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We determine the Hilbert]Kunz function of plane elliptic curves in odd charac-
teristic, as well as over arbitrary fields the generalized Hilbert]Kunz functions of
nodal cubic curves. Together with results of K. Pardue and P. Monsky, this
completes the list of Hilbert]Kunz functions of plane cubics. Combining these

Ž .results with the calculation of the generalized Hilbert]Kunz function of Cayley’s
cubic surface, it follows that in each degree and over any field of positive
characteristic there are curves resp. surfaces taking on the minimally possible
Hilbert]Kunz multiplicity. Q 1997 Academic Press

1. INTRODUCTION

w xLet S s k x , . . . , x be the standard polynomial ring in n q 1 vari-0 n
ables over a field k of prime characteristic p. Given a finite graded
S-module M, the Hilbert]Kunz function of M is defined on powers of the
characteristic, q s pn, n g N, through

HK q [ dim Mrmw q xM ,Ž .M k

w q x Ž q q.where m s x , . . . , x is the qth Frobenius power of the maximal0 n
Ž .homogeneous ideal m s x , . . . , x . If I ; S is a homogeneous ideal,0 n

and R s SrI the homogeneous coordinate ring of the underlying projec-
n Ž .tive scheme X ; P , the function HK q is also called the Hilbert]Kunzk R

w xfunction of X. Introduced by E. Kunz 6 in 1969, these functions were first
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HILBERT]KUNZ FUNCTIONS 247

w xstudied in detail by P. Monsky 8 , and he obtained the asymptotic formula

HK q s cq m q O q my 1Ž . Ž .M

with c G 1 some real number and m the Krull dimension of M. The
number c is called the Hilbert]Kunz multiplicity of M. It is not known
whether it is always rational. In general, it seems very difficult to deter-
mine these functions explicitly and a conceptual interpretation of the

Ž w x .constant c is missing see 5 for some surprising examples .
Here we exhibit the Hilbert]Kunz functions of plane elliptic curves in

odd characteristic and of plane nodal cubics. Combining this work with
w xresults in 9, 10 completes the explicit determination of Hilbert]Kunz

functions of plane cubic curves. The Hilbert]Kunz functions of reducible
w xcubics were already determined by K. Pardue in 10 , and he also predicted

the following list for the irreducible ones on the basis of computer
experiments. Note that the Hilbert]Kunz function is invariant under
extensions of the coefficient field k, so that one may assume k alge-
braically closed.

THEOREM 1. Let f be the equation of an irreducible cubic cur̈ e C in P2
k

Ž .o¨er an algebraically closed field k, and let HK q be the Hilbert]KunzR
Ž .function of the homogeneous coordinate ring R s Srf. Clearly HK 1 s 1,R

whereas for q ) 1 the ¨alues are as follows.

Ž . Ž w x w x w x.1 K. Pardue 10 ; also E. Kunz 7, Example 4.3 , A. Conca 1 If
C is a cuspidal cubic,

7 2q for p s 3,3
HK q sŽ .R 7 42½ q y for p / 3.3 3

Ž . Ž .2 Theorem 3 below If C is a nodal cubic,

7 12q y q y 1 for q k 2 mod 3,3 3
HK q sŽ .R 7 1 52½ q y q y for q ' 2 mod 3.3 3 3

Ž . Ž .3 Theorem 4 below If C is an elliptic cur̈ e and p / 2,

9 5
2HK q s q y .Ž .R 4 4



BUCHWEITZ AND CHEN248

Ž . Ž w x.4 P. Monsky 9 If C is an elliptic cur̈ e and p s 2, with d s 1 for
q s 2 and d s 0 otherwise,

9 2q y d if the j-in¨ariant is 0,4
HK q sŽ .R 9 2½ q y 1 y d if the j-in¨ariant is not 0.4

At this stage, Hilbert]Kunz functions or multiplicities of plane curves of
higher degree remain mysterious. However, a corollary of our work shows
that for any d G 2 and for any field k of prime characteristic there exists a

32plane curve of degree d in P whose Hilbert]Kunz multiplicity is d}andk 4

this is the minimal possible value for such curves. In particular, the
minimal Hilbert]Kunz multiplicity in each degree is rational and indepen-
dent of the characteristic. We then determine explicitly the Hilbert]Kunz
function of Cayley’s cubic surface in P3, and the result allows us tok

conclude as well that for any d G 2 and for any field k of prime character-
istic there exists a surface of degree d in P3 whose Hilbert]Kunz multi-k

2plicity is d}and this is again the minimal possible value, again rational3

and independent of the characteristic. By contrast, in higher dimensions
the minimal Hilbert]Kunz multiplicity will depend upon the characteristic.

w xFor example, it follows from the algorithm given in 5 that the nonsingular
4 Ž 2quadric threefold in P has Hilbert]Kunz multiplicity c s 29p q

. Ž 2 .15 r 24 p q 12 for p ) 2.

2. MINIMAL VALUES OF HILBERT]KUNZ FUNCTIONS

Ž .Let I s f be a principal ideal generated by a homogeneous form f of
degree d ) 0 in S. The considerations in this section apply to the values of
the generalized Hilbert]Kunz function of R s SrI, introduced by A.

w xConca in 1 , and defined as

HK q s dim Sr f , x q , . . . , x q ,Ž . Ž .R , x k 0 n

where q is now any nonnegative integer, k any field. Unless k is of
positive characteristic p, and q is a power of p, this dimension will
generally depend upon the choice of the coordinate system x s
Ž .x , . . . , x .0 n
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w q x Ž q q.For each q g N and each choice of coordinates x, set x s x , . . . , x0 n
and consider the following graded S-modules of finite length,

S
Q s s Q ,[ iw q xx i

S
u s s u ,[ iw q xf q x i

x w q x : fŽ .
q s s q .[ iw q xx i

They are related by the exact sequence of graded S-modules

f
0 ª q yd ª Q yd ª Q ª u ª 0, 1Ž . Ž . Ž .

