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Abstract

The correct approach to analyzing method agreement is discussed. Whether we are considering agreement between two

measurements on the same samples (repeatability) or two individuals using identical methodology on identical samples

(reproducibility) or comparing two methods, appropriate procedures are described, and worked examples are shown. The correct

approaches for both categorical and numerical variables are explained. More complex analyses involving a comparison of more than

two pairs of data are mentioned and guidance for these analyses given. Simple formulae for calculating the approximate sample size

needed for agreement analysis are also given. Examples of good practice from the reproduction literature are cited, and common

errors of methodology are indicated.
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1. Introduction

A common question encountered in reproductive

biology is whether or not the measurement of a variable

by two different methods, or by two different operators

using the same method, or by one operator repeating the

measurement at two different times, produces essen-

tially the same result. We are concerned both with

accuracy (the way in which an observed value of a

quantity agrees with the true value) and precision (a

measure of the extent to which repeated observations

conform). Examples might be the measurement of

blood hormone concentrations or the use of two

different techniques for determining pregnancy status.

It is important to use appropriate statistical methods to

address a question such as this.

For many years, it was common to use one of several

incorrect methods to answer this question with the

consequence of unsatisfactory or sometimes misleading

conclusions. In this article, we will illustrate and

highlight the correct approaches to address the problem

of assessing the consistency of the measuring process

using some examples drawn from the literature. An

overview of the procedures discussed is given according

to type of variable in Table 1.

1.1. Measurement variability and measurement

error

When we measure a biological variable in a number

of individuals or repeatedly within an individual (either

within a short time or over a longer period), the data

always exhibit, to a greater or lesser extent, a scatter of

values. Inter-individual variation (between individuals)

as well as intra-individual variation (within individual)

is thus likely to be evident. Much of this variability is

due to variation in associated factors (e.g., genetic,

social, or environmental factors). For example, if these
Table 1

Summary of procedures for agreement analysis.

Number of methods

to compare

Variable

2 Categorical 2 cate

>2 o

Numerical

>2 Consult an appropriate advanced

text or a statistician
individuals differ in terms of their reproductive status,

age, weight or gender, blood hormone measurements

may be expected to vary. Similarly, if we take repeated

measurements from an individual at different times of

the day, they may well vary. This variability is termed

measurement variability. In contrast, measurement

error is defined as that which arises because the

observed (or ‘‘measured’’) values and true values of a

variable differ (note that although we refer to the ‘‘true’’

measurement here, it is rarely possible to obtain this

value). Two kinds of measurement error can occur:

� Random: The observed values may be sometimes

higher or lower than the true values, but on average

they tend to balance out. For example, the measure-

ment may be read on a scale to the nearest division.

Although random error is governed by chance, the

degree of error can be influenced by external factors

(e.g., a balance may exhibit greater random variability

when sited in a drafty location).

� Systematic: The observed values have a tendency to

be consistently high (or low) because of some

extraneous factor, known or unknown, affecting the

measurements in the same way (e.g., because of an

instrument that has not been calibrated correctly or an

observer consistently overestimating the values). This

kind of error, which concerns the overall accuracy of

the observations, results in biased results if one set of

results represents the true values. The error must be

eliminated or minimized by attention to issues such as

training of personnel, standardization of conditions of

measurement, and proper calibration and mainte-

nance of instruments (i.e., verification by comparison

with a known standard).

Although this explanation of error has centered on

laboratory measurements, the same concepts apply even

if interest is focused on other forms of measurement,
Procedure

gories Cohen’s kappa

McNemar’s test

rdered categories Weighted kappa

Intraclass correlation coefficient

Lin’s concordance correlation coefficient

Bland and Altman diagram

Paired t-test

British Standards reproducibility coefficient
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Table 2

Contingency table of frequencies for bovine pregnancy determination

using assessment of pregnancy associated glycoprotein at 27 d after

timed AI (ELISA test) and transrectal ultrasound (gold-standard test).

Gold-standard test Total

Pregnant Nonpregnant

ELISA test Pregnant 596 61 657

Nonpregnant 29 987 1016

Total 625 1048 1673

Data from Silva E, Sterry RA, Kolb D, Mathialagan N, McGrath MF,

Ballam JM, Fricke PM. Accuracy of a pregnancy-associated glyco-

protein ELISA to determine pregnancy status of lactating dairy cows

twenty-seven days after timed artificial insemination J Dairy Sci

2007;90:4612–4622.
such as an individual’s assumed pregnancy status as

assessed by a stockman’s questionnaire. When estab-

lishing a measurement technique, we must consider

both measurement variability and measurement error.

2. Reliability

In any quantitative biological study, we need to

evaluate the consistency of the measuring process. A

sample used for the reliability study should reflect that

used for the investigative study. It is usual to carry out a

reliability study as part of a larger investigative study.

We want to know whether or not a particular method is

stable enough to be of value. Will a second measure-

ment in the same subject by the same observer under

identical conditions be the same? In the previous

section, it was emphasized that variation in measure-

ment is inevitable, but how much variation is

acceptable? In such circumstances, what is of interest

is the evaluation of what is termed repeatability of the

measurements. The intention is to establish a measure

of the within-observer agreement.

