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We consider the particle–antiparticle pairs produced by both a strong electric field and de Sitter 
curvature. We investigate in 1 + 1 D the backreaction of the pairs on the electromagnetic field. To do 
so we describe the canonical quantization of an electromagnetic field in de Sitter space and add in 
the Einstein–Maxwell equation the fermionic current induced by the pairs. After solving this equation, 
we find that the electric field gets either damped or unaffected depending on the value of the pair 
mass and the gauge coupling. No enhancement of the electromagnetic field to support a magnetogenesis 
scenario is found. The physical picture is that the Schwinger pairs locally created screen the production 
and amplification of the electromagnetic field. However, if one considers light bosons created by the 
Schwinger mechanism, we report a solution to the Einstein–Maxwell equation with an enhancement of 
the electromagnetic field. This solution could be a new path to primordial magnetogenesis.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Particle production from the vacuum is an important topic in 
modern theoretical physics. On the one hand, the Schwinger effect 
[1–3] (i.e. excitation of particle–antiparticle pairs tunneling out of 
the Dirac sea [4,5]) is one thrilling playing field for theoretician 
because of its non-perturbative nature in the electric field. On the 
other hand, the gravitational pair creation (during inflation [6], the 
Hawking radiation near black holes [7] and the Unruh radiation for 
accelerating observers [8]) is a well known phenomenon. However 
despite 50 years of theoretical existence, no pairs have been di-
rectly detected today. The main hope of detection, for Schwinger 
effect will come with the next generation of high energy laser 
[28] which will be operational within 5 years. Regarding the grav-
itational pair creation, the main hope is to detect the celebrated 
B-modes of the cosmic microwave background anisotropies [9]. 
Awaiting for these possible discoveries, a rising field of research 
is dedicated to include in one unique system both the electric and 
gravitational pair creation. Having both a strong electric and gravi-
tational field could be realized in early universe physics in a phase 
of accelerating expansion. During this phase, both electromagnetic 
and a test particle fields are enhanced due to a parametric ampli-
fication of vacuum fluctuations.

In the past years, the Schwinger effect in de Sitter spacetime 
(dSn) was investigated for both fermions and bosons in various 
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space dimensions [10–16]. In all those studies, the backreaction 
of the pairs has been always neglected. However, such backreac-
tion could be important. For instance, already in flat spacetime, for 
1 + 1 D fermions, results have been shown and the phenomenon 
of plasma oscillation has been discovered [17,18] (see also [19,20]). 
We aim at generalizing these results to the Schwinger effect in dSn . 
The point of view taken in this letter is to ignore the transverse 
direction of the electric field to make the system simpler and 
grasp some physical insight on the process. Furthermore, from the 
study of the Schwinger effect in dS2, dS3 and dS4, the behavior of 
the created particles with respect to the electric and gravitational 
strength is similar [14].

QED in dS2 We consider the Lagrangian for 1 +1 D QED minimally 
coupled to gravity:

S =
∫

d2L =
∫

d2x
√−g(x)

[
−1

4
gαμ(x)gβν(x)Fμν(x)Fαβ(x)

− jμ(x)Aμ(x)

]
, (1)

where jμ(x) is the fermionic current and the field strength is de-
fined with the potential vector: Fμν(x) ≡ ∂μ Aν(x) − ∂ν Aμ(x). The 
electromagnetic field is assumed to be a “test” field on the back-
ground dS2:

ds2 = a2(η)(dη2 − dx2), −∞ < η < 0 (2)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82274954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.07.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:clement.stahl@icranet.org
http://dx.doi.org/10.1016/j.physletb.2016.07.011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.07.011&domain=pdf


C. Stahl, S.-S. Xue / Physics Letters B 760 (2016) 288–292 289
where the scale factor is a(η) = − 1
Hη . In unit of mass, in 1 + 1 D, 

the gauge field Aμ is dimensionless and the U(1) gauge cou-
pling constant e has dimension 1. We assume the temporal gauge: 
A0(x) = 0 and will drop from now on the subscript and write A(x)
for A1(x). In 1 + 1 D there is no magnetic field and the electric 
field is a pseudoscalar and the momentum conjugate to A(x), in 
dS2 it reads:

E(η, x) = −1

a
A′(η, x), (3)

where a prime denotes a derivative with respect to the conformal 
time. The canonical commutation relation between A(x) and its 
canonical momentum π(x) = 1

a(η)
E(η, x) is then imposed:

[A(η, x),π(η, y)] = iδ(x − y), (4)

the others commutators being zero, A(η, x) is then promoted to be 
the potential vector operator and can be Fourier expanded:

Â(η, x) =
∫

dk

(2π)
1
2

(
A(η,k)b̂(k)eik.x + b̂†(k)A∗(η,k)e−ik.x

)
. (5)

The creation and annihilation operators are b̂p(k) and b̂†
p(k) with k

the comoving wavenumber. In order to satisfy Eq. (4), the creation 
and annihilation operators must satisfy the following commutation 
relations:[

b̂(k), b̂†(k′)
]

= δ(k − k′), (6)

the others commutators being zero. The Wronskian condition 
reads:

A(η,k)A′ ∗(η,k) − A′(η,k)A∗(η,k) = i. (7)

Using (3) together with (5), one finds the Fourier transform of the 
electric field:

E(η,k) = −1

a
A′(η,k). (8)

Adopting the expression for the fermionic current for the case of 
a constant electric field given in equation (96) of [13] together 
with (8), we obtain the following expression for the current:

j1(η,k) = e

π
ωF (η,k)

sinh
(

2π
H eηA′(η,k)

)

sinh
(

2π
H ωF (η,k)

) , (9)

ωF (η,k) ≡
√

e2η2 A′(η,k)2 + m2. (10)

By taking this expression, one does a local constant electric field 
approximation and assumes the expression for the Schwinger ef-
fect derived for constant electric field is valid at every time in-
stance of the evolution of the electric field. This approximation is 
valid for two reasons:

• The population of pairs is always dominated by the one cre-
ated within a Hubble time.

• The typical time scale of the pair creation by Schwinger effect 
(tpairs ∼ 1

H ) is much larger than the typical time scale of the 
evolution of the electric field (tE ∼ 1

k ).

Those considerations transcribe into the condition k
H � 1, for 

which our results are valid. We furthermore emphasize that in this 
regime, the electromagnetic field is not sensitive to any curvature 
effect because its wavelength is greater than the curvature radius 
implying that deep in the ultraviolet regime ( k

H � 1) the elec-
tric field propagates as in Minkowski spacetime. In the infrared 
regime ( k
H � 1) the results presented cannot be totally trusted 

as the Schwinger effect has to be computed to take into account 
the rapid spatial variations of the electric field. We argue however 
that the results presented afterward, if not quantitatively exact still 
have an interesting qualitative behavior. Furthermore, it is known 
that even in flat spacetime analytic solutions (for Schwinger pair 
creation exist) only for a few field configurations (constant electric 
field, Sauter pulse), so the use of the constant electric field as a toy 
model is a need to obtain insight into this complex problem.

The computation of the Schwinger effect in [13] included only 
the spatial part of the current, however allowing for backreaction, 
the conservation of the current induces a non-zero j0(k), which it-
self induces a second backreaction via the zeroth component of the 
Maxwell equation. Following [11], this approach is not totally con-
sistent with the choice of gauge, as A0 cannot be exactly zero in 
the presence of charge. For a first simple calculation in this letter, 
however, we consider only the spatial part of the Einstein–Maxwell 
equation which reads then:

A′′(η,k) + k2 A(η,k) = a2(η) j1(η,k). (11)

For the initial state, we impose a Bunch–Davies vacuum:

lim
η→−∞ A(η,k) = e−ikη√|2k| , lim

η→−∞ A′(η,k) = −ik√|2k|e−ikη.