Ž .and HK q s dim u . Evaluating dimensions yields universal boundsR , x k
Ž .for the generalized Hilbert]Kunz function of R s Sr f , when f varies

over polynomials of degree d in n q 1 variables,

nq1 � 4q s dim Q G HK q G max dim Q y dim Q , 0 . 2Ž . Ž .Ý Ýk i R , x k i k iyd
i i

Ž . nq1 w q xThe upper bound, HK q s q , is achieved iff f g x ; for example,R , x
Ž .Ž . nif d ) n q 1 q y 1 , or if q s p is a power of the characteristic, d G q

and f s l d for some linear form l. Here we are more concerned with the
lower bound that is taken on if and only if f is of maximal rank at q,

<meaning that in each degree i the k-linear map f Q is of maximal rank.iyd
Whether a given polynomial f is of maximal rank at q can be decided by

looking at the socle degree of the artinian ring u ,

� 4a q s max i: u / 0 , 3Ž . Ž .i

and at the initial degree of q ,

� 4i q s min i : q / 0 . 4Ž . Ž .i

Ž .Ž .Indeed, as the socle degree of Q is n q 1 q y 1 , outside the range
Ž .Ž . <d F i F n q 1 q y 1 source or target of f Q is zero, whereas for aiyd

Ž .degree i inside that range the map is not surjective iff i F a q , not
Ž .injective iff i y d G i q . Accordingly, all the k-linear maps induced by f

Ž . Ž . Ž .are of maximal rank iff a q - i q q d. Moreover, the exact sequence 1
Ž . Ž .is self-dual, whence it suffices to know either a q or i q :

LEMMA 1. For each q g N, and independent of f , one has

a q q i q s n q 1 q y 1 . 5Ž . Ž . Ž . Ž . Ž .
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<Gï en q, all k-linear maps f Q are of maximal rank iffiyd

n q 1 q y 1 q dŽ . Ž .
a q - - i q q d. 6Ž . Ž . Ž .

2

Moreo¨er, each of the inequalities implies the other.

Proof. The ring Q s Srx w q x is a zero-dimensional complete intersec-
Ž .Ž .tion with its socle in degree n q 1 q y 1 . Thus for any finite graded

Q-module M, we have an isomorphism of graded Q-modules

Hom M , k ( Hom M , v ,Ž . Ž .k Q Q

ŽŽ .Ž ..where v s Q n q 1 q y 1 is the canonical module of Q, andQ

Ž .Hom M, k is the Q-module graded naturally throughk

Hom M , k s Hom M , k .Ž . Ž .Ž .k k yii

Ž . Ž w q x . w q xAs Hom u , Q ( x : f rx s q , we getQ

Hom u , k ( q n q 1 q y 1 .Ž . Ž . Ž .Ž .k

For the dimension of the finite dimensional k-vector space u , this yieldsi

dim u s dim Hom u , k s dim Hom u , k s dim q ,Ž . Ž .Ž .k i k k i k k k Žnq1.Ž qy1.y iyi

Ž . Ž .and the equality follows from the definition of a q and i q . As f induces
Ž . Ž .maps of maximal rank iff a q - i q q d, we can eliminate either one of

the two invariants to obtain the last claim.

Ž .Ž .If d ) n q 1 q y 1 , the information is already complete: f , inducing
Ž . Ž . nq1the zero map in 1 , is trivially of maximal rank at q, and HK q s q .R , x

Also, if f is a polynomial of a single variable, n s 0, there are no secrets
Ž .to discover. If n ) 0, the usual Hilbert series

nq1i 2 qy1H t s dim Q t s 1 q t q t q ??? qt ,Ž . Ž . Ž .ÝQ k i
i

of the artinian k-algebra Q is a reciprocal and unimodal polynomial of
Ž .Ž .degree l s n q 1 q y 1 in t, meaning that its coefficients, a s dim Q ,i k i

satisfy

a s a for every i ,i lyi

l
a - a for 0 F i - .i iq1 2
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Ž .In particular, dim Q y dim Q ) 0 iff 0 F i F m q , wherek i k iyd

n q 1 q y 1 q d y 1Ž . Ž . Ž .
m q s ;Ž .

2

Ž .as for a q , we suppress the dependence upon d from the notation. Thus
Ž . Ž .the lower bound, L q , in inequality 2 evaluates to

� 4L q [ max dim Q y dim Q , 0Ž . Ý k i k iyd
i

Ž .m q

s dim Q , as H t is unimodal and reciprocalŽ .Ý k i Q
Ž .m q ydq1

nq1d q1 y t 1 y tŽ . Ž .
mŽq.s coefficient of t in nq21 y tŽ .

nq1d q1 1 y z 1 y zŽ . Ž .
s dz.H nq2 mŽq.q1' < <2p y 1 z se 1 y z zŽ .

1Ž . ŽŽ .Ž . .As m q is the largest integer smaller than n q 1 q y 1 q d , we get2

the following result.

THEOREM 2. If n ) 0, and if f is a homogeneous polynomial of degree
Ž .Ž .d F n q 1 q y 1 in n q 1 many ¨ariables, then the socle degree of the

graded artinian k-algebra u satisfies

a q G m q . 7Ž . Ž . Ž .