Providing that the repeatability of a given procedure

or observer is satisfactory, it is possible to assess what is

commonly termed reproducibility. We are interested

here to establish whether two persons using the same

method of measurement obtain the same result or

whether two techniques used to measure a particular

variable, under identical circumstances, produce essen-

tially the same result. In these circumstances, reprodu-

cibility is assessing the between-method or between-

observer agreement. Understandably, if the repeatabil-

ity has not been found to be acceptable, the

reproducibility assessment under these circumstances

will be unreliable.

Repeatability and reproducibility are measures of

reliability and may be assessed in the same way. For

simplicity, therefore, in this review we illustrate the

statistical approach to measuring agreement by con-

sidering only one of these measures for a given

situation, namely reproducibility for categorical data

and repeatability for numerical data

It has been shown that very little advantage is gained

from using more than three results per subject, and it is

more efficient to compare only pairs or triplicates of

results on a greater number of subjects rather than using

a greater number of results on fewer subjects [1]. As a

consequence, and because the statistical approach is

much simpler using pairs of results, we restrict the

comparison to two methods, with one member of every

pair of results from each method in a reproducibility

study and duplicate results in a repeatability study. In
more complex circumstances, components of variance

obtained from appropriate analyses of variance are

commonly used as the tools for assessing agreement.

(References to these techniques are given in Section 2.3

devoted to more complex analysis.)

The nature of the data determines the statistical

approach to assessing reliability; we need to consider

whether the variable of interest is categorical (e.g., poor/

average/good) or numerical (e.g., serum hormone

concentration in nanograms per milliliter).

2.1. Categorical variables

Suppose two methods are employed to assess the

pregnancy status of cows after artificial insemination,

and it is of interest to evaluate how well they agree,

(e.g., Silva et al. [2]). One method is regarded as the

gold-standard test and it is hoped that the other test,

which is quicker, cheaper, or otherwise more efficient,

may replace the gold-standard test. Cohen’s kappa is

commonly used to provide a measure of agreement in

these circumstances. The results are presented in a two-

way contingency table of frequencies with the rows and

columns indicating the categories of response for each

method (see Table 2).

2.1.1. Binary outcome

This section relates to data that come from studies

where the response is binary (e.g., positive/negative,

diseased/disease-free, above/below a threshold level).

2.1.1.1. Is there a systematic effect?. The first ques-

tion to be answered is whether there is a systematic

difference between the results obtained from each

method. For a binary response, this may be assessed by

performing McNemar’s test, a modification of the

ordinary chi-square test that takes the paired nature of
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the responses into account. A statistically significant

result (generally if P < 0.05) shows that there is

evidence of a systematic difference between the

proportion of ‘‘positive’’ responses from the two

methods (see, e.g., [3]). If one method provides the

‘‘true values’’ (i.e., it is regarded as the gold-standard

method), the absence of a systematic difference implies

that there is no bias. However, a non-significant result

indicates only that there is no evidence of a systematic

effect. A systematic effect may yet exist, but the power

of the test may be inadequate to determine it. The power

of a test is the ability of a test to detect as statistically

significant a real difference, and is influenced by a

number of factors. For binary data, when it is of interest

to compare two proportions, these factors are the

sample size (the power is smaller with a smaller sample

size), the significance level (the cutoff for the P value

such that any values of P below it indicate statistical

significance), and the minimum difference in the

proportions that the investigators believe represents

an important difference. When the data are numerical,

power is also influenced by the variation in the data.

Power is generally expressed in percentage terms so, for

example, an 80% power implies that there is an 80%

chance of detecting as statistically significant a

specified difference of a given magnitude between

two proportions or two means.

2.1.1.2. Cohen’s kappa. When a contingency table of

the results of two methods is drawn up (Table 2), the

frequencies of the agreement between the two methods

are shown along the diagonal of the table. The

corresponding frequencies expected if the categoriza-

tions were made randomly can be calculated; each is the

relevant row total multiplied by the relevant column

total, and this product is divided by the overall total.

Expected frequencies are components of the chi-

squared test statistic, which investigates a statistical

hypothesis that there is no association between two

factors. However, when two methods are being

compared because they are believed to produce similar

results, this chi-squared test is not relevant. We are

interested, here, in the degree of agreement. This may be

measured by Cohen’s kappa (k), which is given by:

k ¼ Observed agreement � Chance agreement

Maximum agreement� Chance agreement

k ¼ p0 � pE

1� pE

It represents the chance-corrected proportional

agreement, where:
� n = total observed frequency (e.g., total number of

subjects, = 1673 in Table 2)

� OD = sum of observed frequencies along the diagonal

� ED = sum of expected frequencies along the diagonal,

and

� p0 = OD/n

� pE = ED/n

� 1 in the denominator represents maximum agreement.

Perfect agreement is evident when Cohen’s kappa

equals 1; a value of Cohen’s kappa equal to zero

suggests that the agreement is no better than that which

would be obtained by chance alone. Although there is

no formal scale, the following levels of agreement are

often considered appropriate for judging the extent of

the agreement [4]. Agreement is

� Poor if k < 0.00

� Slight if 0.00 � k � 0.20

� Fair if 0.21 � k � 0.40

� Moderate if 0.41 � k � 0.60

� Substantial if 0.61 � k � 0.80

� Almost perfect if k > 0.80.

The approximate standard error of kappa is given by:

SEðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
nð1� pEÞ2

s

and the 95% confidence interval for the population

value of kappa may be estimated by k � 1.96 SE(k).