(12)

As usually in cosmology, we define the electric power spectrum as:

PE = k

a2
|A′(η,k)|2. (13)

Observe that the power spectrum may or may not go to zero in 
the asymptotic future (η → 0) depending on the behavior of the 
electric field. We hence will also define the ratio of the power 
spectrum when the backreaction are turned on to the free re-
sponse (when jμ(x) = 0):

PE

P free
E

= |A′(η)|2
|A′(η)|2free

, (14)

with |A′(η)|2free = |k|/2.

Backreaction and plasma oscillation Equation (11) does not have an 
analytical solution but it is possible to perform a numerical res-
olution. To do so, we will first reformulate it with the help of 
dimensionless variables:

ε ≡ e

H
, μ ≡ m

H
, τ ≡ ηH . (15)

Equation (11) becomes then:

Ä(τ ,k) + k2

H2
A(τ ,k) = ε

πτ 2
ωF (τ ,k)

sinh(2πε Ȧ(τ ,k)τ )

sinh(2πωF (τ ,k))
, (16)

where a dot denotes a derivative with respect to the dimensionless 

time τ and ωF (τ , k) ≡
√

ε2 Ȧ(τ ,k)2τ 2 + μ2.
We numerically solved equation (11), with the boundary con-

ditions (12). The result is displayed in Fig. 1 which shows a typ-
ical behavior for the mode function |A′(τ , k)|2. In the asymptotic 
past, the backreaction term can be neglected. Then one observes 
plasma oscillations which resemble to the one found in flat space-
time [18]. However these oscillations are damped by the dilution 
due to the expansion of the Universe. Qualitatively, the frequency 
of these plasma oscillations is inversely proportional to the co-
moving momentum k. Indeed, as we will also discuss later, in 
the ultraviolet regime: for k � 1, the electromagnetic field is not 
H
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Fig. 1. We propose an example of the behavior of the mode function where H = k =
ε = μ = 1. The upper yellow constant line is the free case ( j = 0). The blue line is 
the mode function when the backreaction corrections are turn on. In the asymptotic 
past, the current vanishes and the two functions are equal. As one approaches the 
asymptotic future, the plasma oscillations appear.

Fig. 2. We plot the power spectrum as given by equation (14). The selected pa-
rameters are: H = ε = 1. From bottom to top, the values of the mass are: μ =
0, 0.2, 0.5, 1.

sensitive to gravity and is unaffected by the Schwinger effect. Con-
versely, in the infrared regime, for k

H � 1, the plasma oscillations 
are the dominant physical phenomenon and their frequency is in-
creased. Figs. 2 and 3 show typical power spectra. In the ultraviolet 
regime ( k

H � 1), the electric power spectrum is unaffected by the 
Schwinger effect because the backreaction of the current is neg-
ligible. Indeed, in this regime, the electromagnetic oscillations are 
outside the de Sitter horizon and are unaffected by gravity effects. 
However in the infrared regime ( k

H � 1), the power spectrum gets 
significantly reduced due to the significant screening of the backre-
action of the Schwinger pairs. Observe that varying the Hubble rate 
H just changes the window of the comoving momentum k consid-
ered. Indeed the relevant quantity to understand the backreaction 
effect is k

H . The current is always positive in the direct space, as a 
consequence the power spectrum is always reduced with respect 
to its flat spacetime value. As a result, the electromagnetic field is 
not significantly enhanced. We will now turn to a phenomenolog-
ical analysis of the parameters ε and μ to quantify how much the 
electric power spectrum is damped.

We are now in the position to phenomenologically discuss the 
impact of the mass parameter (cf. Fig. 2). The more μ dwindles, 
the more the power spectrum dwindles. Indeed the heavier the 
mass of the pairs is, the smaller the current is (cf. [13]). This im-
plies that less pairs are created so that the screening of the electric 
field is less important.