Furthermore, the following statements are equï alent:

Ž .i The polynomial f is of maximal rank at q.
Ž . Ž . Ž . Ž .ii The socle degree a q is minimal, a q s m q .
Ž . Ž . Ž . Ž .Ž . Ž .iii The initial degree i q is maximal, i q s n q 1 q y 1 y m q .
Ž . Ž .iv The Hilbert]Kunz function of f at q achië es the lower bound L q .

Ž .Proof. The first statement follows from the exact sequence 1 , as

dim Q ) dim Q .k mŽq. k mŽq.yd

Ž . Ž .As a q is an integer and m q is the largest integer smaller than
1 ŽŽ .Ž . . Ž .n q 1 q y 1 q d , the just established lower bound for a q implies2

the equivalences in view of Lemma 1.
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EXAMPLE. For d s 2, 3 and n s 2, 3, we get the following table:

Ž . Ž .d n m q Lower bound for HK qR , x

3 23q 3 q for q even222 2 y 1 q s 3 12½2 2 q y for q odd2 2
4 13Ž .3 2 q y 1 q y q3 3
9 23q y 1 q y 2 for q even49 523 2 q y s4 4 9 52½2 q y for q odd4 4

33 2 q y 1 2 q y q

w x 2For d s 2, it can be extracted from 1 that the quadric x y x x for0 1 2
n s 2, respectively the quadric x x y x x for n s 3, has generalized0 1 2 3
Hilbert]Kunz function that takes on the minimum value at each q.

Remark 1. P. Monsky noted that expressing the minimal possible value
Ž . Ž .L q of HK q as a residue leads to an intriguing lower bound forR , x

Hilbert]Kunz multiplicities in terms of the integrals

nq1 ? @nr2q`1 sin a 1 ni n q 1
b s das y1 nq1y2 i ,Ž . Ž .ÝHnq1 n ž /ž / ip a 2 n!y` is0

as

nq1d q1 1 y z 1 y zŽ . Ž .
db s lim dz. 8Ž .Hnq1 nq2n mŽq.q1'qª` < <q 2p y 1 z se 1 y z zŽ .

Thus, for a hypersurface of degree d in P n over a field k of positivek
characteristic, the Hilbert]Kunz multiplicity satisfies

c G db . 9Ž .nq1

Ž d. Ž .nq2A direct combinatorial proof is as follows. Expanding 1 y t r 1 y t
into its Taylor series at t s 0, one can write

d dyny11 y t
n ns R n t q P n t ,Ž . Ž .Ý Ýnq21 y tŽ . ns0 nG0

Ž . Ž . Ž . n Ž ny1.where R n g Z, and P t s drn! t q O t is the corresponding
Ž .Hilbert polynomial, univariate over Q of degree n with leading coeffi-
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Ž . Ž . Ž .cient drn!. Now use that m q rq s n q 1 r2 q O 1rq , that the coeffi-
mŽq. Ž n.Ž q.nq1 dyny1 Ž . ncient of t in 1rq 1 y t Ý R n t tends to zero with q, andns0

that

? @nrq
nq1 i n q 1q n n1 y t P n t s y1 P n y iq t ,Ž . Ž . Ž . Ž .Ý Ý Ý ž /iž /

nG0 nG0 is0

to get

? Ž . @m q rqL q P m q y iqŽ . Ž .Ž .i n q 1lim s lim y1Ž .Ýn n ž /iq qqª` qª` is0

n? Ž . @m q rq d m qŽ .i n q 1s lim y1 y iŽ .Ý ž /ž / in! qqª` is0

? @nr2d ni n q 1s y1 n q 1 y 2 iŽ . Ž .Ýn ž /i2 n! is0

s db .nq1

That this combinatorial expression equals the indicated integral can now
w 3 xbe checked in any table of integrals, e.g., 3, 3.836.5 , p 458 . It follows that

� 4the sequence b of rational numbers decreases to zero. The first fewn
values are

3 2 115 11
b s 1, b s 1, b s , b s , b s , b s .1 2 3 4 5 64 3 192 20

Ž . nRemark 2. The same argument applies to lim inf HK q rq . Butq ª` R , x
a ‘‘generalized’’ Hilbert]Kunz multiplicity need not exist. For example,
consider

w xR s k x , x , x r x q x q xŽ .0 1 2 0 1 2

over a field k of positive characteristic p ) 2. It is clear that

w xR k x , y
( qq q q q qx , x , xŽ . x , x , x q xŽ .Ž .0 1 2 0 1 0 1

for any q g N. If q is a power of the characteristic, then

w x w xk x , x k x , x0 1 0 1s ,q q qq q x , xŽ .x , x , x q xŽ .Ž . 0 10 1 0 1
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Ž . 2and HK q s q . On the other hand, consider the sequenceR , Ž x , x , x .0 1 2
� n4 n2 p . For q s 2 p , one has

2n n n nqq q 2 p 2 p p pJ s x , y : x q y s x , y : x q yŽ . Ž . Ž . Ž .
s x 2 p n

, y2 p n
: x p n

y p n s x p n
, y p n

,Ž . Ž .

and the exact sequence

Ž .qxqy qq q q qw x w x w x0 ª k x , y rJ ª k x , y r x , y ª k x , y r x , y , x q y ª 0Ž . Ž .Ž .
yields

2q 3
2 2HK s q y s q .R , Ž x , y , z . ž /2 4

In this situation, there is thus no ‘‘generalized’’ Hilbert]Kunz multiplicity.
w xP. Monsky pointed out that C. Han, in her thesis 4 , determined all values

of this generalized Hilbert]Kunz function.

