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1. FLOWS IN ISPACE 

LET us consider the linking between orbits in a compact invariant set of a nonsingular 
vector field on some region in Euclidean 3-space. Let us assume in the first instance we can 
place a solid torus so that the invariant set is inside the torus and the flow lines are 
transversal to 2-disks of the solid torus (see Fig. 1). Before describing our result, we make 
certain remarks that are not difficult to verify. 

The first point is purely topological. 
(i) Two (long) finite pieces of orbits have an approximate linking number if they start 

and stop nearby to one another. This number is the algebraic number of times one point 
winds around the other when the pair of orbits is viewed after projection as a moving pair of 
points in one transversal 2-disk. The ambiguity in this number is one turn for all such pair of 
orbits, once the projection is chosen. 

The second and third points are from elementary calculus. 
(ii) If the flow is continuously differentiable, there is an analogous winding number for 

each single piece of orbit. It is defined by counting how many times a tangent vector in the 
disk direction turns around the orbit. Two different tangent vectors will turn the same 
number of turns up to an error of half a turn, because of linearity (antipodal vectors turn the 
same number of turns). 

The following coherence between the topological linking of point (i) and the injinitesimal 
seIflinking of point (ii) is a consequence of continuous differentiability: 

(iii) For each finite time T, there is an E = E(T) > 0 so that if three orbits of length Tare 
within E for 0 I t I T, then the topological linking between two of them differs from the 
infinitesimal self linking of the third orbit by at most a turn and a half. 

Fig. I 
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The following point is algebraic. All of these linking numbers satisfy an approximate 

additive property: 

(iv) If we go along for T, and then for TZ, the numbers for T1, T,, and T1 + T, are 

related by addition with a uniformly bounded error. 

(v) In [14], using this algebraic property, D. Ruelle proved that for almost all points 

relative to an ergodic invariant measure, the average infinitesimal linking number has 

a limit as T -+ co. This limit is computed as a spatial integral of the appropriate derivative. 

Let us suppose the invariant set X is constructed as a limit of a cascade of periodic orbits 

Ot, 02, Lo,, . . . where On+, is a connected braid in a solid torus Y” about CO,, (with at least 

two strands to avoid triviality). We assume Y1 is the original solid torus, and inductively the 

2-disks of each new solid torus 9 n + 1 are contained in the larger 2-disk of the preceding one 

Y”, with the diameter of the 2-disks going to 0 as n + co (see Fig. 2). Then X is the 

intersection of the solid tori and there is a sequence of linking numbers of O,+ 1 about 0,. 

Dividing this linking number by the number of times Con winds around 3-r defines the rrlh 

average linking number, t. 

The intersection of the invariant set X with the transversal 2-disk of Y1 is a Cantor set 

and the motion there is quasi-periodic, i.e., a minimal (all orbits are dense) translation on 

a compact abelian group. Thus it is uniquely ergodic. From the topological point of view, it 

is clear any sequence of average linking numbers may appear (see Remark 6 below). Let us 

suppose this topological configuration is realized by a C’ flow. 

THEOREM 1. (Coherence of braids cascades in a smooth flow.) The sequence oftopologi- 

tally de$ned average linking numbers between successive orbits of the cascade must converge. 

The limit equals the average twisting number of the derivative. 

Conversely, 

THEOREM 2. Suppose the sequence of rational numbers (2, has limit w, where the sequence 

{q. > is strictly increasing and a,, = 4F-I and 1, are coprime for each n. Then there is a cascade 

of iterated torus knots in a continuously d@erentiableJlow with these rational numbers as 

average linking numbers converging to a quasi-periodic solenoid where the average infinitesi- 

mal twisting number is co. 

We will prove Theorem 1 using the above remarks. Theorem 2 will be proven in the 

context of diffeomorphisms of the disk in the next section, after we formulate Theorems 1 

and 2 in terms of maps (see Theorem 5 below). 

Firh torus \ Second torus 

Fig. 2 
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Proof of Theorem 1. Using (v), pick a point x of the Cantor set where the average 

infinitesimal linking number o(x) exists. Choose T > 0 and N big enough for all orbits 

0, with n > N to stay within e(T) of the orbit of x for all time. Denoting by w,(x) the 

infinitesimal winding about the orbit of x up to time t (so that w(x) = lim,,, (f)w,(x)), and 

by I, the linking number of 0” about O,_ , , we have 

5 4” 
IL - w,.(x)1 I -* 2 y+” ( > 

where we have used (iii) and the fact that the bound on the error in (iv) is 1. Thus for any 

accumulation point rof the sequence L, we have 

5 1 
Il-c!l(X)lI-*-. 

