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Abstract

Many optimization problems of practical interest are computationally intractable. Therefore,
a practical approach for solving such problems is to employ heuristic (approximation) algo-
rithms that can 6nd nearly optimal solutions within a reasonable amount of computation time.
An improvement algorithm is a heuristic algorithm that generally starts with a feasible solution
and iteratively tries to obtain a better solution. Neighborhood search algorithms (alternatively
called local search algorithms) are a wide class of improvement algorithms where at each iter-
ation an improving solution is found by searching the “neighborhood” of the current solution.
A critical issue in the design of a neighborhood search algorithm is the choice of the neighbor-
hood structure, that is, the manner in which the neighborhood is de6ned. As a rule of thumb,
the larger the neighborhood, the better is the quality of the locally optimal solutions, and the
greater is the accuracy of the 6nal solution that is obtained. At the same time, the larger the
neighborhood, the longer it takes to search the neighborhood at each iteration. For this reason,
a larger neighborhood does not necessarily produce a more e<ective heuristic unless one can
search the larger neighborhood in a very e=cient manner. This paper concentrates on neigh-
borhood search algorithms where the size of the neighborhood is “very large” with respect to
the size of the input data and in which the neighborhood is searched in an e=cient manner.
We survey three broad classes of very large-scale neighborhood search (VLSN) algorithms: (1)
variable-depth methods in which large neighborhoods are searched heuristically, (2) large neigh-
borhoods in which the neighborhoods are searched using network Bow techniques or dynamic
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programming, and (3) large neighborhoods induced by restrictions of the original problem that
are solvable in polynomial time.? 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Many optimization problems of practical interest are computationally intractable.
Therefore, a practical approach for solving such problems is to employ heuristic (ap-
proximation) algorithms that can 6nd nearly optimal solutions within a reasonable
amount of computational time. The literature devoted to heuristic algorithms often
distinguishes between two broad classes: constructive algorithms and improvement al-
gorithms. A constructive algorithm builds a solution from scratch by assigning values
to one or more decision variables at a time. An improvement algorithm generally
starts with a feasible solution and iteratively tries to obtain a better solution. Neighbor-
hood search algorithms (alternatively called local search algorithms) are a wide class
of improvement algorithms where at each iteration an improving solution is found
by searching the “neighborhood” of the current solution. This paper concentrates on
neighborhood search algorithms where the size of the neighborhood is “very large”
with respect to the size of the input data. For large problem instances, it is impractical
to search these neighborhoods explicitly, and one must either search a small portion of
the neighborhood or else develop e=cient algorithms for searching the neighborhood
implicitly.
A critical issue in the design of a neighborhood search approach is the choice of

the neighborhood structure, that is, the manner in which the neighborhood is de6ned.
This choice largely determines whether the neighborhood search will develop solutions
that are highly accurate or whether they will develop solutions with very poor local
optima. As a rule of thumb, the larger the neighborhood, the better is the quality
of the locally optimal solutions, and the greater is the accuracy of the 6nal solution
that is obtained. At the same time, the larger the neighborhood, the longer it takes to
search the neighborhood at each iteration. Since one generally performs many runs of
a neighborhood search algorithm with di<erent starting points, longer execution times
per iteration lead to fewer runs per unit time. For this reason a larger neighborhood
does not necessarily produce a more e<ective heuristic unless one can search the larger
neighborhood in a very e=cient manner.
Some very successful and widely used methods in operations research can be viewed

as very large-scale neighborhood search techniques. For example, if the simplex algo-
rithm for solving linear programs is viewed as a neighborhood search algorithm, then
column generation is a very large-scale neighborhood search method. Also, the aug-
mentation techniques used for solving many network Bows problems can be categorized
as very large-scale neighborhood search methods. The negative cost cycle canceling al-
gorithm for solving the min cost Bow problem and the augmenting path algorithm for
solving matching problems are two such examples.
In this survey, we categorize very large-scale neighborhood methods into three

possibly overlapping classes. The 6rst category of neighborhood search algorithms
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we study are variable-depth methods. These algorithms focus on exponentially large
neighborhoods and partially search these neighborhoods using heuristics. The second
category contains network Bow based improvement algorithms. These neighborhood
search methods use network Bow techniques to identify improving neighbors. Finally,
in the third category we discuss neighborhoods for NP-hard problems induced by
subclasses or restrictions of the problems that are solvable in polynomial time. Al-
though we introduced the concept of large-scale neighborhood search by mentioning
column generation techniques for linear programs and augmentation techniques for net-
work Bows, we will not address linear programs again. Rather, our survey will focus
on applying very large-scale neighborhood search techniques to NP-hard optimization
problems.
This paper is organized as follows. In Section 2, we give a brief overview of local

search. We discuss variable-depth methods in Section 3. Very large-scale neighborhood
search algorithms based on network Bow techniques are considered in Section 4. In
Section 5, e=ciently solvable special cases of NP-hard combinatorial optimization prob-
lems and very large-scale neighborhoods based on these special cases are presented.
We describe neighborhood metrics that might be a guide to the performance of local
search algorithms with respect to the given neighborhoods in Section 6. Finally, in Sec-
tion 7 we discuss the computational performance of some of the algorithms mentioned
in the earlier sections.

2. Local search: an overview

We 6rst formally introduce a combinatorial optimization problem and the concept of
a neighborhood. There are alternative ways of representing combinatorial optimization
problems, all relying on some method for representing the set of feasible solutions.
Here, we will let the set of feasible solutions be represented as subsets of a 6nite set.
We formalize this as follows:
Let E = {1; 2; : : : ; m} be a 6nite set. In general, for a set S, we let |S| denote its

cardinality. Let F ⊆ 2E , where 2E denotes the set of all the subsets of E. The elements
of F are called feasible solutions. Let f : F → R. The function f is called the
objective function. Then an instance of a combinatorial optimization problem (COP)
is represented as follows:

Minimize {f(S): S ∈F}:
We assume that the family F is not given explicitly by listing all its elements;

instead, it is represented in a compact form of size polynomial in m. An instance of
a combinatorial optimization problem is denoted by the pair (F; f). For most of the
problems we consider, the cost function is linear, that is, there is a vector f1; f2; : : : ; fm
such that for all feasible sets S, f(S) =

∑
i∈S fi.