For elliptic curves in odd characteristic, we will prove that the corre-
sponding cubic polynomial is of maximal rank at any power q of the

Žcharacteristic, whereas for the polynomial x x x x 1rx q 1rx q 1rx0 1 2 3 0 1 2
.q 1rx , representing Cayley’s cubic surface, this will be even established3

at any q g N over any field k. The proof is accomplished by showing that
Ž . Ž .a q equals the minimum value m q , and the respective Hilbert]Kunz

function can then be read off from Table I.
Ž w xNone of this applies to elliptic curves in characteristic 2 see 9 for

.details , nor does it hold for singular irreducible cubic curves in any
characteristic. But in the latter case, the Hilbert]Kunz function can be
determined completely from the rational parametrization of the curve as
we show next.

3. SINGULAR IRREDUCIBLE CUBIC CURVES

w xThe Hilbert]Kunz function of a cuspidal cubic is known from 10 , see
w xalso 1 , but our treatment here deals with the nodal and cuspidal case at

the same time. Let k be an algebraically closed field}of any characteris-
tic for now}and denote by C a singular irreducible plane cubic curve
in P2.k

In suitable coordinates, C is given by a Weierstraß equation

f x , y , z s z y2 q a xy y a x 2 y x 3 s 0,Ž . Ž .1 2
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w x 2so that o s 0, 0, 1 g P is its unique singular point. The curve has a node
Ž . 2 2at o iff the tangential quadric Q x, y s y q a xy y a x has distinct1 2

roots iff a2 q 4a / 0, otherwise it is cuspidal.1 2
The curve C is rational and a rational parametrization n : P1 ª C ; P2

Ž . 2
2normalizes the curve, pulling back OO 1 along C ¨ P and then n toP

Ž .1OO 3 . Algebraically, such a parametrization is given by the monomor-P

phism of k-algebras

a x , y , z s sQ s, t , tQ s, t , s3 ,Ž . Ž . Ž .Ž .
w xk x , y , z

0 0 1
1a : R s ( H C , OO n ¨ H P , OO 3nŽ . Ž .Ž . Ž .[ [C Pf x , y , zŽ . ngZ ngZ

Ž .3 ˜w x( k s, t \ R ,
˜ Ž3.w x w xwhere R s k s, t is the Veronese subring of the polynomial ring k s, t

spanned by all homogeneous polynomials whose degree is divisible by 3.
˜Notice that R consists of all homogeneous polynomials of degree 3n.n

Ž .The cokernel of a can be identified as follows. A section p s, t g
0Ž 1 Ž .. 0Ž Ž .. Ž .1H P , OO 3n comes via a from a section in H C, OO n iff p s, tP C

Ž .takes on the same value at the two points Q s, t s 0. Explicitly, write
Ž . Ž . Ž . Ž . Ž .p s, t s e s q e s t q e s, t Q s, t with uniquely determined polyno-1 2

w x w x Ž .mials e , e g k s and e g k s, t . The component e s t represents the1 2 2
Ž . w x Ž w x w x. Ž w x Ž w x w x..Ž3.class of p s, t in k s, t r k s q Qk s, t and k s, t r k s q Qk s, t

Ž . w xŽ3. Ž . Ž 3. 2is the cokernel of a . If p s, t g k s, t , then e s s b s s for some2
1unique univariate polynomial b that is necessarily of degree deg p y 1.3

Ž .LEMMA 2. i The map
Ž .3˜ w x w xb : R s k s, t ª k z y1 ,Ž .

Ž . Ž .associating to p s, t the polynomial b z , is a degree preser̈ ing epimorphism
˜ w xof R-modules, the R-module structure on R gï en by a , the one on k z by the

w x w xnatural projection R s k x, y, z rf ª k z .
Ž .ii The sequence of graded R-modules

ba Ž .3˜ w x w x0 ª R ª R s k s, t ª k z y1 ª 0 10Ž . Ž .
is exact.

Ž . Ž . Ž 3. 2 Ž . Ž .Proof. If p s, t s e s q b s s t q e s, t Q s, t is the unique repre-1
˜Ž .sentation of p s, t g R, then

a x p s, t s 0 q 0 ? s2 t q sp s, t Q s, t ,Ž . Ž . Ž . Ž .Ž .
a y p s, t s 0 q 0 ? s2 t q tp s, t Q s, t ,Ž . Ž . Ž . Ž .Ž .

a z p s, t s s3e s q s3b s3 s2 t q s3e s, t Q s, t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .1
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Ž . Ž . Ž . Ž .are the corresponding unique representations of a x p s, t , a y p s, t ,
Ž . Ž .and a z p s, t , respectively. This shows that the image of b is annihi-

Ž Ž . . Ž . Ž 2 .lated by x, y and that b a z p s zb p . Furthermore, b s t generates
w xthe image of b already as a k z -module, thus a fortiori as an R-module.

2 ˜ Ž3.w x Ž .As s t is of degree one with respect to the grading on R s k s, t , i
follows.