2 T 

Since this holds for every T > 0, we get 

lim i = o(x). 
n-rm 

(Q.E.D. Theorem 1.) 

Remark 3. The discussion (above and below) shows that w(x) exists for all x in the 

Cantor set, and is independent of x. More generally, in the uniquely ergodic case; i.e., when 

there is a unique invariant measure on the invariant set, the limit of the average infinitesimal 

self linking number exists for any sequence of orbit segments whose length tends to infinity, 

and is independent of the sequence of orbit segments (see Proposition A3 in the Appendix; 

also cf [l, 3, 11, 13, 15, 16, 17, 18, 19,21). 

2. HOMEOMORPHISMS OF THE 2-DISK 

Let f be an orientation preserving homeomorphism of the 2-disk D2. A cascade of 

periodic orbits forfis an infinite sequence of periodic orbits (0,) ofjwith periods {q,,} such 

that, for each n 2 1, we have: 

- qn = a,*qn_l with q0 = 1 and a, > 1, 

- there exists a collection of disjoint, simple closed curves @, . . , Up- ’ ’ bounding the 

disjoint disks @, . . . , gin- * _ ‘, with the following properties: 

- each $@, contains exactly one point of O,_ 1, and a,, points of O,, 

- f(@,) is isotopic to @,’ lmodqn-l in the punctured disk D2\Ui ~ “Oi, 

- the union of the 9:‘s is contained in the union of the .$@t_ i’s, 
- the diameters of the 9:‘s converge uniformly to 0 with n. 

Let {fr)tstO, 11 be an arc of homeomorphisms joining the identity map to f= f,, and 

{J; freR be the extended arc of homeomorphisms joining the identity map to all iterates off, 

withf, = ftrl o&,1. To each cascade of periodic orbits { 0, ), we associate a signature { (1”,, qn) ), 
where c = k and 1, is defined as follows: 

In one of the 9:‘s pick the point x,_ 1 of O,_ 1, and a point x, of 0,; then I, is the 

algebraic number of loops that the vector It(xn)-fr(xn-1) ,, fc~x,~_~t~x,_l~,, performs on the unit circle when 

t goes from 0 to q,,. The number 1” is independent of the choice of &,, and of the choice of the 

point x, in 9;. 

For each signature {(c, q.)} with c = 2, (4.) is strictly increasing and a, = fi and 

1. are coprime for each n. 

Remark 4. When changing the isotopy {ft},+,, il, all the 1,‘s are changed by adding the 

same integer. 
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Figure 3 illustrates the first elements of a cascade of periodic orbits in a case when all the 

9:‘s are geometrical disks andf(%b) = ‘%‘L’ ’ modqm-*, and the braiding in Fig. 4 represents an 

isotopy from the identity to the same mapf: The following result is a corollary of Theorems 

1 and 2, in fact a reformulation of these results in terms of maps. 

THEOREM 5. If{O,) IS a cuscude qf‘periodic orbits,fbr a C ’ difiomorphism f of the 2-disk, 

then lim,,,(C) exists. Conversely, for each signature ( (c, q,)} such that lim,, ,( I”,) exists, 

one can construct a C’ d#tiomorphism (with zero topological entropy) with a cascade of 

periodic orbits having this signature. 

By analogy to one dimensional dynamics, homeomorphisms with cascades of periodic 

orbits can be called infinitely renormalizuble (cf. 1201). 

The 1,‘s are read 

Fig. 4 



INFINITE CASCADES OF BRAIDS 89 

Remark 6. As noticed at the end of the proof of Theorem 2, for each signature, one can 

construct a homeomorphism of the 2-disk (with zero entropy) with a cascade of periodic 

orbits having this signature (see also [S]). Thus, Theorem 5 describes a topological 

obstruction to smoothability for homeomorphisms (see the questions at the end of the main 

text for possible follow up to this remark). 