Suppose that (F; f) is an instance of a combinatorial optimization problem. A neigh-
borhood function is a point to set map N : F → 2E . Under this function, each S ∈F
has an associated subset N (S) of E. The set N (S) is called the neighborhood of the
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solution S, and we assume without loss of generality that S ∈N (S). A solution S∗ ∈F is
said to be locally optimal with respect to a neighborhood function N if f(S∗)6f(S)
for all S ∈N (S∗). The neighborhood N (S) is said to be exponential if |N (S)| grows
exponentially in m as m increases. Throughout most of this survey, we will address
exponential size neighborhoods, but we will also consider neighborhoods that are too
large to search explicitly in practice. For example, a neighborhood with m3 elements
is too large to search in practice if m is large (say greater than a million).
We will refer to neighborhood search techniques using such neighborhoods as very

large-scale neighborhood search algorithms or VLSN search algorithms.
For two solutions S and T , we let S−T denote the set of elements that appear in S

but not in T . We de6ne the distance d(S; T ) as |S − T |+ |T − S|, that is, the number
of elements of E that appear in S or T but not both. Occasionally, we will permit
neighborhoods to include infeasible solutions as well. For example, for the TSP we
may permit the neighborhood of a tour to include each of the paths obtained by deleting
an edge of the tour. To emphasize that the neighborhood contains more than tours, we
normally give a combinatorial description of the non-feasible solutions permitted in the
search. We refer to these non-feasible combinatorial structures as reference structures.
For example, a Hamiltonian path may be a reference structure.
A neighborhood search algorithm (for a cost minimization problem) can be concep-

tualized as consisting of three parts:
(i) A neighborhood graph NG de6ned with respect to a speci6c problem instance,

where NG is a directed graph with one node for each feasible solution (and=or
instance of a non-feasible reference structure) created, and with an arc (S; T )
whenever T ∈N (S).

(ii) A method for searching the neighborhood graph at each iteration.
(iii) A method for determining what is the next node of the neighborhood graph that

the search in Step (ii) will choose. We will refer to this node as the BaseSolution.
The algorithm terminates when S is a locally optimal solution with respect to the given
neighborhood. (See [1] for an extensive survey.)
We next de6ne two neighborhoods based on the distance. The 6rst neighborhood is
Nk(S) = {T ∈F : d(S; T )6 k}. We will refer to this neighborhood as the distance-k
neighborhood.
For some problem instances, any two feasible solutions have the same cardinality.

This is true for the traveling salesman problem (TSP), where each feasible solution S
represents a tour in a complete graph on n cities, and therefore has n arcs (see [46] for
details on the TSP). In general, we say that T can be obtained by a single exchange
from S if |S−T |=|T−S|=1; we say T can be obtained by a k-exchange if |T−S|=|S−
T |=k. We de6ne the k-exchange neighborhood of S to be {T : |S−T |=|T−S|6 k}. If
any two feasible solutions have the same cardinality, then the k-exchange neighborhood
of S is equal to N2k(S). A standard example for the k-exchange neighborhood for the
TSP is the 2-exchange neighborhood, also called the 2-opt neighborhood. Each node
in the 2-opt neighborhood graph for the TSP is a tour, and two tours are neighbors
if one can be obtained from the other by a 2-exchange. The method for searching the
neighborhood is exhaustive (or some shortcut), and the next BaseSolution will be an
improving solution.
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Since Nm(S)=F , it follows that searching the distance-k neighborhood can be di=cult
as k grows large. It is typically the case that this neighborhood grows exponentially if
k is not 6xed, and that 6nding the best solution (or even an improved solution) in the
neighborhood is NP-hard if the original problem is NP-hard.

3. Variable-depth methods

For k =1 or 2, the k-exchange (or similarly k-distance) neighborhoods can often be
e=ciently searched, but on average the resulting local optima may be poor. For larger
values of k, the k-exchange neighborhoods yield better local optima but the e<ort spent
to search the neighborhood might be too large. Variable-depth search methods are tech-
niques that search the k-exchange neighborhood partially. The goal in this partial search
is to 6nd solutions that are close in objective function value to the global optima while
dramatically reducing the time to search the neighborhood. Typically, they do not guar-
antee to be local optima. In VLSN search algorithms, we are interested in several types
of algorithms for searching a portion of the k-exchange neighborhood. In this section,
we describe the Lin–Kernighan [48] algorithm for the traveling salesman problem as
well as other variable-depth heuristics for searching the k-exchange neighborhood for
di<erent combinatorial optimization problems. In the next section, we describe other
approaches that in polynomial time implicitly search an exponential size subset of the
k-exchange neighborhood when k is not 6xed.
Before describing the Lin–Kernighan approach, we introduce some notation. Subse-

quently, we will show how to generalize the Lin–Kernighan approach to variable-depth
methods (and ejection chains) for heuristically solving combinatorial optimization prob-
lems. Suppose that T and T ′ are both subsets of E, but not necessarily feasible. A
path from T to T ′ is a sequence T =T1; : : : ; TK =T ′ such that d(Tj; Tj+1)=1 for j=1
to K − 1.
The variable-depth methods rely on a subroutine Move with the following features:

1. At each iteration, the subroutine Move creates a subset Tj and possibly also a
feasible subset Sj from the input pair (Sj−1; Tj−1) according to some search cri-
teria. The subset Tj may or may not be feasible. We represent this operation as
Move(Sj−1; Tj−1) = (Sj; Tj)

2. d(Tj; Tj+1) = 1 for all j = 1 to K − 1.
3. Tj typically satis6es additional properties, depending on the variable-depth

approach.
Let T be the current TSP tour and assume without loss of generality that T visits

the cities in order 1; 2; 3; : : : ; n; 1. A 2-exchange neighborhood for T can be de6ned as
replacing two edges (i; j), and (k; l) by two other edges (i; k) and (j; l) or (i; l) and
(j; k) to form another tour T ′. Note that d(T; T ′) = 4. The 2-exchange neighborhood
may be described more formally by applying 4 Move operations where the 6rst Move
deletes the edge (i; j) from the tour, the second Move inserts the edge (i; k), the third
Move deletes the edge (k; l) and the last Move inserts the edge (j; l).

Let G = (N; A) be an undirected graph on n nodes. Let P = v1; : : : ; vn be an n node
Hamiltonian path of G. A stem and cycle (this terminology is introduced by Glover
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[26]) is an n-arc spanning subgraph that can be obtained by adding an arc (i; j) to a
Hamiltonian path, where i is an end node of the path. Note that if node i is an end
node of the path, and if j is the other end node of the path, then the stem and cycle
structure is a Hamiltonian cycle, or equivalently is a tour. If T is a path or a stem and
cycle structure, we let f(T ) denote its total length.
The Lin–Kernighan heuristic allows the replacement of as many as n edges in mov-

ing from a tour S to a tour T , that is, d(S; T ) is equal to some arbitrary k 6 2n. The
algorithm starts by deleting an edge from the original tour T1 constructing a Hamilto-
nian path T2. Henceforth one of the end points of T2 is 6xed and stays 6xed until the
end of the iteration. The other end point is selected to initiate the search. The even
moves insert an edge into the Hamiltonian path T2j incident to the end point that is not
6xed to obtain a stem and cycle T2j+1. The odd moves in the iteration delete an edge
from the current stem and cycle T2j−1 to obtain a Hamiltonian path T2j. From each
Hamiltonian path T2j, one implicitly constructs a feasible tour S2j by joining the two
end nodes. At the end of the Lin–Kernighan iteration we obtain the new BaseSolution
tour Si such that f(Si)6 f(S2j) for all j.
Now we will describe the steps of the Lin–Kernighan algorithm in more detail.