Ž . Ž .For ii , note first that ba 1 s 0, whence ba s 0. To prove that the
kernel of b is precisely the image of a , consider Hilbert functions: In
degree i g N,

1 for i s 0 ˜dim R s , whereas dim R s 3i q 1.k i k i½ 3i for i ) 0

˜Accordingly, the quotient R rR is zero for i s 0 and onedimensional fori i
w xŽ .i ) 0. Thus the cokernel of a and k z y1 have the same Hilbert

Ž .function and ii follows.

q q q Ž .Multiplication with x , y , z on 10 results in a commutative diagram
of graded R-modules whose exact rows and columns define the modules A
through G,
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In this diagram, E, F, G, and then also D, are finite dimensional and one
has

HK q s dim E s dim F y dim G q dim D. 11Ž . Ž .R , Ž x , y , z . k k k k

Ž w x q.Ž .The dimension of G ( k z rz y1 equals q, and the next lemma
determines the dimension of F, that is, the value of the generalized

˜ Ž .Hilbert]Kunz function for R with respect to x, y, z at q.

Ž . w xLEMMA 3. i Set P s k s, t , the polynomial ring in two ¨ariables with
w xits natural grading. For any q g N, the P-module M s k s, t r

Ž Ž .q Ž .q Ž .q.a x , a y , a z has minimal graded resolution
qq Ž .s Q s, t
qq q qt ys 0 Ž .t Q s, t

q ž /2 q 3 qž /Ž .s 0 yQ s, t s
[36 6Ž . Ž . Ž .0 ª P y4q [ P y5q P y3q P ª M ª 0.

Ž .ii The middle column in the diagram abo¨e is obtained from that
Ž .Ž3. Ž3.resolution by applying the functor , and in particular F s M .

Ž .iii The dimension of F is gï en by

7 12q y if q k 0 mod 3,3 3
HK q s dim F sŽ .R̃ , Ž x , y , z . k 7 2½ q if q ' 0 mod 3.3

Ž . Ž .Proof. i As s does not divide Q s, t , the module M is artinian, and
Ž . Ž .the result follows from the Hilbert]Burch theorem: the signed 2 = 2 -

q Ž .q Ž .qminors of the leftmost matrix are respectively s Q s, t s a x ,
q Ž .q Ž .q 3q Ž .qt Q s, t s a y , s s a z .

Ž . Ž .Part ii is clear and iii follows then easily from

dim F sdim M sdim P y3 dim P qdim P qdim Pk i k 3 i k 3 i k 3 iy3q k 3 iy4 q k 3 iy5q

� 4and dim P s max 0, j q 1 for j g Z.k j

Ž . Ž .In Eq. 11 for HK q , it remains to determine the dimension ofR , Ž x, y, z .
qD. To this end, we exhibit the map b explicitly. As multiplication by z is

w x w x[2Ž .injective on k z , one has C ( k z y1 y q . Furthermore, as B (
Ž w xŽ . w xŽ ..Ž3.k s, t y4q [ k s, t y5q by Lemma 3, a homogeneous element in

Ž Ž . Ž ..B is represented by a pair p s, t , p s, t of homogeneous polynomials1 2
satisfying

deg p s deg p q q ' y4qmod 3,1 2

and such a pair is mapped to
qq q 2 qp s, t t , ys , 0 q p s, t s , 0, yQ s, tŽ . Ž . Ž . Ž .Ž .1 2
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[̃3Ž .in R yq . Thus

[2q 2 q q w xb p , p s b t p q s p , b ys p g k z y1 y q ( C.Ž . Ž .Ž .Ž .Ž .1 2 1 2 1

Ž .As the field k is algebraically closed, the quadric Q factors, Q s, t s
Ž .Ž . q Ž .t y us t y ¨s ; u, ¨ g k; and the unique representation of t mod Q s, t
is

t q s t sq q t sqy1 t q t s, t Q s, t ,Ž . Ž .1 2

where

qy2 qy1
qy2yi i qy1yi it s yu¨ u ¨ , t s u ¨ .Ý Ý1 2

is0 is0

Writing now

p s b s q b s t q b s, t Q s, t ,Ž . Ž . Ž . Ž .1 1 2 3

p s c s q c s t q c s, t Q s, t ,Ž . Ž . Ž . Ž .2 1 2 3

for suitable polynomials b , c , it follows thati i

qy3 qy2 2 qy2 qy2b p , p s t b s q t y a t b s q c s , yb s .Ž . Ž . 3Ž .1 2 2 1 1 1 2 2 2 2 s sz

[2w x Ž . w xSo the image of b in C ( k z y1 y q is generated as a k z -module
by the three pairs

t , 0 z Žqy3qe .r3 , t y a t ,y 1 z Žqy2qh .r3 , 1, 0 z Ž2 qy2qz .r3 ,Ž . Ž . Ž .2 1 1 2

� 4where e , h, z g 0, 1, 2 are such that the exponents become integers.
Ž .Accordingly, the dimension of D is equal to 2 q y 5 q e q h r3 if

Ž .t / 0, whereas it equals 3q y 4 q h q z r3 if t s 0. Thus, the deci-2 2
sive factor is whether or not t vanishes.2

Ž .LEMMA 4. i If q is a power of the characteristic of k, then C is nodal
o¨er k iff t / 0.2

Ž .ii If t / 0, then for any q2

2 qr3 for q k 0 mod 3,? @
dim D s 2k ½ q y 1 for q ' 0 mod 3.3

Ž . ŽProof. i If q is a power of the characteristic of k, then t s u y2
.qy1 Ž .¨ , whence t / 0 iff u / ¨ iff C is nodal. Part ii just evaluates the2

formula for dim D found above in terms of q mod 3.k



HILBERT]KUNZ FUNCTIONS 259

Putting everything together yields the Hilbert]Kunz function in the
nodal case.