As an example, Silva et al. [2] compared an early

pregnancy enzyme-linked immunosorbent assay

(ELISA) test for pregnancy associated glcoprotein

(PAG) on blood samples collected from lactating diary

cows at Day 27 after timed AI with transrectal

ultrasound (TU) diagnosis of pregnancy at the same

stage. In the case of disagreement between the two

results, the TU was repeated at 32 d, and this result was

taken as definitive. This final TU outcome was

considered the gold standard or reference result

(corresponding as closely as possible to the true result).

The results on 1673 cows are shown in Table 2.

The estimated proportion pregnant by TU = 625/1673

= 0.374 and that by the ELISA test = 657/1673 = 0.393.

A McNemar’s test comparing the proportions pregnant by

the two methods gives a chi-square test statistic = 10.7 on

one degree of freedom, P = 0.001. When the methods

suggested different pregnancy outcomes, PAG over-

estimates pregnancy compared with TU, indicating

biased results in these circumstances. Nevertheless, the

value of kappa = 0.886 (95% CI 0.863 to 0.909) suggests
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that there was almost perfect agreement between the 1673

pairs of results, after taking chance agreement into

account.

It should be noted that kappa is dependent on the

number of categories of response in that its value is

generally greater if there are fewer categories; kappa

tends to be relatively high when there are only two

categories, as in this example. Kappa is also dependent

on the prevalence of the condition. We should thus be

careful when comparing kappa values from different

studies when the prevalences vary.

Other recent examples of studies illustrating kappa

analysis for binary variables are Waldner et al. [5],

Mainar-Haime and Barberán [3], and Ambrose et al. [6].

2.1.1.3. Validity. (A) Sensitivity and specificity, posi-
tive and negative predictive values. Suppose, as in the

previous example, the response of interest is dichot-

omous or binary (i.e., falls into one of two categories),

and one of the two methods that have been assessed for

reproducibility is the gold-standard test for a particular

state or condition. If Cohen’s kappa shows that

reproducibility is acceptable, the novel test is a

reasonable alternative for experimental or diagnostic

purposes. To properly evaluate the novel test, we should

also assess the validity of the test to discriminate

between the two outcomes. To this end, we evaluate

some additional indices; the sensitivity, specificity, and

positive and negative predictive values of the test.

Table 3 shows the observed frequencies in general

terms. Then for the novel test:

Sensitivity = proportion of subjects with the condi-

tion who are correctly identified by the test =

a/(a + c).

Specificity = proportion of subjects without the

condition who are correctly identified by the

test = d/(b + d).

Positive predictive value (PPV) = proportion of

subjects with a positive test result who have the

condition = a/(a + b).
Table 3

Contingency table showing the observed frequencies when the gold-

standard test is compared with an alternative test.

Gold-standard test Total

+ –

Alternative test + a b a + b

– c d c+ d

Total a + c b + d n = a + b + c + d

(+): Test is positive for the condition; (�) test is negative for the

condition.
Negative predictive value (NPV) = proportion of

subjects with a negative test result who do not have

the condition = d/(c + d).

Prevalence = proportion of subjects who have the

condition = (a + c)/n.

The formulae provide estimates of the true proportions

in the population and, as such, confidence intervals

should be calculated for these measures to provide an

indication of the precision of the estimates. In each

case, the 95% confidence interval for the relevant

proportion, p, estimated by p, is approximated by

p � 1.96H( p[1 � p]/n). Usually, the measures are

multiplied by 100 and expressed as percentages.

Using the data in Table 2 obtained from Silva et al.

[2], the following estimates (with 95% CI) for the PAG

test are obtained:

Sensitivity = 596/625 = 0.954 or 95.4% (95% CI,

93.7% to 97.0%)

Specificity = 987/1048 = 0.942 or 94.2% (95% CI,

92.8% to 95.6%)

PPV = 596/657 = 0.907 or 90.7% (95% CI, 88.5% to

92.9%)

NPV = 987/1016 = 0.971 or 97.1% (95% CI, 96.1%

to 98.2%)

Prevalence in the population = 625/1673 = 0.374 or

37.4% (95% CI, 35.5% to 39.3%).

The sensitivity and specificity are properties of the test.

A perfect test has sensitivity = specificity = 100%.

However, in practice, sensitivity is gained at the

expense of specificity, and vice versa. The choice of

test (i.e., one that tends toward a high sensitivity or high

specificity) depends on what condition we are anxious

to detect, together with the importance of either a false-

positive or false-negative test result.

Knowledge of the sensitivity and specificity of a

particular test, however, does not help the investigator

decide on how likely it is that a particular individual has

or does not have the condition of interest, once that

individual’s test result is known. This information is

provided by the predictive values. It should be noted

that predictive values are dependent on the prevalence

of the condition in the population being studied. In

situations where the condition is common, the positive

predictive value will be much higher than in populations

where the condition is infrequent. Conversely, the

negative predictive value will be lower. From the early

pregnancy ELISA test results, Silva et al. [2] concluded

that with a negative predictive value of 97%, few cows

would be needlessly aborted if a resynchronization
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protocol using prostaglandin F2a were adopted follow-

ing the test.