During an even move the edge to be added is the minimum length edge incident to
the un6xed end point, and this is added to the Hamiltonian path T2j if and only if
f(S)−f(T2j+1)¿ 0. Lin–Kernighan [48] also describe a look-ahead re6nement to the
way this edge is chosen. The choice for the edge to be added to the Hamiltonian path
T2j is made by trying to maximize f(T2j)−f(T2j+2). On the other hand, the edges to be
deleted during the odd moves are uniquely determined by the stem and cycle structure,
T2j−1 created in the previous move so that T2j will be a Hamiltonian path. Additional
restrictions may be considered when choosing the edges to be added. Researchers have
considered di<erent combinations of restrictions such as an edge previously deleted
cannot be added again or an edge previously added cannot be deleted again in a later
move.
Finally, the Lin–Kernighan algorithm terminates with a local optimum when no

improving tour can be constructed after considering all nodes as the original 6xed node.
We now illustrate the Lin–Kernighan’s algorithm using a numerical example. Con-

sider the tour on 10 nodes shown in Fig. 1(a). The algorithm 6rst deletes the arc (1,
2) creating the Hamiltonian path shown in Fig. 1(b). Then the arc (2, 6) is added
giving the stem and cycle illustrated in Fig. 1(c).
Deleting edge (6, 5) from this structure yields a Hamiltonian path and adding edge

(5, 8), we get another stem and cycle. The edge insertion moves in the Lin–Kernighan
heuristic are guided by a cost criterion based on ‘cumulative gain’ and the edge deletion
moves are de6ned uniquely to generate the path structure. The Lin–Kernighan algorithm
reaches a local optimum when after considering all nodes as the starting node no
improving solutions can be produced.
There are several variations of the Lin–Kernighan algorithm that have produced high

quality heuristic solutions. These algorithms use several enhancements such as 2-opt,
3-opt, and special 4-opt moves [29,39,40,48,49,50,62] to obtain a tour that cannot be
constructed via the basic Lin–Kernighan moves. Also, e=cient data structures are used
to update the tours to achieve computational e=ciency and solution quality [24,40].
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Fig. 1. Illustrating the Lin–Kernighan algorithm: (a) a tour on 10 nodes; (b) a Hamiltonian path; (c) a stem
and cycle.

Papadimitriou [51] showed that the problem of determining a local optimum with
respect to one version of the Lin–Kernighan algorithm is PLS-complete.
Now we can de6ne the variable-depth methods for the TSP with the following

procedure as a generalization of the Lin–Kernighan heuristic. This procedure takes
as input a feasible tour S and then utilizes the function Move de6ned earlier. At
each iteration the function Move creates the pair (Tj; Sj) where subset Tj is either a
feasible solution or else an infeasible instance of a reference structure. The subset Sj
is feasible. The function Move is called for r iterations where the value of r depends
on an appropriate guidance rule. Finally, the procedure Variable-Depth-Search returns
the feasible subset Sk that has the best objective function value found so far.

procedure Variable-Depth-Search(S);
begin
S1:=T1:=S;
for j:=2 to r do (Tj; Sj) =Move(Sj−1; Tj−1);
select the set Sk that minimizes (f(Sj): 16 j6 r);

end;
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This particular type of variable-depth search relies on a heuristic called “Move”
that systematically creates a path of solutions starting from the initial solution. This
framework is quite Bexible, and there are a variety of ways of designing the procedure
Move. The details of how Move is designed can be the di<erence between a successful
heuristic and one that is not so successful.
In the procedure described above, we assumed that Move creates a single feasible

solution at each stage. In fact, it is possible for move to create multiple feasible
solutions at each stage [26,59] or no feasible solution at a stage [26,57].
Many variable-depth methods require the intermediate solutions Tj to satisfy certain

topological (or structural) properties. For example, in the Lin–Kernighan algorithm we
required that for each odd value of j; Tj is a stem and cycle. We also required that
for each even value of j; Tj is a Hamiltonian path. We will also see examples in the
next section where Tj satis6es additional properties that are not structural. For example,
additional properties may depend on the ordering of the indices.
Glover [26] considered a structured class of variable-depth methods called ejection

chains based on classical alternating path methods, extending and generalizing the ideas
of Lin–Kernighan. Glover writes “In rough overview, an ejection chain is initiated by
selecting a set of elements to undergo a change of state (e.g., to occupy new positions
and or receive new values). The result of this change leads to identifying a collection
of other sets, with the property that the elements of at least one must be “ejected
from” their current state. State change steps and ejection steps typically alternate, and
the options for each depend on the cumulative e<ect of previous steps (usually, but
not necessarily, being inBuenced by the step immediately preceding). In some cases,
a cascading sequence of operations may be representing a domino e<ect. The ejection
chain terminology is intended to be suggestive rather than restrictive, providing a
unifying thread that links a collection of useful procedures for exploiting structure,
without establishing a narrow membership that excludes other forms of classi?cation”.
In this paper, we will use the following more restrictive de6nition of ejection chains.

We refer to the variable-depth method as an ejection chain if
(i) |T1|= |T3|= |T5|= · · ·= n, and
(ii) |T2|= |T4|= |T6|= · · ·= n+ 1 (or n− 1).
For each even value of j, if |Tj|=|S|−1, then Tj was obtained from Tj−1 by ejecting an
element. Otherwise, |Tj|= |S|+1, and Tj+1 is obtained from Tj by ejecting an element.
Many of the variable-depth methods developed in the literature may be viewed as
ejection chains. Typically these methods involve the construction of di<erent reference
structures along with a set of rules to obtain several di<erent feasible solutions from
them. To our knowledge, all the variable-depth methods for the traveling salesman
problem considered in the literature may be viewed as ejection chains.
We can envision the nodes of the neighborhood graph with respect to the Lin–

Kernighan neighborhood to consist of paths and stem-and-cycles. (Recall that tours are
also instances of stem-and-cycles.) The endpoints of each edge of the neighborhood
graph would link a path to a stem and cycle. The search technique would be the one
proposed by Lin and Kernighan [42], and the selection procedure would be to select
the best of the tours discovered along the way. Thus the reference structures described
in ejection chains would be the nodes of the neighborhood graph in the ejection chain
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techniques. A technique in which the next BaseSolution is much more than a distance
one from the current BaseSolution is a “variable-depth method”. An ejection chain is
a variable-depth method in which neighbors have the property that one is a subset
of the other (and thus an element has been ejected in going from the larger to the
smaller).
In the method described above, variable-depth methods rely on the function Move.