THEOREM 3. Let C be a nodal cubic o¨er a field k of prime characteristic
p. For a power q of p, the Hilbert]Kunz function at q is

7 12q y q y 1 for q k 2 mod 3,3 3
HK q sŽ .C 7 1 52½ q y q y for q ' 2 mod 3.3 3 3

If C is a cuspidal cubic, then t s 0 for any q and we get immediately2
w x w xthe generalized Hilbert]Kunz function}in accordance with 8 and 1 ,

7 2q for q ' 0 mod 3,3
HK q sŽ .C , Ž x , y , z . 7 42½ q y for q k 0 mod 3.3 3

Note however that, if q is not a power of the characteristic, this last
result will in general depend upon the choice of the coordinate system
made relative to the given Weierstraß form. The case of the generalized
Hilbert]Kunz function for a nodal cubic can be extracted as well}and the
dependence upon the coordinate system becomes apparent: If the distinct
roots u, ¨ satisfy uq y ¨ q s 0 for some q, the generalized Hilbert]Kunz
function ‘‘jumps up,’’ it takes on the value from the cuspidal case. For any
given q, we can avoid this situation by replacing y with y q a x, for a
general a g k. The curve C is then still in Weierstraß form, and with

Ž .respect to x, y q a x, z , the generalized Hilbert]Kunz function takes on
the value predicted by Theorem 3. Unless the algebraically closed field k
is an algebraic closure of a finite field, one can even find an a g k that
works for all q simultaneously.

4. ELLIPTIC CURVES IN ODD CHARACTERISTIC

In this section, we prove the announced result for elliptic curves in odd
characteristic and deduce that the Hilbert]Kunz multiplicity of a generic

3plane curve equals d when d G 2.4

Ž . w xTHEOREM 4. Let f x, y, z g S s k x, y, z be a cubic polynomial defin-
ing a plane elliptic cur̈ e o¨er a field k of odd characteristic p. For any n g N

n Ž . Ž w q x.and q s p , the socle degree a q of u s Sr f q m is minimal,

3 1
a q s q y ,Ž .

2 2



BUCHWEITZ AND CHEN260

Ž .and the Hilbert]Kunz function of R s Sr f at q is gï en by

9 5
2HK q s q y .Ž .R 4 4

In Subsection 4.1, we recall a classical result about determinants of
Hankel matrices whose entries are Legendre polynomials, and in Subsec-

Ž .tion 4.2, we use it to determine the invariant a q and to establish
Theorem 4. But first we state a corollary and make a remark.

COROLLARY 1. For any field k of prime characteristic p and any integer
d G 2, there is a cur̈ e C ; P2 of degree d whose Hilbert]Kunz multiplicityk

3achië es the minimum d.4

w xProof. As shown in 10 , the Hilbert]Kunz multiplicity of the quadric
32g s x y yz equals . For elliptic curves in any prime characteristic,2

Theorem 1 shows that their Hilbert]Kunz multiplicities are minimal, equal
9to . As any integer d G 2 can be written d s 2u q 3¨ for some u, ¨ g N,4

w xadditivity of the Hilbert]Kunz multiplicity, see 8 , implies that the curve
of degree d, defined by h s g u f ¨, f a nonsingular cubic, will achieve the
minimum.

Remark 3. Semi-continuity of the Hilbert]Kunz mutiplicity yields that
the Hilbert]Kunz multiplicity of a generic plane curve of degree d G 2

3equals d. Clearly c s 1 if the degree d s 1. So the Hilbert]Kunz4
Ž .multiplicity of a generic curve is rational and independent of the positive

characteristic.

4.1. Hankel Determinants of Legendre Polynomials

� 4The Hankel matrices associated to a sequence a s a arei

a a ??? an nq1 nqky1

a a ??? aŽn. nq1 nq2 nqkH a s ,Ž .k
??? ??? ??? ???� 0a ??? ??? anqky1 nq2Žky1.

with corresponding Hankel determinants

DŽn. a s det H Žn. a .Ž . Ž .k k

� Ž .4The generating function for the Legendre polynomials, P t , isn ng N

1
1nF t , x s s P t x g Z , t @ x#.Ž . Ž .Ý n 22'1 y 2 tx q x
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For each k, consider the determinant of the following Hankel matrix
whose entries are Legendre polynomials,

P t P t ??? P tŽ . Ž . Ž .0 1 ky1

P t P t ??? P tŽ . Ž . Ž .1 2 kŽ0.D P t s det .Ž .Ž .k i
??? ??? ??? ???� 0P t ??? ??? P tŽ . Ž .ky1 2 ky2

w xIn 2 , J. Geronimus gave the following beautiful formula.
Ž0.Ž Ž .. yŽ ky1.2Ž 2 .Žky1.k r2THEOREM 5. D P t s 2 t y 1 .k i

P. Monsky communicated a direct proof to us that we now present.

LEMMA 5. If t g R and t ) 1, then

np1
2'P t s t q t y 1 cos a da .Ž . Hn p 0

Proof. If x is small,

y1r22y1r2 22 2'1 y 2 tx q x s 1 y tx y x t y 1Ž . Ž . Ž .
p1 da

s H 2'p 0 1 y tx y x t y 1 cos aŽ .
p1 da

s .H
2'p 0 1 y x t q t y 1 cos a

The expansion of the integrand into a power series of x yields the
lemma.