From the definition of a cascade of periodic orbits, we can deduce the following three 

properties: 

~ The set K = UnO,, - U,,O, of accumulation points of the orbits 0, is a Cantor set. 

- The restriction of the mapfto K is uniquely ergodic (i.e.flK has a unique invariant 

measure): more precisely,,f(, is topologically conjugate to a generalized adding machine (i.e., 

a quasi-periodic motion, obtained by adding 1 on a compact abelian group 

f, = lim Z/qi~ 
+ 41 

where Q stands for a super natural number 

Q = n pkP where, Vp prime, 0 5 k, < M , 
P 

and the 4i’S form a sequence of divisors of Q ordered by divisibility). 

- The periodic orbits 0, comerge dynamically to K, i.e., 

V’I: > 0, In, > 0 such that, 

Vx E K, and Vn > no, 3x, E 0, such that Vt > 0 l/ft(x”) -h(x) I/ < E. 

This is why point (iii) of the first section applies. 

Proofof Theorem 2. The following construction is strongly reminiscent of [2] (see also 

[12] and [6], as well as [6] for different braids) and is resumed in Figs 5 and 6. We begin by 

clarifying some terminology about rotation angles. 

d. 

The annuli give room for Here is F,, ready for 
a smooth deformation. the next surgery. 

Fig. 5. 
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Two rotations which differ Two rotations which differ 
by less than one turn. by more than one turn. 

Fig. 6. 

When considering a single rotation, its angle is defined mod 1, hence can legitimately be 

considered as a rational number in [0, 1). However, when considering a continuous family 

of rotations, only one of them can have its angle chosen to be in a given interval of length 1. 

In the following construction, all rotation angles will be meant as real number, the only 

freedom being to choose one of them, say the first one. Continuous families of rotations will 

occur in the form of simple rwisr mups, i.e. maps which preserve the foliation by circles of an 

annulus, and rotate these circles by an angle which varies monotonically along the radius 

(see Fig. 6). 

Let F, be a rigid rotation of ED’, with rational angle 5, where (pr and a, are coprime. 

Choose u, disjoint closed disks II(:), with 0 I i I a, - 1, which are cyclicly permuted by Fr 

If we identify the disks by a rigid translation, the tangent map to F, restricted to any of these 

disks is a rigid rotation with angle Ll. 

We can now define a second map, FL, as follows: 

In each of the disks D’/‘, we post compose Fr with the rigid rotation R,, and we write 

2 + 0, = g, where 0, is chosen so that a2 = if > 1 and (p2, a2) = I. 

We use a simple twist map acting on a small annulus around each Dy’ for two purposes: 

- to interpolate between F2 on the small disks and F, outside the small disks, hence 

allowing F2 to be arbitrarily smooth, 

-~ to give a meaning to the integer part of Or. 

The restriction of F:’ to any Dy’ is a rigid rotation with angle ff = a, .z, and thus 

F”,’ permutes cyclicly a2 disjoint smaller closed disks since (pZ, al) = 1. Otherwise speaking, 

F2 permutes (cyclicly) q2 = a, - a, small disks D ‘2”. Let us again identify these disks by 

a rigid translation. With this identification, the tangent map to F2 restricted to any D’j’ is 

a rigid rotation with angle z. 

The third map F3 is defined by post composing F, in the disks Dy’ with the rigid 

rotation R02, and we write 2 + Hz = g, where 8, is chosen so that a3 = E > 1 and 

(p3, u3) = 1. Simple twist maps in annuli around the disks 0:” are again used to guaranty 

the smoothness of F3 and give a meaning to CO,]. 

Generally, if at the mrh stage of the construction there are q,,, = a; :a2 -aI disjoint 

disks D$‘, so that after proper identification, F, restricted to 02’ is a rotation with angle 

“F 4m’ m+l is obtained from F, by post-composition in these q,,, disks by an angle 0, so that 

E+O,,,=Ei, where 0,ischosen so that a,,, =‘e> 1 and(p,+,,u,+,)= 1. 