One can also create exponential size subsets of Nk that are searched using network
Bows. In these neighborhoods, any neighbor can also be reached by a sequence of
Moves in an appropriately de6ned neighborhood graph. Note that for the Lin–Kernighan
algorithm the neighborhood size is polynomial, and it is the search that leads to 6nding
solutions that are much di<erent than the BaseSolution. We describe these network
Bows based techniques in the next section. Some of these techniques can also be viewed
as ejection chain techniques if there is a natural way of associating an ejection chain
(an alternating sequence of additions and deletions) with elements of the neighborhood
[26,27,57,22].
Variable-depth and ejection chain based algorithms have been successfully applied

in getting good solutions for a variety of combinatorial optimization problems. Glover
[26], Rego [59], Zachariasen and Dum [81], Johnson and McGeoch [40], Mak and Mor-
ton [49], Pesch and Glover [53] considered such algorithms for the TSP. The vehicle
routing problem is studied by Rego and Roucairol [61] and Rego [60]. Clustering algo-
rithms using ejection chains are suggested by Dondorf and Pesch [13]. Variable-depth
methods for the generalized assignment problem have been considered by Yagiura
et al. [77] and ejection chain variations are considered by Yagiura et al. [76]. In addi-
tion, short ejection chain algorithms are applied to the multilevel generalized assignment
problem by Laguna et al. [45]. These techniques are also applied to the uniform graph
partitioning problem [16,20,42,52], categorized assignment problem [3], channel assign-
ment problem [17], and nurse scheduling [14]. Sourd [68] apply a very general class
of large neighborhood improvement procedures where the distance between two neigh-
bors is variable to scheduling tasks on unrelated machines. These neighborhoods are
developed by generating partial but still large enumeration trees based on the current
solutions and searched heuristically.

4. Network #ows based improvement algorithms

In this section, we study local improvement algorithms where the neighborhoods
are searched using network Bow based algorithms. The network Bow techniques used
to identify improving neighbors can be grouped into three categories: (i) minimum
cost cycle 6nding methods; (ii) shortest path or dynamic programming based meth-
ods; and (iii) methods based on 6nding minimum cost assignments and matchings.
The neighborhoods de6ned by cycles may be viewed as generalizations of 2-exchange
neighborhoods. Neighborhoods based on assignments may be viewed as generalizations
of insertion-based neighborhoods. In the following three subsections, we give general
de6nitions of these exponential neighborhoods and describe the network Bow algo-
rithms used for 6nding an improving neighbor. For many problems, one determines an
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improving neighbor by applying a network Bow algorithm to a related graph, which
we refer to as an improvement graph.

4.1. Neighborhoods de?ned by cycles

In this subsection, we 6rst de6ne a generic partitioning problem. We then de6ne the
2-exchange neighborhood and the cyclic exchange neighborhood.
Let A= {a1; a2; a3; : : : ; an} be a set of n elements. The collection {S1; S2; S3; : : : ; SK}

de6nes a K-partition of A if each set Sj is non-empty, the sets are pairwise disjoint,
and their union is A. For any subset S of A, let d[S] denote the cost of S. Then the
set partitioning problem is to 6nd a partition of A into at most K subsets so as to
minimize �kd[Sk ].
Let {S1; S2; S3; : : : ; SK} be any feasible partition. We say that {T1; T2; T3; : : : ; TK} is

a 2-neighbor of {S1; S2; S3; : : : ; SK} if it can be obtained by swapping two elements
that are in di<erent subsets. The 2-exchange neighborhood of {S1; S2; S3; : : : ; SK} con-
sists of all 2-neighbors of {S1; S2; S3; : : : ; SK}. We say that {T1; T2; T3; : : : ; TK} is a
cyclic-neighbor of {S1; S2; S3; : : : ; SK} if it can be obtained by transferring single el-
ements among a sequence of k6K subsets in S. Let (S1h ; S

2
m; S

3
n ; : : : ; S

k
p) be such a

sequence of k subsets, then we also require that h = p, that is the last subset of
the sequence is identical to S1h . We refer to the transferring of elements as a cyclic
exchange. We illustrate a cyclic exchange using Fig. 2. In this example, node 9 is trans-
ferred from subset S1 to subset S2. Node 2 is transferred from subset S2 to subset S3.
Node 3 is transferred from subset S3 to S3. Finally, the cycle exchange is completed by
transferring node 14 from subset S3 to subset S4. Finally, the exchange is completed by
transferring node 14 from subset S4 to subset S1. One may also de6ne a path neighbor
in an analogous way. From a mathematical perspective, it is easy to transform a path
exchange into a cyclic exchange by adding appropriate dummy nodes.
In general, the number of cyclic neighbors is substantially greater than the number

of 2-neighbors. Whereas there are O(n2) 2-neighbors, for 6xed value of K , there are
O(nK) cyclic neighbors. If K is allowed to vary with n, there may be an exponential
number of cyclic neighbors.
Thompson [73], Thompson and Orlin [74], and Thompson and Psaraftis [75] show

how to 6nd an improving neighbor in the cyclic exchange neighborhood by 6nding a
negative cost “subset-disjoint” cycle in an improvement graph. Here we will describe
how to construct the improvement graph. Let A={a1; a2; : : : ; an} be the set of elements
for the original set partitioning problem and let S[i] denote the subset containing el-
ement ai. The improvement graph is a graph G = (V; E) where V = {1; 2; : : : ; n} is a
set of nodes corresponding to the indices of the elements of A of the original problem.
Let E = {(i; j): S[i] 	= S[j]}, where an arc (i; j) corresponds to the transfer of node
i from S[i] to S[j] and the removal of j from S[j]. For each arc (i; j)∈E, we let
c[i; j] = d[{i} ∪ S[j] \ {j}]− d[S[j]], that is, the increase in the cost of S[j] when i is
added to the set and j is deleted. We say that a cycle W in G is subset-disjoint if for
every pair i and j of nodes of W; S[i] 	= S[j], that is, the elements of A corresponding
to the nodes of W are all in di<erent subsets. There is a one-to-one cost-preserving cor-
respondence between cyclic exchanges for the partitioning problem and subset-disjoint
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Fig. 2. Illustrating a cyclic exchange.

cycles in the improvement graph. In particular, for every negative cost cyclic exchange,
there is a negative cost subset-disjoint cycle in the improvement graph. Unfortunately,
the problem of determining whether there is a subset-disjoint cycle in the improve-
ment graph is NP-complete, and the problem of 6nding a negative cost subset-disjoint
cycle is NP-hard. (See, for example, Thompson [73], Thompson and Orlin [74], and
Thompson and Psaraftis [75].)
Even though the problem of determining a negative cost subset-disjoint cycle in the

improvement graph is NP-hard, there are e<ective heuristics for searching the graph.
(See, for example, Thompson and Psaraftis [75] and Ahuja et al. [2].)
The cyclic exchange neighborhood search is successfully applied to several combi-

natorial optimization problems that can be characterized as speci6c partitioning prob-
lems. Thompson and Psaraftis [75], Gendreau et al. [25], and Fahrion and Wrede
[19] solve the vehicle routing problem with the cyclic exchange neighborhood search.
Frangioni et al. [23] apply cyclic exchanges to minimum makespan machine scheduling.
Thompson and Psaraftis [75] also demonstrate its application to some scheduling prob-
lems. Ahuja et al. [2] developed the best available solutions for a widely used set of
benchmark instances for the capacitated minimum spanning tree problems using cyclic
exchanges.
The idea of 6nding improving solutions by determining negative cost cycles in im-

provement graphs has been used in several other contexts. Talluri [72] identi6es cost