Ž .Proof of Theorem 5 P. Monsky . As both sides of Geronimus’ formula
are polynomials in t, it suffices to prove it for t g R and t ) 1.

w xLet V be the vector space of real valued continuous functions on 0, p .
Ž .Define a symmetric bilinear form ?, ? on V through

p1
f , g s f a g a da .Ž . Ž . Ž .H

p 0

Ž .If h , . . . , h g V, let D h , . . . , h be the determinant of the matrix1 s 1 s
2 m'ŽŽ .. w x Ž .h , h . Set g s t q t y 1 cos a . By the preceding lemma, g , gi j m i j

Ž .s P . So the required Hankel determinant is D g , . . . , g .iq j 0 ky1
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� Ž .m4Let V ; V be the subspace spanned by 1, cos a , . . . , cos a . Thenm
Ž 2 .m r2 Ž .f s t y 1 cos ma g V , and it is a linear combination ofm m

Ž . my 1Ž .mg , . . . , g . Furthermore, modulo V , cos ma ' 2 cos a , and0 m my1
my 1Ž 2 .m r2Ž .m my1consequently f ' 2 t y 1 cos a ' 2 g . We conclude thatm m

2ky1
my 1D f , . . . , f s 2 D g , . . . , gŽ . Ž .Ł0 ky1 0 ky1ž /ms1

s 2Žky2.Ž ky1.D g , . . . , g .Ž .0 ky1

But using the orthogonality of the f one finds thati

Ž .ky1 kr2yŽky1. 2D f , . . . , f s 2 t y 1Ž . Ž .0 ky1

and Theorem 5 follows.

Now consider
&

2 n'G t , x s 1 y 2 tx q x s P t x .Ž . Ž .Ý n

Ž . Ž .As F t, x G t, x s 1, Geronimus’ formula yields also the following corol-
lary.

& 2Ž2 . k Ž0 . y kŽ . Ž . Ž Ž .. Ž .CO RO LLARY 2. D P t s y 1 D P t s y 2Ž .k i kq 1 i
Ž 2 .kŽkq1.r2t y 1 .

Remark 4. The coefficients of Legendre polynomials are rational num-
bers whose denominators are powers of 2. Thus Geronimus’ identity and
the above corollary hold over any ring in which 2 is a unit, in particular
over a field of odd characteristic.

Ž .4.2. The In¨ariant a q

We first prove the following theorem showing that in odd characteristic
there are no nontrivial syzygies of low degree between the equation of an
elliptic curve and Frobenius powers of the variables.

w xTHEOREM 6. Let k be a field of odd characteristic p, and let f g k x, y
be a cubic polynomial defining an elliptic cur̈ e in A2 . For any q s pn, withk

1q q< w x Ž .n g N, if f ux q ¨y q w for u, ¨ , w g k x, y of degree at most q y 1 ,2

then f dï ides each of u, ¨ , w.

Proof. We give the proof for q ' 1 mod 4. The argument in the other
case, q ' 3 mod 4, is analogous and left to the reader. Without loss of
generality assume that k is algebraically closed. Since the result is invari-

Ž .ant under the action of GL 2, k , and the characteristic of k is odd, we can
2 Ž 2 . 2put the cubic into the form f s y y x 1 y 2 tx q x with t / 1.
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1q q< Ž .If f ux q ¨y q w for some u, ¨ , w of degree at most q y 1 , then2

ux q q ¨y q q w s fh , 12Ž .

where h is a polynomial in x, y. Set

q y 1
l s ,

2

g s x 1 y 2 tx q x 2 .Ž .

We can then write

l
iu s a y s A q yA q fu ,Ý i 0 1 1

is0

w x w xwith a g k x of degree at most l y i, u g k x, y andi 1

lr2 lr2y1
j jA s a g , A s a g ,Ý Ý0 2 j 1 2 jq1

js0 js0

polynomials in x. Similarly, we write

¨ s B q yB q f̈0 1 1

w s C q yC q fw0 1 1

y q s y2 lq1 s yg l q fg

w x w x Ž .for polynomials ¨ , w , g g k x, y ; B , B , C , C g k x . Equation 121 1 0 1 0 1
then becomes

x qA q C q g lq1B q y x qA q C q g lB s fh .Ž . Ž .0 0 1 1 1 0 1

Viewing both sides as polynomials in y, we get h s 0 and1

x qA q C q g lq1B s 0, 13Ž .0 0 1

x qA q C q g lB s 0. 14Ž .1 1 0

7qAs deg C F deg x A F l q 1, it follows that0 0 2

l
7deg B F l q 1 y 3 l q 1 s y 2,Ž .Ž .1 2 2
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and similarly deg B F lr2 y 1. Thus we can write0

B s a x lr2y2 q ??? qa ,1 l r2y2 0

B s b x lr2y1 q ??? qb ,0 lr2y1 0

for tuples

a s a g k lr2y1 , b s b g k l r2 .Ž . Ž .i i

3 qŽ .Since deg C F l and ord x A G q s 2 l q 1, the intermediate powers0 02

of x in g lq1B have zero coefficients, whence we get a linear system of1
equations for a , say Ea s 0, where E: k l r2y1 ª k lr2 is represented by
the matrix

e e ??? e2 3 l r2

e e ??? e3 4 l r2q1

E s ,e ??? ??? e4 l r2q2

??? ??? ??? ???� 0
e ??? ??? elr2q1 ly1

whose entries e are the coefficients in the expansioni

Ž .qq1 r22 qq1 q1 y 2 tx q x s x q e x q ??? qe .Ž . q 0

Analogously, the corresponding powers of x in g lB yield a system of0
equations for b , say Hb s 0, where H: k lr2 ª k l r2q2 is represented by
the matrix

h h ??? h0 1 l r2y1

h h ??? h1 2 l r2H s ,
??? ??? ??? ???� 0h ??? ??? hl r2q1 l

whose entries h are the coefficients in the expansioni

Ž .qy1 r22 qy1 qy21 y 2 tx q x s x q h x q ??? qh .Ž . qy2 0

As q is a power of the characteristic p, one has

1r2q 2 q1 y 2 tx q xŽ .Ž .Ž .qy1 r221 y 2 tx q x 'Ž .
2'1 y 2 tx q x

1r2q 2 q n' 1 y 2 tx q x P t x mod p ,Ž . Ž .Ž . Ý n
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&
Ž .whence h ' P t mod p and, analogously, e ' P t mod p for i - q,Ž .i i i i&