By putting appropriate twist maps in the annuli which are used to preserve the 

smoothness and to represent the integer part of the angles 0, at each step of the construc- 

tion, we get that the C’ distance from F, to F,,,, , is bouhded by a fixed multiple of 

o,+ “. +(I,+, if the diameter of the DJII”’ goes to zero as m -+ cc,. More precisely, the Co 

distance from F, to F,, n , 1 goes to zero as a direct consequence of the diameter condition, 
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and the contribution of the derivatives to the C1 distance from F, to F,+ 1 is proportional to 

the angle difference 8, (see Figs 5 and 6). Hence, within the class of maps we have described, 

a necessary and sufficient condition for a sequence { Fi} to form a Cauchy sequence of 

diffeomorphisms in the C ’ topology is that {d,} be a convergent series, which is equivalent 

to say that the sequence {L} = {e} converges. 

We notice that the condition that the diameters of 0:’ goes to zero as m + cc is 

sufficient to allow { Fi} to form a Cauchy sequence of homeomorphisms in the Co topology, 

so that the limit homeomorphism always exists, for any signature {([, 4”)). This limit 

homeomorphism has infinitely many nested periodic orbits which accumulate on a unique 

invariant Cantor set, and has zero topological entropy. At each step of the construction, the 

complement of the q,, small disks is invariant and do not carry any entropy. Positive 

topological entropy thus could only be provided by the restriction of the limit homeomor- 

phism to its invariant Cantor set, which does not happen since this restricted map is 

topologically conjugate to a generalized adding machine. 

(Q.E.D. Theorem 2.) 

Remark 7. The above construction could be modified to produce C2 infinitely renor- 

malizable diffeomorphisms when 

A,= k-1, 
anml a,- 1 *a, 

is bounded, or does not grow too fast: it would be necessary to keep the disks (II:‘! 1) large 

enough for the second derivative to not blow up in the estimate of 11 F, 1 - F, // 2. Each time 

some ai = 2, one would need to use a trick from [S], consisting in incorporating two 

successive orbits at a time. Details can be found in [7] in the case when I, = 1 for each n, 

which are easily adapted to the generality mentioned here. 

Remark 8. Lots of C” examples of cascades of periodic orbits occur in generic 

Hamiltonian diffeomorphisms. 

Remark 9. Combining the geometric ideas in [9] and the extension to two dimensions 

of the renormalization theory in dimension one described in [4] with the rigidity results in 

[20] about all cascades with bounded a, for quadratic-like maps, yields infinitely many C x1 

examples of cascades of periodic orbits which occur in the process of formation of 

a horseshoe. 

Remark 10. Among the examples in Remark 9, only the case a,, = 2 is known to be 

C”-realizable with zero topological entropy [9], because only the cascades with a, = 2 can 

be realized with zero entropy by an endomorphism of the interval. 

Remark 11. One parameter families of endomorphisms of the interval are the simplest 

(but degenerate) model of creation of a horseshoe map by an isotopy to a contraction. These 

maps preserve orientation on some sub-intervals and reverse it on others. Knowing the 

number n of points of a periodic orbit of period p in the orientation reversing intervals, gives 

a direct way to compute the I,‘s. 

Remark 12. A series of simple C” zero entropy examples is obtained by taking 

1, bounded and qn -+ cc fast enough (cf. [15] and [7]). 

Questions. 

I. Among the Cl-realizable cascades of periodic orbits: 

(i) which do occur in C” maps? (cf. Remarks 7 and 8). 

(ii) which do occur in zero-entropy C” maps? (cf. Remarks 9 and 11). 
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II. Recall that J. Harrison [lo] proved the existence for each k of a Ck diffeomorphism 

which is not topologically conjugate to any Ckt ’ diffeomorphism. Can a similar classifica- 

tion of cascades be carried out? 

III. Does the rigidity phenomenon manifest itself for finite smoothness, at least when q, is 

bounded? Namely, after some critical smoothness is present, the geometric structure of the 

Cantor set at finite scale is rigid (cf. Remark 9). 

APPENDIX 

We give here a proof (in terms of maps) that the unique ergodicity hypothesis implies the 

infinitesimal self linking numbers along orbits in the Cantor set converge. 

Let us consider a C’ orientation preserving embedding ,f’of the closed 2-disk DZ and an 

isotopyf; from the identity map,fO = I& 2 to,f; = 1; that we extend to a one real parameter 

isotopy by settingf; =f[“,3Ari. 

Denoting by St the unit tangent bundle at s. we can associate, to each (.x, 1) E DZ x [w. 

a Co map 4:: Si -+ S:+, defined by: 

where we identify Tf,(,, [w* to [wz in order to use the Euclidean norm ~ - ,I. 