Now we turn to the phenomenological study of the gauge cou-
pling ε . The more ε increases, the more the power spectrum 
dwindles. The more the gauge coupling increases, the stronger the 
Fig. 3. We plot the power spectrum as given by equation (14). The selected param-
eters are: H = μ = 1. From top to bottom, the values of the gauge coupling are: 
ε = 0.6, 0.8, 1, 1.2. For intermediate values of k, numerical instabilities do not allow 
us to compute the power spectrum for all k.

photon and pairs are coupled together and the less important the 
amplification of the electric field is.

In all the scenarios depicted so far, no enhancement of the elec-
tromagnetic field is reported and in agreement with [11]. Namely 
via backreaction, triggering the Schwinger effect during inflation 
has the only effect of constraining magnetogenesis scenario.

Possible amplification of the electromagnetic field We now consider 
bosonic pairs created by the Schwinger effect, in this case the cur-
rent reads [10]:

j1(η,k) = e

π
ωB(η,k)

sinh
(

2π
H eηA′(η,k)

)

sinh
(

2π
H ωB(η,k)

) , (17)

ωB(η,k) ≡
√

e2η2 A′(η,k)2 + m2 − H2/4. (18)

Comparing with equation (10) the only change is ωB(η, k)2 →
ωF (η, k)2 − H2/4. Therefore the parameter space to be examined 
is m2

H2 ∈ (0, 1/4). We propose an ansatz A′(η) = c
η which is the 

minimal requirement for the solution in order to have enhance-
ment of the electromagnetic field, where the parameter c is to be 
determined. For infrared modes (k/H � 1), the current (17) be-
comes the dominant term in the Einstein–Maxwell equation (11). 
Using this ansatz together with (11), (15), (17) and (18), we find 
the following scalar equation which may or may not have solution 
depending on the parameters:

−c = ε

π

sinh(2πεc)ωc

sinh(2πωc)
, (19)

where ωc ≡ √
μ2 + ε2c2 − 1/4. Observe that in the fermionic case, 

the factor “−1/4” is absent, the only trivial solution is c = 0, no 
enhancement solution is found. In the bosonic case, the factor 
“−1/4” is present and we consider the case of μ = 0. In this case a 
non-trivial solution of (19) can be found numerically if c is purely 
imaginary. In Fig. 4, we plot a typical solution which arises for 
ε = 1, in this case csol = 0.32i. We have numerically checked that 
it is the imaginary part of the electric field A′(η) (cf. Eq. (3)) which 
is enhanced while the real part stays roughly constant. In the in-
frared regime (k/H � 1), using expansion in powers of k/H , we 
get analytical estimates for the power spectrum: P E (k) = |csol|2k. 
Both the numerical results and the analytic estimates are plotted 
in Fig. 4.

To exist, this solution needs to be stable. We look at stability by 
considering a small perturbation around the solution A′(η) = c

η . 
We introduce α(η) such that A′(η) = c + α(η), with α(η) � c . 
η η
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Fig. 4. We report a non-trivial solution where the power spectrum gets enhanced, 
in this case μ = 0 and ε = 1. The dots are the result of the numerical integration of 
(11) whereas the plain line is the analytical estimate |csol|2k.

Using this ansatz together with (11), (15), (17) and (18), to the 
leading order, we find that α(η) satisfies the following equation:

α′(η) = α(η)

η
w, (20)

whose solution is α(η) ∼ ηw and w given by:

w = 2ε2ωc
cosh(2πcε)

sinh(2πωc)
+ cε3 sinh(2πcε)

πωc sinh(2πωc)

− 2cε3 coth(2πωc) sinh(2πcε)

sinh(2πωc)
. (21)

The solution is stable if w > 0. In our specific case (μ = 0 and 
ε = 1), we find w(csol) = 2.2 > 0 implying that our solution is sta-
ble.