We have shown how to estimate the predictive

values of a test using the information gleaned from

the contingency table. Generally, these data are not

available to the investigator faced with diagnosing a

particular individual. A simple approach in this situation

is to use Fagan’s nomogram, Fig. 1. (An interactive

version of this nomogram can be found on the Web site of

the Centre for Evidence Based Medicine, http://

www.cebm.net/index.aspx?o=1161, but for our example

we use Fig. 1.) The likelihood ratio of a particular test

result must first be determined in order to proceed. The

likelihood ratio for a positive test result (LR+) is the

ratio of the chance of a positive result if the individual

has the condition to that if the individual does not have

the condition. It is equal to the sensitivity divided by

(1 – specificity). If the investigator has some idea of how

likely it is that the individual has the condition before the

test result is available (commonly this pre-test probability

is taken as the prevalence of the condition in the

population), then all she or he has to do is connect this

pre-test probability in Fagan’s nomogram to the like-
Fig. 1. Fagan’s nomogram. (Adapted from Sackett Dl, Richardson

WS, Rosenberg W, Haynes RB. Evidence-based Medicine: How to

Practice and Teach EBM, 2nd Edn., Churchill-Livingstone, 1977, with

permission.)
lihood ratio of the test and extend the line to where it

meets the right-hand axis. The cut-point of this axis

provides an estimate of the posttest probability, the

chance that the individual has the condition if that

individual has a positive test result.

The process of determining the post-test probability

of the condition using Fagan’s nomogram is based on a

Bayesian approach to statistics. This relies on specify-

ing the probability of a particular outcome before the

study has been conducted; consequently, it is called the

prior probability. This, of course, assumes that there is

some background experience of the condition on which

to base a prior probability estimate. As mentioned

previously, this is commonly taken as the prevalence of

the condition in the population. Then, in a Bayesian

analysis, the results from the study are used to update

(improve) this prior probability to provide what is

known as the posterior probability of the outcome. In

the context of a diagnostic test, the pre-test probability

of the condition is the prior probability, the likelihood

ratio contains the relevant information from the sample

data, and the post-test probability is the posterior

probability.

For the data in Table 2:

LR+ = sensitivity/(1– specificity) = 0.954 /(1 – 0.942)

= 16.4

Prevalence = pre-test probability = 37.4%.

From Fagan’s nomogram, the post-test probability

(probability that a positive test is correct) is approxi-

mately 91%. (It can be shown that the 95% confidence

interval is from 89% to 93%.) Thus if a cow tests

positive for pregnancy using the ELISA test, she has a

91% chance of actually being pregnant. Note that this is

the same value as was obtained for the PPV from the

contingency table. Furthermore, the likelihood ratio for

a negative test result, LR– = (1 – sensitivity)/specificity

= (1 – 0.954)/0.942 = 0.049, and use of Fagan’s

nomogram indicates that the post-test probability of a

cow being pregnant after testing negative for pregnancy

using the ELISA test is approximately 3% (95% CI, 2%

to 4%). So the chance of a cow not being pregnant after

a negative ELISA test is approximately 97%, which is

equal to the estimated NPV from the contingency table.

(B) The receiver operating characteristic (ROC)
curve. Sometimes we rely on a numerical or ordinal

measurement rather than a binary outcome (e.g.,

positive or negative) to diagnose a condition. In such

cases, there is often no simple cutoff above or below

which the condition is present (i.e., there is no threshold

for the condition). So we need to set a cutoff value for

http://www.cebm.net/index.aspx?o=1161
http://www.cebm.net/index.aspx?o=1161
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Fig. 2. Receive operating characteristic curves illustrating a poorly

discriminating test (blue circles, AUROC 0.517) and a test that has

good discriminating power (red circles, AUROC 0.956; green circle

indicates the point of greatest discrimination). (Redrawn from Martı́-

nez-Pastor F, del Rocı́o Fernández-Santos M, Domı́nguez-Rebolledo

ÁE, Esteso MC, Garde JJ. DNA status on thawed semen from fighting

bull: a comparison between the SCD and the SCSA tests. Reprod

Domest Anim 2008;44:424–431.)
the measurement that provides the greatest chance of

detecting the condition. We can set the cutoff as the

upper or lower limit of the reference interval, and the

sensitivity, specificity, and predictive values can be

calculated for this threshold. By raising or lowering the

cutoff value, we can calculate a series of sensitivities,

specificities, and predictive values and choose that

cutoff which produces the optimal set.

One approach to determining the optimal cutoff for a

diagnostic test is to draw the receiver operating

characteristic (ROC) curve. The ROC curve is obtained

by plotting the sensitivity (i.e., the probability of a true

positive) against (1 – specificity) [i.e., the probability of

a false positive] for each cutoff, and connecting the

points so obtained by lines. The resulting curve then

relates to a comparison of the probabilities of a positive

test result in those with and without the condition. The

diagonal, representing the 45-degree line through the

origin, indicates that the test is no better than chance at

discriminating between subjects with and without the

condition. The ROC curve for a useful test will lie to the

left of the diagonal of the graph. Generally, the best

cutoff value for discriminating between subjects with

and without the condition corresponds with that point

on the curve which is nearest the top left-hand corner of

the graph. However, there may be circumstances where

the importance of either false positives or false

negatives is overriding, and thus a different cutoff

value may be chosen.