We choose the lift @L of 4:: iw -+ [w, so that: 

i. The map (x, t) + @: from D2 x [w to C” (R) is continuous. 

ii. a:., = IdR. 

With these conventions the map O,, = @i is uniquely defined by the isotopy. 

Remark Al. The map @ x H @.X depends on the isotopy but. by changing the isotopy, 

we get a new map CD’ which differs from CD by an integer. 

Remark A2. Because of the symmetry Qf;(r)[ - M] = - ~f;(x)[u], the map 0: - IdR is 
1 ,-periodic. 

Notice that 4: is a homeomorphism from S_t to S i,(_<,. Consequently. using Remark A2, 

for any x and t, O\(0) - 0, is independent of 0, except for a bound error off. 

In the following we shall denote by d+n,x, the composition Q’/.,, l(x) Q’,. 

In [14], Ruelle gave an ergodic theorem for - 3 x 2 matrice valued functions. Then, for 

a diffeomorphismf’in dimension two preserving some measure /i and isotopic to the identity 

on the support of p, he would define p-a.e. a rotution number for,L and correspond to the 

infinitesimal self linking number of a suspension of,/; as defined in $1. The following result 

tells us that we can avoid the a.e. aspect of this theory when dealing with a uniquely ergodic 

measure p, i.e., when the support of ~1 carries a singleflinvariant measure. 

PROPOSITION A3. Let j’he a C’ orientation pre,serviny rmhedding of’ the 2-disk D2, and 

H be a closed invariant subset ojfsuch thatfrestricted to H is uniquely ergodic. Then,for all 

x in H and all 8 in I!3 the limit when n -+ 3~) . of’ rfr@(,,_,)( fI) rsists and is independent of x in 

H and 8 in iw. 

Proof qf Proposition A3. Let us define ‘I’(,.,, = .sup,,,(@,(,,,,(f~) - f1). As the maps 

@ tn.0 - Idiw are continuous periodic maps with period f, this sup is attained, and depends 

continuously on x. 

LEMMA A4 Under the same assumptions as in Proposition 1 Jhr all x in H the limit, when 

n + oc: of+y’,,.,, exists and is independent oju in II. 
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Proof of Lemma A4. Part of this proof will follow an argument of Ruelle [143. First 

notice that for all x in D* and all positive integers n and m, we have: 

Consider the Euclidian division of n by m: n = k-m + r with 0 2 r I m - 1. Using (**) we 

get 

Y@J, - < Y#.,,X) + YV.Ik m(X)) 5 YGi,X, + 1. 

Using (**) again we get: 

k-2 

y(k. m,x) 5 y(j,x, + C (y(rn,,l m+~(x)) + y(m-j,~lk-1~m+J(x))) I y(k.m,x) + k, 
i=O 

forj= O,l,. . . , m - 1. By adding up all these inequalities we obtain: 

Y(k. 

1 
m,x) s ; 

(>( 

m-l (k-l).mp1 

* C (Ycj.x) + Y~m-j,/~*-l~m+lcx,,) + izo Ycrn,/I(x)) I y(k,m,x) + k. 

j=O > 

This yields: 

where 

A(Y,x,m)= t * 

( )I 

m-l m+rml 

C (Y’,j,x) + Y’(,~j./lk~linl+l(X))) + 2 y~fVl./rk-l’m+J~X~l’ 
j=O j=O 

Notice that there exists a uniform bound B(m) such that A(Y, X, m) + IYc,,pm(X))I I 

B(m), thus: 

The continuity of the function Y(,,,,.) and the unique ergodicity hypothesis for& now insure 

that the limit of ($) * ~~1~ Y,,,f tcx)) exists and is independent of x E H. We denote by c(m) 

this limit. For any accumulation point I of the sequence %, we necessarily have: 

Since this must be true for m, the limit of > exists and is independent of x. 

(Q.E.D. Lemma A4.) 

The proof of Proposition A3 follows easily. It is enough to notice that for all x in D * and 

0 in [w, it follows from Remark A2 that: 

(Q.E.D. Proposition A3.) 

Using Remark Al, the rotation number depends on the isotopy to identity we have 

chosen, but two different isotopies yield two rotation numbers which differ by an integer. 
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