdo,

where do denotes the normalized Haar measure on the orthogonal group. Malmheden theorem
establishes a similar link between the solutions of the corresponding Laplace equations:
Theorem 8.1. Let O :¼ fx : jxjo1g be the unit ball and f 2 Cð@OÞ and, for every o 2 SOðnÞ, let uo denote

the (unique) solution of the boundary value problem:

Do
k uoðxÞ ¼ 0, x 2 O,

uoðxÞ ¼ f ðxÞ, x 2 @O:

(

Then the function

uðxÞ ¼

Z
SOðnÞ

uoðxÞdo ð8:1Þ

solves the boundary value problem

DuðxÞ ¼ 0, x 2 O,

uðxÞ ¼ f ðxÞ, x 2 @O:

(

Proof. By construction, the function uo3o�1,o 2 SOðnÞ is harmonic with respect to the first variables
x1,y,xk, i.e., it is harmonic on every cross-section of the ball by a k-dimensional plane parallel to the
k-dimensional plane P¼ fxkþ1 ¼ � � � ¼ xn ¼ 0:g. Then, uo is harmonic on each k-plane parallel to oP.
Let x 2 O and let Po,x be the k-dimensional plane parallel to oP and passing through x. Since uo ¼ f

on the unit sphere, uo is the harmonic extension of f into Po,x \O. When o runs over the whole
orthogonal group SOðnÞ,Po,x runs over all k-dimensional planes passing through x and Theorem 3.1
simply claims that the average, with respect to all rotations o, of the values uoðxÞ equals to the value
at x of the harmonic extension of the function f into the ball O, i.e., u(x). This proves (8.1). &

The extended Malmheden’s theorem for polyharmonic functions—cf., e.g., Theorem 6.1 for
biharmonic functions with k=1—allows a similar interpretation. In this case, the boundary
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conditions will be corresponding complete sets of Cauchy data for the polyharmonic equation
DNu¼ 0, i.e., the prescribed values of functions and their first N�1 normal derivatives.

It would be interesting to investigate further whether a similar decomposition perhaps holds for
other differential operators with constant coefficients and rotational symmetry, i.e., some operators
of the form PðDÞ where P is a polynomial.
(iii)
 There are various levels at which the converse to the Malmheden theorem can be formulated.
Theorem 4.1 (arguably, the most natural one) assumes that Malmheden’s procedure produces
the solution to the Dirichlet problem with arbitrary data at all points of a convex domain O. The
conclusion is then that O is a ball. Theorem 7.1 is an attempt to obtain the same conclusion
under weaker assumptions: O is assumed to be star-shaped and Malmheden’s procedure is only
assumed to produce the desired results at one point. However, it required an extra assumption
of central symmetry. There are several other venues of interest one may pursue here. To fix the
ideas, let O be a convex domain in Rn, P 2 O, a fixed point. J= JP, as before, is the involution of the
boundary G :¼ @O determined by chords through P. As in Section 5, I¼ IPðGÞ denotes the
subspace of functions in CðGÞ invariant under J. We have noted earlier in Section 5, that if P is a
Malmheden point (an M-point for short) of O i.e., Malmheden’s algorithm applied to every
f 2 CðGÞ produces the value DPf at P of the solution to the Dirichlet problem for the Laplacian
with data f, then the following hold.
(a) The two measures on G, dAP is the normalized subtended angle from P and wP :¼ wð�,G,PÞ :¼

the harmonic measure on G at P produce the same results acting on all functions in IPðGÞ.
(Incidentally, this is equivalent to the relation between the solid angles of double cones with
vertex at P and the harmonic measure of the two surface portions they cut out of GFcf.
Section 5, Corollary 5.1).

(b) For every function f 2 IPðGÞ and every linear polynomial ‘, it follows that DPð‘ � f Þ ¼

‘ðPÞ � DPðf ÞFcf. Corollary 5.2, Proposition 5.1.
Proposition 5.1 proves the converse, namely: if O,P are such that (a) and (b) hold, then P is an
M-point of O. However, we do not know the exact relationship between (a) and (b).
(iv)
 Property (a) of a domain O is on its own somewhat a mystery and holds, perhaps, the key to a
deeper understanding of Malmheden’s theorem. Theorem 7.1 yields that (a), together with the
additional hypothesis that O is symmetric about point P, imply that O is a ball centered at P.
Without this assumption the conclusion fails. A similar problem in two dimensions with the
subtended angle measure replaced by a weighted arclength measure was settled in [9, Theorem
3.29(i)], where it was shown that for those problems there are other solutions besides circles.
We must exercise similar caution for our problem as well, since there are star-shaped domains
O (e.g., bicircular curves) in the plane for which the subtended angular measure from a point
A 2 O equals to the harmonic measure wB evaluated at another point B 2 O.
The following example is due to the third author (H. S. Shapiro, 2006, unpublished).

Proposition 8.1. There exists a planar domain O, star-shaped with respect to the origin, and a point Pa0,
P 2 O, so that for any subarc U � G, G :¼ @O, the angle that U subtends at the origin is equal to 2pwPðU,
O,PÞ ¼ 2pwPðUÞ. (As in previous sections, wP(U) denotes the harmonic measure on G evaluated at P.)

Proof. Consider the polynomial q(z):¼az2 + z + a, 0oao1
2. q is univalent in the unit disk

D and maps it conformally onto a simply connected domain O. For z 2 T, z¼ eiy, we have qðzÞ ¼

z½aðzþ1=zÞþ1� ¼ ð1þ2acosyÞz. Since 1þ2acosy40 for all y, q preserves arguments of each z 2 T.
Thus O is star-shaped and, moreover, for any subarc U � G, the angle subtended by U at the origin O

is equal to the angle that its preimage U0 ¼ q�1ðUÞ, U � T subtends at O. The latter, of course, equals
to the length ðU0Þ ¼ 2pwðU0,D,OÞ ¼ 2pwOðU

0Þ, the harmonic measure of U0 in D evaluated at the
origin. By the conformal invariance of harmonic measure, 2pwðU0,D,OÞ ¼ 2pwðU,O,qð0ÞÞ and setting
P=q(0) (=a) we are done. &
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B. Gustafsson (a personal communication) has recently characterized all simply connected
domains O � C, where the subtended angle measure from an interior point A 2 O equals a linear
combination of the harmonic measures at finitely many other (fixed) interior points. But this is the
beginning of another tale.
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