The area under the ROC curve (sometimes called the

AUROC) can be used to compare the overall accuracy

of different tests for the same condition. It can be

calculated manually or is given by the c statistic, the

probability that a randomly chosen subject from the

group with the condition has a higher predicted

probability of testing positive than a randomly chosen

subject from the group without the condition. The test

giving the higher c statistic has the better chance of

discriminating between the two possible outcomes.

When c = 1, the test is perfectly accurate, and c = 0.5

indicates the test is no better than chance alone at

discriminating between the two outcomes.

The use of an ROC curve was demonstrated by

Martinez-Pastor et al. [7]. These authors considered two

tests for sperm DNA fragmentation, the sperm

chromatin dispersion (SCD) test and the sperm

chromatin structure assay (SCSA) before and after an

oxidative stress for 6 h. SCSA was then expressed as the

percentage of sperm with damaged chromatin (%DFI).

The SCD test failed to distinguish between the control

and oxidized samples (Fig. 2, lower ROC curve with

blue circles), whereas %DFI was strongly discriminat-
ing between the control and oxidized samples (Fig. 2,

higher ROC curve with red circles). Note that the

AUROC values indicated the discriminating power of

the test.

2.1.2. Greater than two ordered categories:

Weighted kappa

For ordinal data (i.e., when there are three or more

categories of response and they are ordered), it is

helpful to provide a measure that gives consideration

not only to the agreement between the pairs of results

but also to the extent to which there is disagreement

between them. Clearly, if the two methods differ in their

responses for a particular subject by two categories,

there is greater disagreement than if the methods differ

by only one category. To take the extent to which there

is disagreement into account, we can calculate a

weighted kappa [8], which is a modification of the

kappa described in Section 2.1.1.2. We assign weights

to the frequencies in the nondiagonal cells of the

contingency table according to their distance from the

diagonal, with the magnitude of the weight diminishing

the further the cell is from the diagonal. The weighted

kappa value is generally calculated automatically using

specialist statistical software.

As an example, Oskram et al. [9] in a study of

testicular maturation in male pigs used a standard
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Table 4

Contingency table of frequencies showing the comparison of histo-

logic assessment and DNA flow cytometry for the evaluation of

testicular tissue in entire male pigs.

Histology Total

Immature Transitional Mature

DNA flow

cytometry

Immature 6 2 0 8

Transitional 4 17 3 24

Mature 0 4 19 23

Total 10 23 22 55

Source: Oskam IC, Ropstad E, Andersen Berg K, Fredriksen B, Larsen

S, Dahl E, Andresen Ø. Testicular germ cell development in relation to

5a-androstenone levels in pubertal entire male pigs. Theriogenology

2008;69:967–976. (Table reproduced with permission).
histologic classification of testicular histology to

compare with a flow cytometric classification of cellular

quantity of nuclear DNA. Their results are reproduced

in Table 4.

Number of observed agreements: 42 (76.4% of the

observations)

Number of agreements expected by chance: 20.7

(37.6% of the observations)

Weighted k = 0.688 (95% CI, 0.536 to 0.840), which

is slightly greater than the unweighted kappa = 0.621

(95% CI, 0.441 to 0.801).

The weighted kappa generally gives a better

indication of the agreement but can only be used with

data that are ranked on an ordinal scale and contain at

least three categories. It is very similar to the intraclass

correlation coefficient, which may be used when the

variable of interest is numerical (see Section 2.2.3.3).

2.2. Numerical variables

The kappa statistic is an inappropriate measure of

the agreement between pairs of readings when the

variable of interest is numerical (e.g., serum hormone

concentration in nanograms per milliliter). Again, the

correct approach to be adopted in these circumstances

can be used both to evaluate repeatability and

reproducibility. For example, we might want to assess

the reproducibility of two ways of measuring a

numerical outcome variable by comparing their results

when a measurement is made by each method on n

subjects. The example we use to illustrate the

techniques is one of repeatability: it uses data that

compare the follicular diameter before ovulation in two

consecutive spontaneous cycles in 20 mares (full results
given in [10]). The mean (and SD) follicular diameter of

the 20 mares in Cycles 1 and 2, respectively, were

46.03 mm (6.36 mm) and 46.33 mm (6.01 mm).

2.2.1. Is there a systematic effect?

To determine whether there is a systematic difference

between the two methods in a reproducibility study or

duplicate observations in a repeatability study, we

calculate the difference between each of the n pairs of

measurements. We can generally use a paired t-test to test

the null hypothesis that the true mean difference is zero,

although if the differences between the pairs do not

approximate a Normal distribution, we should use a non-

parametric test such as the Wilcoxon signed ranks test or

the sign test. (Most introductory statistical texts have

some information on non-parametric tests, but a

dedicated text is that by Siegel and Castellan [11]). If

the mean of these differences is zero, then it may be

concluded that there is no systematic difference between

the pairs of results (i.e., on average, the results are

reproducible or repeatable, as relevant). A significant

result suggests that there is a systematic difference, but a

non-significant result indicates only that there is no

evidence of a systematic effect. As with a categorical

variable, if one method in a reproducibility study is

regarded as the gold standard, the presence of a systematic

difference implies that there is bias. Using the pairs of

values of follicular diameter (mm) from 20 mares, we find

that we obtain an estimated mean difference (Cycle 2 –

Cycle 1) of 0.30 mm (95% CI, 1.09 mm to 1.69 mm),

with the differences being approximately Normally

distributed. The paired t-test statistic is 0.45 on 19

degrees of freedom, giving P = 0.66. Hence, there is no

evidence to reject the null hypothesis that the true mean

difference is zero. This indicates that there is no evidence

of a systematic difference between the follicular diameter

measurements in the two cycles.