86 R.K. Ahuja et al. / Discrete Applied Mathematics 123 (2002) 75–102

saving exchanges of equipment type between Bight legs for the daily airline Beet assign-
ment problem by 6nding negative cost cycles in a related network. The Beet assignment
problem can be modeled as an integer multicommodity Bow problem subject to side
constraints where each commodity refers to a Beet type. Talluri considers a given so-
lution as restricted to two Beet types only, and looks for improvements that can be
obtained by swapping a number of Bights between the two Beet types. He develops
an associated improvement graph and shows that improving neighbors correspond to
negative cost cycles in the improvement graph. Schneur and Orlin [66] and Rockafellar
[63] solve the linear multicommodity Bow problem by iteratively detecting and sending
Bows around negative cost cycles. Their technique readily extends to a cycle-based im-
provement heuristic for the integer multicommodity Bow problem. Wayne in [79] gives
a cycle canceling algorithm for solving the generalized minimum cost Bow problem.
Firla et al. [21] introduce an improvement graph for the intersection of any two inte-
ger programs. Paths and cycles in this network correspond to candidates for improving
feasible solutions. Furthermore, this network gives rise to an algorithmic characteriza-
tion of the weighted bipartite b-matching problem. The algorithms discussed by Glover
and Punnen [30] and Yeo [78] construct traveling salesman tours that are better than
an exponential number of tours. These algorithms can also be viewed as computing
a minimum cost cycle in an implicitly considered special layered network. We will
discuss this heuristic in more detail in Section 5.

4.2. Neighborhoods de?ned by paths (or dynamic programming)

We will discuss three di<erent types of neighborhood search algorithms based on
shortest paths or dynamic programming. We discuss these approaches in the context of
the traveling salesman problem. We can view these neighborhood search approaches
when applied to the TSP as: (i) adding and deleting edges sequentially, (ii) accepting
in parallel multiple swaps where a swap is de6ned by interchanging the current order
of two cities in a tour, and (iii) cyclic shifts on the current tour. We next discuss these
neighborhoods in more detail.

4.2.1. Creating a new neighbor by adding and deleting arcs sequentially
We 6rst discuss a class of shortest path based methods that consider neighbors

obtained by alternately adding and deleting edges from the current tour. These methods
exhaustively search a subset of the ejection chain neighborhood of Section 3 with
additional restrictions on the edges to be added. We assume for simplicity that the tour
S visits the cities in the order 1; 2; 3; : : : ; n; 1. Utilizing the terminology introduced in
Section 3, let tour T be a k-exchange neighbor of S and let the path from S to T be the
sequence S=T1; : : : ; TK =T . These neighborhoods correspond to trial solutions created
by odd and even paths described in Punnen and Glover [57] among several other
neighborhoods and trial solutions constructed from di<erent kinds of path structures.
The trial solution generated by odd paths was developed independently by Firla et al.
[22]. To illustrate, this type of trial solution generated by either odd or even paths
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Fig. 3. Illustrating the alternate path exchange.

consider the following algorithm:
(i) Drop the edge (n; 1) to obtain a Hamiltonian path T2 and add an edge (1; i) from

node 1 to node i (where i¿ 2) to obtain a stem and cycle structure T3.
(ii) The current terminal node of the path is node i. Drop edge (i; i − 1) and add

edge (i − 1; j) for i¡ j¡n, creating a Hamiltonian path 6rst and then a stem
and cycle structure.

(iii) Check if a termination criterion is reached. If yes, go to Step (iv). If no, let i= j
and go to step (ii).

(iv) Drop edge (j; j − 1) and add the 6nal edge (j − 1; n) to complete the tour.
Fig. 3 illustrates this process on a 9 node tour S=(1; 2; : : : ; 9; 1). The path exchange

procedure initiates by deleting edge (n; 1) and adding edge (1; 4). Then edge (3; 4) is
dropped and edge (3; 7) is added. Finally, the new tour T is created by deleting edge
(6; 7) and adding edge (6; 9). In Fig. 3(a), we represent the edges that are added by
bold lines and the edges that are dropped by a dash on the edge. Fig. 3(b) illustrates
the new tour obtained after the path exchange.
Firla et al. [22], Glover [26] and Punnen and Glover [57] show that an improving

solution in this neighborhood can be found in O(n2) time by 6nding an odd or even
length shortest path in an improvement graph. Here, we describe an improvement graph
that can be constructed to identify the best neighbor of a tour by 6nding a shortest
path with even or odd number of nodes. Recall that S = (1; 2; 3; : : : ; n; 1) is the current
n node traveling salesman tour. The improvement graph is a graph G = (V; E) where
V = {1; 2; : : : ; n} corresponding to nodes of the original problem, and E = {(i; j): 1 =
i¡ j−1¡n} is a set of directed arcs. Arcs (1; j)∈E (such that 2¡j=n) correspond
to the deletion of edge (n; 1) and the addition of edge (1; j), and arcs (i; j)∈E (such
that 1¡i¡j − 1¡n) correspond to the deletion of edge (i − 1; i) and the addition
of edge (i − 1; j) on the original tour S. If d[i; j] is the cost of going from city i to
j then we associate a cost c[1; j] =−d[n; 1] + d[1; j] for each arc (1; j)∈E such that
2¡j = n and a cost c[i; j] =−d[i − 1; i] + d[i − 1; j] for each arc (i; j)∈E such that
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1¡i¡j−1¡n. Finally, 6nding a negative cost path in G from node 1 to n identi6es
a pro6table k-exchange.
In addition, trial solutions created from even and odd paths, new path structures

such as broken paths and reverse paths leading to di<erent trial solutions and reference
structures are studied in [57]. The size of the neighborhood generated by even and odd
paths alone is !(n2n). Speed up techniques for searching neighborhoods is important
even when the size of the neighborhood is not exponential. For example, using a
shortest path algorithm on a directed acyclic improvement graph, Glover [27] obtained
a class of best 4-opt moves in O(n2) time.

4.2.2. Creating a new neighbor by compounded swaps
The second class of local search algorithms de6ned by path exchanges is a gen-

eralization of the swap neighborhood. Given an n node traveling salesman tour T =
(1; 2; 3; : : : ; n; 1), the swap neighborhood generates solutions by interchanging the posi-
tions of nodes i and j for 16 i¡ j6 n. For example letting i = 3 and j = 6; T ′ =
(1; 2; 6; 4; 5; 3; 7; : : : ; n; 1) is a neighbor of T under the swap operation. Two swap op-
erations switching node i with j, and node k with l are said to be independent if
max{i; j}¡min{k; l}, or min{i; j}¿max{k; l}. Then a large-scale neighborhood on
the tour T can be de6ned by compounding (taking the union of) an arbitrary number
of independent swap operations.
Congram et al. [9] and Potts and van de Velde [55] applied this compounded swap