2Ž .where P t and P t are as in Subsection 4.1. As t / 1 by assumption,Ž .i i
Geronimus’ Theorem and its corollary imply

l l
rank E s y 1, rank H s ,

2 2

whence each a or b equals zero, thus B s B s 0, so that ¨ s f̈ . Asi j 0 1 1
Ž q . Ž . Ž .deg C - ord x A , for i s 0, 1, it follows further from Eqs. 13 and 14i i

that C s A s 0 and the theorem follows.i i

Now we can finish the Proof of Theorem 4.
Ž . nAs d s 3 - 3 q y 1 , for any power q s p , n g N, of an odd prime p,

3 1Ž .Theorem 2 yields the lower bound a q G q y , and the upper bound2 2
3 5Ž .i q F q y . It remains thus to show q s 0, or, equivalently, ifŽ3r2.qy7r22 2

< q q q w x <f ux q ¨y q wz for u, ¨ , w g k x, y, z , then f u, ¨ , w. As it suf-Žqy1.r2
Ž . 2fices to verify the above statement in the affine part z s 1 of P , thek

result in Theorem 6 finishes the proof.

5. CAYLEY’S CUBIC SURFACE

w xLet S s k x, y, z, w be the polynomial ring in four variables over an
arbitrary field k and let f s xyz q xyw q xzw q yzw be the Cayley cubic.
We consider the generalized Hilbert]Kunz function of R s Srf , given at
q g N through

HK q s dim Sr f , x q , y q , z q , w q .Ž . Ž .R , Ž x , y , z , w . k

Ž q q q q.THEOREM 7. The socle degree of the artinian ring u s Sr f , x , y , z , w
is

0 if q s 1,
a q sŽ . ½ 2 q y 1 if q ) 1,

and the ¨alue of the generalized Hilbert]Kunz function of Cayley’s cubic at
q g N is

HK q s 2 q3 y q.Ž .R , Ž x , y , z , w .

Ž .Proof. If q s 1, then u ( k and a 1 s 0. Now assume q ) 1. Since
Ž . Ž .d s 3 - 4 q y 1 , Theorem 2 yields the lower bound a q G 2 q y 1. Thus

it remains to show u s 0, i.e., that any monomial x i y j z k w l g u is2 q 2 q
equivalent to 0.
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� 4 � 4Case 1. max i, j, k, l q min i, j, k, l G q.
� 4We argue by descending induction on max i, j, k, l . Due to symmetry,

we may assume i G j G k G l. If i G q, we are done; and as i q l G q, we
may assume l / 0. Then in u ,2 q

x i y j z k w l s yx iq1 y jy1z k w l q y jz ky1 w l q y jz k w ly1 ,Ž .

and the induction applies.

� 4 � 4Case 2. max i, j, k. l q min i, j, k, l - q.
� 4We argue by descending induction on min i, j, k, l . Again, we may

assume i G j G k G l. Suppose k s l or l q 1. Since i q l F q y 1, j q k
F i q k F q. So i q j q k q l F 2 q y 1, a contradiction. We conclude
that i, j, and k are all at least l q 2. Then in u ,2 q

x i y j z k w l s y x iy1 y jz k q x i y jy1z k q x i y j z ky1 w lq1 ,Ž .

and induction applies.
The claimed result for the generalized Hilbert]Kunz function follows

Ž .now from Theorem 2, as d s 3 - 4 q y 1 whenever q ) 1, and its
validity for q s 0, 1 is clear.

COROLLARY 3. For any field k of prime characteristic p and any integer
d G 2, there is a surface X ; P3 of degree d whose Hilbert]Kunz multiplicityk

2achië es d, the minimum possible for such surfaces.3

Proof. The Hilbert]Kunz multiplicity of the quadric surface g s xy y
4 w xzw equals by 1 . As just established, the Hilbert]Kunz multiplicity of the3

Cayley cubic f is equal to 2. Since d s 2u q 3¨ for some u, ¨ g N,
additivity of the Hilbert]Kunz multiplicity implies that the surface defined

2u ¨by g f has Hilbert]Kunz multiplicity equal to d.3

Remark 5. For any field k of positive characteristic, by virtue of the
above corollary and semi-continuity, a generic surface in P3 of degreek

2d G 2 achieves the minimal Hilbert]Kunz multiplicity d. Also, c s 1 if3

d s 1. So the Hilbert]Kunz multiplicity of a generic surface is rational and
independent of the characteristic. Note that the Hilbert]Kunz multiplicity
of Cayley’s cubic is minimal although this surface is singular}in contrast
to the case of cubic curves.

Remark 6. As pointed out at the end of the Introduction, in higher
dimensions}at least in low degrees}the generic Hilbert]Kunz multiplic-
ity will depend upon the characteristic.
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