2.2.2. The Bland and Altman diagram

A display of the differences between the pairs of

readings may offer an insight into the pattern (and

extent) of the agreement. The Bland and Altman

diagram [12] is such a display; the difference between a

pair is plotted on the vertical axis of the diagram against

the mean of the pair on the horizontal axis. Fig. 3 shows

the Bland and Altman plot of the follicular diameter

data obtained from 20 mares in two repeated cycles. If a

random scatter of points is observed, a single measure

of repeatability is acceptable. To determine such a

measure, we first estimate the standard deviation of the

differences (sd). Assuming a Normal distribution of

differences, approximately 95% of the differences in the
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Fig. 4. Bland and Altman plot showing limits of agreement between

two methods of measuring sperm motility, an objective Hamilton-

Thorne computer-based semen analyzer and a subjective visual as-

sessment, of samples of boar semen. d̄ is the mean difference, and sd is

the standard deviation of the differences between pairs of measure-

ments. (Redrawn and modified from Vyt P,Maes D, Rijsselaere T,

Dejonkheere E, Castryck F, Van Soom A. Motility assessment of

porcine spermatozoa: a comparison of methods. Reprod Dom Anim

2004;39:447.)

Fig. 3. Bland and Altman diagram showing the plot of the difference

between the diameters (mm) of the equine follicle just prior to

ovulation in two consecutive cycles of the mare against the mean

of the pair (n = 20). Red lines show limits of agreement, and the purple

line shows the mean value of the differences. The green line is the zero

line used to assess the discrepancy of the observed mean difference

from zero. (Data from Ref. 10, courtesy of Dr. Cuervo-Arango.)
population are expected to lie between d̄� 2sd, where d̄
is the mean of the observed differences. The upper and

lower limits of this interval, usually displayed on the

Bland and Altman diagram, provide the limits of

agreement; from them, we can decide (subjectively)

whether the agreement between pairs of readings in a

given situation is acceptable (see Fig. 3). For the mare

data, the standard deviation of the differences is

estimated as 2.97 mm and the 95% limits of agreement

by –6.12 mm and 5.52 mm. The limits of agreement are

shown as red lines in Fig. 3. The purple line is the line

corresponding with the mean difference of –0.30 mm (it

is negative in the diagram, indicating that on average the

diameter measurements from the second cycle are

greater than those of the first cycle).

Furthermore, the British Standards Institution

repeatability/reproducibility coefficient (2 sd) may be

used as a single measure of agreement. It indicates the

maximum likely difference between a pair of readings.

The British Standards repeatability coefficient for the

mare data is 2 � 2.97 = 5.94 mm, which the investiga-

tors found represented acceptable repeatability.

It should be noted that if the extent of agreement

between the pairs depends on the magnitude of the

measurement, a single measure of agreement is

inappropriate. This would be evident on inspecting

the Bland and Altman diagram if a funnel effect were

observed. In such a situation, the variation in the

differences is larger (say) for smaller mean values and

decreases as the mean values become larger.

No funnel effect is observed in Fig. 3, but an example

of its occurrence is shown in Fig. 4 (e.g., Vyt et al. [13]).

These authors compared boar semen motility scores
using a Hamilton-Thorne computer-based semen

analyzer (HTR) with subjective microscope scoring

from two experienced individuals. Fig. 4 shows the

Bland and Altman diagram comparing the HTR with

results from the first of the two individuals, in which the

differences get smaller with the higher percentages.

Note also that the mean difference departs substantially

from zero indicating that the automated system gives

systematically higher values for percentage motility.

In this situation, where a funnel effect is observed, the

problem must be reassessed. An appropriate transforma-

tion of the raw data may resolve the issue, so that when

the process is repeated on the transformed observations,

the required conditions are satisfied. Otherwise, we

should not calculate a single measure of reproducibility.

The Bland and Altman diagram can also be used to

detect outliers. Outliers are occasional extreme readings

departing from the main body of the data, possibly

caused by errors of measurement.

2.2.3. Indices of reliability

There are a number of different indices of reliability

that may be calculated for numerical data, all giving

comparable results. It is important that values of a

particular index of reliability are not compared using

different data sets as the indices are influenced by the

character of the data, such as its variability (tending to

increase as the observations become more variable). Note

that both of the indices recommended in this article, Lin’s

concordance correlation coefficient and the ICC, are

independent of the actual scale of measurement and of the

size of error that is considered experimentally or

clinically acceptable.
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2.2.3.1. Inappropriate use of the Pearson correlation