neighborhood to the single machine total weighted tardiness scheduling problem and the
TSP, respectively. They refer to this approach as dynasearch. In their paper, Congram
et al. [9] show that the size of the neighborhood is O(2n−1) and give a dynamic
programming recursion that 6nds the best neighbor in O(n3) time. Hurink [38] apply
a special case of the compounded swap neighborhood where only adjacent pairs are
allowed to switch in the context of one machine batching problems and show that an
improving neighbor can be obtained in O(n2) time by 6nding a shortest path in the
appropriate improvement graph.
Now we describe an improvement graph to aid in searching the compounded swap

neighborhood. Let T = (1; 2; 3; : : : ; n; 1) be an n node traveling salesman tour. The im-
provement graph is a graph G = (V; E), where (i) V = {1; 2; : : : ; n; 1′; 2′; : : : ; n′} is a
set of nodes corresponding to the nodes of the original problem and a copy of them,
and (ii) E is a set of directed arcs (i; j′) ∪ (j′; k), where an arc (i; j′) corresponds to
the swap of the nodes i and j, and an arc (j′; k) indicates that node k will be the
6rst node of the next swap. For example, a path of three arcs (i; j′); (j′; k); (k; l′) in
G represents two swap operations switching node i with j, and node k with l. To
construct the arc set E, every pair (i; j′) and (j′; k) of nodes in V is considered, and
arc (i; j′) is added to E if and only if j¿ i¿ 1. Arc (j′; k) is added to E if and
only if j = 1 and k ¿ j or j¿ 1 and k ¿ j + 1. For each arc (i; j′)∈E, we associate
a cost c[i; j′] that is equal to the net increase in the optimal cost of the TSP tour
after deleting the edges (i − 1; i); (i; i + 1); (j − 1; j) and (j; j + 1) and adding the
edges (i − 1; j); (j; i + 1); (j − 1; i) and (i; j + 1). In other words, if d[i; j] is the
cost of going from node i to node j in the original problem and d[n; n+ 1] = d[n; 1],
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then

c[i; j′] = (−d[i − 1; i]− d[i; j]− d[j; j + 1])

+(d[i − 1; j] + d[j; i] + d[i; j + 1])

for j′ = i + 1;

and

c[i; j′] = (−d[i − 1; i]− d[i; i + 1]− d[j − 1; j]− d[j; j + 1])

+ (d[i − 1; j] + d[j; i + 1] + d[j − 1; i] + d[i; j + 1]) for j′¿i + 1:

The cost c[j′; k] of all edges (j′; k) are set equal to 0.
Now 6nding the best neighbor of a TSP tour for the compounded swap neighborhood

is equivalent to 6nding a shortest path on this improvement graph, and hence takes
O(n2) time. Note that since TSP is a cyclic problem, one of the nodes is held 6xed
during the exchange. In the above construction of the improvement graph, without
loss of generality, we assumed that node 1 is not allowed to move, and hence the
neighborhood is searched by 6nding a shortest path from node 1′ to either node n or
n′. The dynamic programming recursion given in Congram et al. [9] for searching the
neighborhood will also take O(n2) time when applied to the TSP. The shortest path
algorithm given above takes O(n3) time when applied to the total weighted tardiness
scheduling problem because it takes O(n3) time to compute the arc costs.

4.2.3. Creating a new neighbor by a cyclical shift
The 6nal class of local search algorithms in this section is based on a kind of cyclic

shift of pyramidal tours [8]. A tour is called pyramidal if it starts in city 1, then
visits cities in increasing order until it reaches city n, and 6nally returns through the
remaining cities in decreasing order back to city 1. Let T (i) represent the city in the
ith position of tour T . A tour T ′ is a pyramidal neighbor of a tour T if there exists
an integer p such that:
(i) 06p6 n,
(ii) T ′(1) = T (i1); T ′(2) = T (i2); : : : ; T ′(p) = T (ip) with i1¡i2¡ · · ·¡ip and
(iii) T ′(p+1)=T (j1); T ′(p+2)=T (j2); : : : ; T ′(n)=T (jn−p) with j1¿j2¿ · · ·¿jn−p.
For example, if tour T = (1; 2; 3; 4; 5; 1) then tour T ′ = (1; 3; 5; 4; 2; 1) is a pyramidal
neighbor. Note that a drawback of this neighborhood is that edges (1,2) and (1; n) be-
long to all tours. To avoid this Carlier and Villon [8] consider the n rotations associated
with a given tour. The size of this neighborhood is "(n2n−1) and it can be searched in
O(n3) time using n iterations of a shortest path algorithm in the improvement graph.
Now, we describe an improvement graph where for the TSP a best pyramidal neigh-

bor can be found by solving for a shortest path on this graph. Let T =(1; 2; 3; : : : ; n; 1)
be an n node traveling salesman tour. The improvement graph is a graph G = (V; E)
where (i) V ={1; 2; : : : ; n; 1′; 2′; : : : ; n′} corresponding to the nodes of the original prob-
lem and a copy of them, and (ii) E is a set of directed arcs (i; j′) ∪ (j′; k), where an
arc (i; j′) corresponds to having the nodes i to j in a consecutive order, and an arc
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(j′; k) corresponds to skipping the nodes j+1 to k− 1 and appending them in reverse
order to the end of the tour. To construct the arc set E, every pair (i; j′) and (j′; k) of
nodes in V is considered. Arc (i; j′) is added to E if and only if i6 j, and arc (j′; k)
is added to E if and only if j¡k + 1. For each arc (i; j′)∈E, we associate a cost
c[i; j′] that is equal to the net increase in the cost of the pyramidal neighbor of the
TSP tour after adding the edge (j + 1; i − 1; ) when the tour is visiting the previously
skipped cities in reverse order. For each arc (j′; k)∈E, we associate a cost c[j′; k] that
is equal to the net increase in the optimal cost of the TSP tour after adding the edge
(j; k) and deleting the edges (j; j + 1) and (k − 1; k). In other words, if d[i; j] is the
cost of going from city i to j in the original problem, then for i¡ j and j¡n− 1

c[i; j′] = d[j + 1; i − 1];

c[j′; k] =−d[j; j + 1]− d[k − l; k] + d[k − 1; k]:

Note that some extra care must be taken when calculating the cost of the edges that
have 1, 1′; n, and n′ as one of the end points. Now the neighborhood can be searched
by 6nding a shortest path from node 1 to either node n or n′. Carlier and Villon [8]
also show that if a tour is a local optimum for the above neighborhood, then it is a
local optimum for the 2-exchange neighborhood.
In addition to these three classes of neighborhoods, dynamic programming has been

used to determine optimal solutions for some special cases of the traveling salesman
problem. Simonetti and Balas [67] solve the TSP with time windows under certain
kinds of precedence constraints with a dynamic programming approach. Burkard et al.
[7] prove that over a set of special structured tours that can be represented via PQ-trees,
the TSP can be solved in polynomial time using a dynamic programming approach.
They also show that the set of pyramidal tours can be represented by PQ-trees and
there is an O(n2) algorithm for computing the shortest pyramidal tour. These results
will be discussed in more detail in Section 5.