Conclusion and remarks The Schwinger effect in de Sitter space-
time is now a topical playground for cosmologists. However, very 
few was done regarding the role these pairs may play on the 
electromagnetic sector of the theory. In this letter, we completed 
the picture of the Schwinger effect by studying the backreaction 
of the Schwinger pairs to an electromagnetic field. We first pre-
sented the basic setup for studying backreaction, then solved the 
Einstein–Maxwell equation numerically and investigated the pa-
rameter space. Our major conclusions are that the backreaction of 
fermion pairs created decrease or unaffect the electric field for all 
the parameters we considered. This corresponds to the screening 
of the fermions to the photon field. Conversely, for light bosons, 
we reported a solution where the electric field is enhanced. It cor-
responds to an anti-screening of the bosons to the photon field.

This regime where the amplification of the electromagnetic 
field occurs corresponds to a regime of infrared-hyperconductivity 
(IR-HC) [10,11], where decreasing the electric field increases the 
resulting created pairs. In Ref. [14], the detailed regime of IR-HC

in the D-dimension boson case is given and happened for 
(

eE
H2

)2 ∈
(m2

H2 , 2D−3
4 + ε), with 0 < ε � 1 for D = 2, 3 and ε positive but un-

bounded for D = 4. Our solution with μ = 0 corresponds to cases 
where infrared-hyperconductivity is maximal.

We considered the 1 +1 D case so that the physics becomes ap-
parent but the generalization to higher dimension is the straight-
forward next step. Observe that for the 4D problem, equation 
(3.4) of [11], without the kinetic coupling, corresponds exactly 
to the 2D. Furthermore, the induced current has been found to 
have the same qualitative behavior up to corrections coming from 
dimension. Hence we expect our qualitative results: screening 
and anti-screening of the photon field to hold in higher dimen-
sions.
Another direction worth to investigate would be to consider 
the full system {Schwinger created particles, photon field}, with-
out the local constant field approximation used in this letter and 
deal with spatial variations of the electric field for the Schwinger 
pair creation. Aiming at doing that a technical point needs to be 
emphasized. While for the constant electric field, we replaced the 
Fourier transformed electric field (8) in the equation (96) of [13] to 
obtain (9), in the case of space dependent electric field, one has to 
replace in the Schwinger current the electric field in position space 
(3) and then perform a Fourier transform of the Schwinger current. 
We argue that to study such backreaction problems, the approach 
presented in [13] will not be sufficient and it will be required to 
study the Schwinger effect in de Sitter space with methods more 
suited for involved numerical investigation. For instance real-time 
lattice simulation techniques have been applied successfully in [21]
to study the backreaction problem in flat spacetime. More tech-
niques are also described in [5] but their generalization to de Sitter 
spacetime are beyond the scope of this letter.

Magnetic fields are ubiquitous in the Universe but their origin 
is still a mystery [22]. Their generation mechanism can be roughly 
divided into two categories: primoridial ones (a review and a re-
cent example: [23,24]) which happened before recombination and 
astrophysical ones (a review and a recent example: [25,26]) hap-
pening after recombination. In this letter, we investigated an alter-
native possibility of amplifying the electromagnetic field with the 
help of the backreaction of the Schwinger particles created dur-
ing inflation. For primordial scenario during inflation, to enhance 
an electromagnetic field, one needs to break the conformal in-
variance of Maxwell theory. Usually this is done by introducing 
a non-canonical kinetic term or by adding a mass to the photon 
field. Those magnetogenesis scenarios are known to suffer prob-
lems such as ghosts, the strong coupling problem and the backre-
action problem. However the backreaction to the electric field was 
never investigated before and could change drastically the dynam-
ics as we described already in 1 + 1 D (see also reference [27]
for a brief review of inflationary magnetogenesis and its possible 
connection to Schwinger effect in curved spacetime). Furthermore 
if the Schwinger pairs are light enough, the electromagnetic field 
could then be enhanced without any other mechanism. In the fu-
ture, we will study the same mechanism with the presence of 
magnetic field in the 4D case to show whether it is relevant to the 
primordial magnetogenesis and applicable to the inflationary era.
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