coefficient. Paired observations from two different

occasions or from two different observers/methods are

often inappropriately evaluated for agreement using the

Pearson correlation coefficient between the pairs (e.g.,

[10,13–16]). This is an incorrect measure of reprodu-

cibility or repeatability. Whether the data fall on a

straight line in a scatter diagram, when the observation

from one member of a pair is plotted against that from

the other, is not in question; it would be entirely

unsurprising if the data from two methods, two

observers, or duplicate readings were related, given

that this is what we are hoping to verify. This is shown in

Fig. 5 for two different situations for the comparison of

two methods of measurement. In one case, all the points

lie on a straight line that does not pass through the

origin, so there is strong correlation with r = 1 but no

agreement between the pairs of data (in this case, there

is a clear systematic effect with one member of the pair

[Method 1] always having a greater response than the

other [Method 2]). In the other situation, there is

considerable scatter around the best fitting line and a

poor correlation (r = 0.5), but there is no evidence of a

systematic effect (bias) so that, on average, the methods

agree. Neither of these outcomes helps in assessing the

agreement between the two data sets. What we need to

establish is whether the paired data conform to a line of

equality (i.e., the 45-degree line through the origin

when the two scales are the same). This will not be

established by testing the null hypothesis that the true

Pearson correlation coefficient is zero.
Fig. 5. Diagram showing two kinds of association between the results

of Method 1 and those of Method 2. The red circles on the upper line

demonstrate perfect correlation but no agreement. The blue circles

around the lower line demonstrate poor correlation but no systematic

difference between the two methods.
2.2.3.2. Lin’s concordance correlation coefficient. Lin’s

concordance correlation coefficient [17] may be calcu-

lated as an index of reliability. An understanding of Lin’s

concordance correlation coefficient is obtained if the line

of best fit to the data comparing two methods is shown in

a scatterplot when the results from one method are

plotted against the other. The Pearson correlation

coefficient provides a measure that describes the extent

to which the points in the scatter diagram conform to the

best fitting line. Lin’s coefficient modifies the Pearson

correlation coefficient by assessing not only how close

the data are about the line of best fit but also how far that

line is from the 45-degree line through the origin, this 45-

degree line representing perfect agreement. Lin’s

coefficient is 1 when all the points lie exactly on the

45-degree line drawn through the origin and diminishes

as the points depart from this line and as the line of best

fit departs from the 45-degree line.

Fig. 6 shows the follicular diameter data in 20 mares

when the results from Cycle 1 are plotted against those

of Cycle 2. The estimated regression line drawn through

the midst of the points has a slope of 1.06 mm per mm

(which is close to the slope of 1 mm per mm for the 45-

degree line through the origin that would be obtained if

there were perfect agreement) and a value of r2 = 0.785

(this is a measure of goodness of fit about the line,

indicating that just under 80% of the variation in one

variable can be explained by its linear relationship with

the other).

Lin’s coefficient can be calculated as:

rc ¼
2rsxsy

s2
x þ s2

y þ ðx̄� ȳÞ2

where rc is the estimated Pearson correlation coefficient

between the n pairs of results (xi, yi), and x̄ and ȳ are the
Fig. 6. A scatterplot of the diameter of the ovulating follicle just prior

to ovulation from two consecutive cycles in 20 mares [10]. The line of

best fit is drawn though the points.
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sample means of x and y, respectively

s2
x ¼

P
ðxi � x̄Þ2

n

¼ n� 1

n
times the estimated variance of x

s2
y ¼

P
ðyi � ȳÞ2

n

¼ n� 1

n
times the estimated variance of y:

Using this formula for the follicular diameter data in

20 mares, where r = 0.886 and the estimated variances of

the follicular diameter in the 20 mares in the first and

second cycles, respectively, are 40.51 mm2 and

36.09 mm2, gives an estimated value for Lin’s coefficient

of 0.883. This value is close to the maximum value of 1,

indicating that there is good repeatability between the two

sets of results. It can be shown that the 95% confidence

interval for Lin’s correlation coefficient is (0.78 to 0.98).

Studies using Lin’s concordance analysis can be

found in Quist et al. [18]. Barlund et al. [19] illustrate

the use of kappa, sensitivity and specificity analysis, and

Lin’s concordance analysis in a comprehensive study of

five different methods (two with different cutoffs) to

diagnose endometritis in cattle.

2.2.3.3. The intraclass correlation coefficient. The

intraclass correlation coefficient (ICC) is another index

of reliability that may be calculated to measure

reproducibility and repeatability; it is almost identical

to Lin’s concordance correlation coefficient. The ICC

takes a value from zero (implying no agreement) to 1

(perfect agreement). When measuring the agreement

between pairs of observations, it represents the

between-pair variance expressed as a proportion of

the total variance of the observations (i.e., it is the

proportion of the total variability in the observations

that is due to the differences between pairs).

Providing there is no evidence of a systematic

difference between the pairs, we may calculate the ICC

as the Pearson correlation coefficient between the 2n

pairs of observations obtained by including each pair

twice, once when its values are as observed and once

when they are interchanged. The estimated value of the

Pearson correlation coefficient from the 40 pairs of

follicular diameter values obtained in this way from the

data we introduced in Section 2.2 and displayed in Fig. 6

[10] is 0.884 with 95% confidence interval (0.78 to

0.94). This value of the estimated ICC is almost

identical to Lin’s concordance correlation coefficient,

which was estimated as 0.883.
If a systematic difference between the observations

in a pair is to be taken into account, the ICC is calculated

as:

s2
a � s2

d

s2
a þ s2

d þ 2
n ðnd̄

2 � s2
dÞ

where the difference between and the sum of the

observations in each of the n pairs is determined and

s2
a is the estimated variance of the n sums;

s2
d is the estimated variance of the n differences;

d̄ is the estimated mean of the differences (an

estimate of the systematic difference).

Using the follicular diameter data from two cycles in 20

mares, we find that s2
a ¼ 144:37 mm2, s2

d ¼ 8:83 mm2,

and d̄ ¼ 0:30 m. Hence, using the formula that takes the

systematic effect into account, we obtain a virtually

identical estimated ICC of 0.889. Examples of use of

the ICC can be found in Waldner et al. [5].

2.3. More complex situations with categorical and

numerical variables

Sometimes more complex problems when asses-

sing agreement may arise. For example, there may be

more than two replicates, or more than two observers,

or each of a number of observers may have replicate

observations. Details of the analysis of such problems

may be found in Streiner and Norman [20]. Some

other authors who deal with these more complex

analyses are Dunn [21], Blackman [22], Shrouki [23],

Bannerjee et al. [24], de Vet [25], and Fleiss et al.

[26]. An example of such complex analysis of a

binary variable is seen in David et al. [27] who

compared increasingly complex nested models of

breeding components by maximum likelihood to

predict fertility of sheep in the French AI service. An

example of repeatability estimates using analysis of

variance calculations with numerical variables is to be

seen in a study of the ‘‘cost’’ of reproduction in Zebra

finches in which hematologic variables were inves-

tigated as an indicator of reproductive cost to the bird

[28].

3. Sample size estimation for reliability

calculations

There are a number of different approaches to

estimating the optimal sample size for a calculation of a

measure of agreement such as kappa or the intraclass
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correlation coefficient (e.g., [1,29–31]). Some of these

approaches are concerned with estimating the sample

size when it is of interest to test the significance of the

measure of agreement, and relevant tables for ease of

use are available (e.g., [30]). However, as the

significance of the measure from zero (the most

common hypothesis test) or some other value is

generally not an issue in an agreement study, we prefer

the two approaches detailed in the following sections.

Both rely on specifying the maximum acceptable width

of the confidence interval for the measure of agreement.

It can be shown [30] that for reliability values of 0.40 or

greater, two or three observations per subject will

minimize the total number of subjects required. For

simplicity, the explanation of sample size calculations is

therefore restricted to determining the sample size for a

reliability study with pairs of measurements; for

example, a reproducibility study comparing two

methods of measurement or a repeatability study

comparing duplicate measurements on each subject

by one observer. For both calculations, if a different

confidence interval is required (e.g., a 99% confidence

interval), the 1.96 in the formulae provided in Sections

3.1 and 3.2 is replaced by the relevant percentage point

of the Normal distribution (e.g., 2.58 for a 99%

confidence interval). Sample size determination may be

simplified by the use of tables (e.g., [32]) or appropriate

statistical software.

3.1. Kappa for a binary outcome

When the outcome variable is binary (e.g.,

positive/negative), it can be shown [33] that if W is

the maximum acceptable width of kappa’s 95%

confidence interval, p is the underlying true propor-

tion of positives, and k is the anticipated value of

kappa, the optimal sample size (e.g., the number of

pairs of measurements) is

4
1� kð Þ
W2

1� kð Þ 1� 2kð Þ þ k 2� kð Þ
2p 1� pð Þ

� �
1:962

Using the example of Silva et al. [2] described in

Section 2.1.1.2, let us assume that they wanted to

estimate their sample size to give a kappa = 0.8 with a

confidence interval width of, say, 0.2, and that they

believed that approximately 40% of dairy cows would

become pregnant (i.e., the estimated true proportion of

positives is 0.4). Substituting these values into the

formula suggests that 123 diary cows should be used in

the study. Clearly their actual trial size of 1673 far

exceeded these expectations!
3.2. Intraclass correlation coefficient for a

numerical outcome

If Wr is the acceptable width of the 95% confidence

interval for the ICC for a numerical variable and r1 is

the anticipated value of the ICC, then the optimal

number of pairs of measurements for the study [29] is

1þ 8ð1:96Þ2ð1� r1Þ2ð1þ r1Þ2

2W2
r

:

For the study of Cuervo-Arango and Newcombe [10]

on the measurement of follicular diameter in mares in two

consecutive cycles (see Section 2.2), on an assumption of

an anticipated ICC = 0.8 with an acceptable confidence

interval width of, say, 0.25, we arrive at an optimal

sample size of 33 mares. This exceeds the sample size of

20 mares that the authors actually used in the study.

4. Conclusion

In general, there has been a noteworthy improvement

in standards of statistical data analysis in the past few

years, perhaps coinciding with the ready availability of

computer packages. Unfortunately, this improvement has

not been evident in all areas of statistical methodology; in

particular, the procedures to assess reliability and

measure agreement are often overlooked or else time-

warped, with researchers relying on inappropriate

methods found in previously published material. To

combat such failings, we have concentrated in this review

article on relatively simple approaches to investigating

reliability. We have outlined the appropriate techniques

to ascertain the reliability of paired categorical or paired

numerical data sets when assessing reproducibility or

repeatability. We have provided worked examples to

illustrate these techniques, and we have also offered

references to studies that used these methods. More

complex analyses are best dealt with under guidance, and

we recommend that when the complexity exceeds the

approaches we have covered here, professional statistical

advice should be sought early in the planning of the study.
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