4.3. Neighborhoods de?ned by assignments and matchings

In this section, we discuss an exponential neighborhood structure de6ned by 6nding
minimum cost assignments in an improvement graph. We illustrate this neighborhood
in the context of the traveling salesman problem. Also, we show that the assignment
neighborhood can be generalized to a neighborhood de6ned by 6nding a minimum cost
matching on a non-bipartite improvement graph. We demonstrate this generalization on
the set partitioning problem.
The assignment neighborhood for the traveling salesman problem can be viewed as a

generalization of the simple neighborhood de6ned by ejecting a node from the tour and
reinserting it optimally. Given an n node tour T =(1; 2; 3; : : : ; n; 1), if the cost of going
from city i to j is d[i; j], then the 6rst step in searching the assignment neighborhood
is to create a bipartite improvement graph as follows:
(i) For some k 6 �n=2
, choose and eject k nodes from the current tour T . Let the

set of these ejected nodes be V = {v1; v2; : : : ; vk} and the set of remaining nodes
be U = {u1; u2; : : : ; un−k}.
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Fig. 4. Illustrating the matching neighborhood.

(ii) Construct a sub-tour T ′ = (u1; u2; : : : ; un−k ; u1). Let qi denote the edge for every
(ui; ui+1) for i = 1 to n− k − 1, and let qn−k denote the edge (un−k ; u1).

(iii) Now construct a complete bipartite graph G = (N; N ′; E) such that N = {qi: i= 1
to n − k}, N ′ = V , and the weight on each edge (qi; vj) is c[qi; vj] = d[ui; vj] +
d[vj; ui+1]− d[ui; ui+1].

A neighbor of T corresponds to a tour T ∗ obtained by inserting the nodes of V
into the subtour T ′ with at most one node inserted between adjacent nodes of T ′.
The minimum cost assignment of k arcs corresponds to the minimum cost neighbor of
T .
Using Fig. 4, we will demonstrate the assignment neighborhood on the 9 node

tour T = (1; 2; 3; 4; 5; 6; 7; 8; 9; 1). Let V = {2; 3; 5; 8}, then we can construct the sub-
tour on the nodes in U as T ′ = (1; 4; 6; 7; 9; 1). Fig. 4 illustrates the bipartite graph
G with only the edges of the matching for simplicity. The new tour obtained is
T ′′ = (1; 3; 4; 8; 6; 5; 7; 9; 2; 1). Note that when k = �n=2
, the size of the assignment
neighborhood is equal to !(�n=2
!).
The assignment neighborhood was 6rst introduced in the context of the TSP by Sar-

vanov and Doroshko [64] for the case k=n=2 and n even. Gutin [31] gives a theoretical
comparison of the assignment neighborhood search algorithm with the local steepest
descent algorithms for k = n=2. Punnen [56] considered the general assignment neigh-
borhood for arbitrary k and n. An extension of the neighborhood where paths instead
of nodes are ejected and reinserted optimally by solving a minimum weight matching
problem is also given in [56]. Gutin [32] shows that for certain values of k the neigh-
borhood size can be maximized along with some low complexity algorithms searching
related neighborhoods. Gutin and Yeo [35] constructed a neighborhood based on the
assignment neighborhood and showed that moving from any tour T to another tour
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T ′ using this neighborhood takes at most 4 steps. Deineko and Woeginger [12] study
several exponential neighborhoods for the traveling salesman problem and the quadratic
assignment problem based on assignments and matchings in bipartite graphs as well
as neighborhoods based on partial orders, trees and other combinatorial structures. The
matching based neighborhood heuristic is also applied to the inventory routing problem
by Dror and Levy [15].
Another class of matching based neighborhoods can be obtained by packing subtours,

where the subtours are generated by solving a bipartite minimum weight matching
problem [41,58]. It is NP-hard to 6nd the best such tour. E=cient heuristics can be
used to search this neighborhood [28,41,58]. Neighborhood search algorithms using
this neighborhood can be developed by utilizing cost modi6cations or other means to
control the matching generated.
We next consider a neighborhood structure based on non-bipartite matchings. We

will discuss this neighborhood in the context of the general set partitioning problem
considered in Section 3. Let S = {S1; S2; S3; : : : ; SK} be a partition of the set A =
{a1; a2; a3; : : : ; an}. Then construct a complete graph G= (N; E) such that every node i
for 16 i6K represents the subset Si in S. Now the weights c[i; j] on the edge (i; j)
of G can be constructed separately with respect to a variety of rules. One such rule
can be as follows:
(i) Let the cost contribution of subset Si to the partitioning problem be d[Si].
(ii) For each edge (i; j) in E, combine the elements in Si and Sj, and repartition it

into two subsets optimally. Let the new subsets be S ′i and S
′
j .

(iii) Then c[i; j] = (d[S ′i ] + d[S
′
j])− (d[Si] + d[Sj]).

Note that if the edges with non-negative weights are eliminated from G, then any
negative cost matching on this graph will de6ne a cost improving neighbor of S. Tailard
apply these types of ideas to a general class of clustering problems in [70], and to the
vehicle routing problem in [69].

5. Solvable special cases and related neighborhoods

There is a vast literature on e=ciently solvable special cases of NP-hard combina-
torial optimization problems. Of particular interest for our purposes are those special
cases that can be obtained from the original NP-hard problem by restricting the problem
topology, or by adding constraints to the original problem, or by a combination of these
two factors. By basing neighborhoods on these e=ciently solvable special cases, one
can often develop exponential sized neighborhoods that may be searched in polynomial
time. We point out that most of these techniques have not been tested experimentally
and might yield poor local optima. Note that the cyclical shift neighborhood discussed
in Section 4 is based on an O(n2) algorithm for 6nding the minimum cost pyramidal
tour.
Our next illustration deals with Halin graphs. A Halin graph is a graph that may be

obtained by embedding a tree that has no nodes of degree 2 in the plane, and joining
the leaf nodes by a cycle so that the resulting graph is planar. Cornuejols et al. [10]
gave an O(n) algorithm for solving the traveling salesman problem on a Halin graph.
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Fig. 5. A Halin graph: (a) a tour on 10 nodes; (b) a Halin extension.

Note that Halin graphs may have an exponential number of TSP tours, such as in the
example of Fig. 3 (taken from [10]).
We now show how Halin graphs can be used to construct a very large neigh-

borhood for the traveling salesman problem. Suppose that T is a tour. We say that
H is a Halin extension of T if H is a Halin graph and if T is a subgraph of H .
Fig. 5 illustrates a Halin extension for tour T = (0; 1; 2; : : : ; 9; 0). Suppose that there
is an e=cient procedure HalinExtend(T ), that creates some Halin extension of T . To
create the neighborhood N (T ), one would let H (T ) = HalinExtend(T ), and then let
N (T ) = {T ′: T ′ is a tour in H (T )}. To 6nd the best tour in this neighborhood, one
would 6nd the best tour in H (T ). In principle, one could de6ne a much larger neighbor-
hood: N (T )={T ′: there exists a Halin extension of T containing in T ′}. Unfortunately,
this neighborhood may be too di=cult to search e=ciently since it would involve simul-
taneously optimizing over all Halin extensions of T . Similar Halin graph based schemes
for the bottleneck traveling salesman problem and the steiner tree problem could be
developed using the linear time algorithm of Philips et al. [54], and Winter [80],
respectively.
In our previous examples, we considered pyramidal tours, which may be viewed as

the traveling salesman problem with additional constraints. We also considered the TSP
as restricted to Halin graphs. In the next example, we consider (cf. [30]) a neighborhood
that simultaneously relies on a restricted class of graphs plus additional side constraints.
Glover and Punnen [30] identi6ed the following class of tours among which the best
member can be identi6ed in linear time. Let C1; C2; : : : ; Ck be k vertex-disjoint cycles
each with at least three nodes, and such that each node is in one of the cycles. A
single edge ejection tour is a tour T with the following properties:

1. |T ∩Ci|= |Ci| − 1 for i=1 to k, that is, T has |Ci| − 1 arcs in common with Ci.
2. There is one arc of T directed from Ci to Ci+1 for i = 1 to k − 1 and from Ck

to C1.
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The number of ways of deleting arcs from the cycles is at least
∏
i |Ci|, which

may be exponentially large, and so the number of single edge ejection tours is ex-
ponentially large. To 6nd the optimum single edge ejection tour, one can solve a
related shortest path problem on an improvement graph. The running time is lin-
ear in the number of arcs. Given a tour, one can delete k + 1 arcs of the tour,
creating k paths, and then transform these k paths into the union of k cycles de-
scribed above. In principle, the above neighborhood search approach is easy to im-
plement; however, the quality of the search technique is likely to be sensitive to
the details of the implementation. Glover and Punnen [30] consider broader neigh-
borhoods as well, including something that they refer to as “double ejection tours”.
They also provide an e=cient algorithm for optimizing over this class of
tours.
Yeo [78] considered another neighborhood for the asymmetric version of the TSP.

His neighborhood is related to that of Glover and Punnen [30], but with dramatically
increased size. He showed that the search time for this neighborhood is O(n3). Burkard
and Deineko [6] identi6ed another class of exponential neighborhood such that the best
member can be identi6ed in quadratic time. Each of these algorithms can be used to
develop VLSN search algorithms. However, to the best of our knowledge, no such
algorithms have been implemented yet.
We summarize the results of this section with a general method for turning a solution

method for a restricted problem into a very large-scale neighborhood search technique.
Let X be a class of NP-hard combinatorial optimization problem. Suppose that X ′

is a restriction of X that is solvable in polynomial time. Further suppose that for
a particular instance (F; f) of X , and for every feasible subset S in F , there is a
subroutine “CreateNeighborhood(S)” that creates a well-structured instance (F ′; f) of
X ′ such that
1. S is an element of F ′.
2. F ′ is a subset of F .
3. (F ′; f) is an instance of X ′.
We refer to F ′ as the X ′-induced neighborhood of S. The neighborhood search

approach consists of calling CreateNeighborhood(S) at each iteration, and then opti-
mizing over (F ′; f) using the polynomial time algorithm. Then S is replaced with
the optimum of (F ′; f); and the algorithm is iterated. Of particular interest is the
case when the subroutine CreateNeighborhood runs in polynomial time, and the size
of F ′ is exponential. The neighborhood would not be created explicitly. While we
believe that this approach has enormous potential in the context of neighborhood
search, this potential is largely unrealized. Moreover, it is not clear in many situa-
tions how to realize this potential. For example, many NP-hard combinatorial opti-
mization problems are solvable in polynomial time when restricted to series-parallel
graphs. Examples include network reliability problem [65], optimum communication
spanning tree problem [18], vertex cover problem [5,71], the feedback vertex set prob-
lem [5,71], etc. Similar results are obtained for job shop scheduling problems with
speci6c precedence restrictions [44]. It is an interesting open question how to best ex-
ploit these e=cient algorithms for series-parallel graphs in the context of neighborhood
search.
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6. Neighborhood metrics

In this section we describe neighborhood metrics that might be a guide as to the
performance of local search algorithms with respect to the given neighborhoods. As
mentioned earlier, a critical issue in the design of neighborhood search heuristics is
the balance between the size of the neighborhood and the time required to search it.
Hence an important neighborhood metric is the size of the neighborhood. In terms of
the neighborhood graph, the size of the neighborhood for a given solution S can be
viewed as the number of directed arcs leaving S, or equivalently the outdegree of S.
For the variable-depth methods the neighborhood size is not necessarily exponential,
and it is the search that leads to 6nding solutions that are much di<erent than the
BaseSolution. On the other hand, for network based approaches and methods induced
by solvable cases the neighborhood size is typically exponential. (See Table 1)
Table 1 summarizes the size of the neighborhoods discussed previously for the TSP

(this table is mostly taken from [7]):
Another neighborhood metric that is studied in the literature is the diameter of the

neighborhood graph. The distance from a node S to a node T in the neighborhood
graph is the length of a shortest path from S to T . The diameter of the neighborhood
graph NG is the least positive integer d such that d(S; T ) = d for all nodes S and
T of NG. Gutin and Yeo [35] construct polynomially searchable neighborhoods of
exponential size for the TSP where the corresponding neighborhood graphs has diameter
four; that is, for any pair of tours T1 and T5, there exists tours T2; T3; and T4 such that
Ti ∈N (Ti−1) for all i = 2; 3; 4; 5. The neighborhood graph for the cyclical-shift based
neighborhood considered by Carlier and Villon [8] has diameter "(log n).
For a given neighborhood graph, we say that P=i1; i2; : : : ; iK is monotone if the objec-

tive value f(ij)¡f(ij−1) for j=2 to K . We let dm(S) denote the length of the shortest
monotone path from S to a local optimum solution. If dm(S) is exponentially large for

Table 1

Neighborhood Size Log (size) Time to search Reference

2-Opt X(n2) Y(log n) O(n2) Croes [11]
k-Opt X(nk) Y(log n) O(nk) Lin [47]
Pyramidal X(2n) Y(n) O(n2) Klyaus [43]
Cyclical shift X(n2n) Y(n) O(n3) Carlier and Villion [8]
Edge ejection X((12n)1=3) Y(n) O(n) Glover and Punnen [30]
Shortest path based X(n2n) X(n) O(n2) Punnen and Glover [57],
edge ejection Glover [26]
Cyclic-exchange Y(nk) Y(log n) O(n2) Ahuja et al. [2]
(6xed-k subsets)
Compound swaps Y(2n−1) Y(n) O(n2) Potts and van de Velde [55]
Matching baseda Y(n!=2) Y(n log n) O(n3) Sarvanov and Doroshko [64]
Halin graphs X(2n) Y(n) O(n) Cornuejols et al. [10]
PQ-Trees 2Y(n log log n) Y(n log log n) O(n3) Burkard et al. [7]

aThis assumes that k = �n=2�, nodes are deleted. Better time bounds are available if fewer nodes
are deleted, and the size of the neighborhood accordingly is decreased.
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any S, this ensures that a neighborhood search approach starting at S will be expo-
nentially long. In the converse direction, let dpm(S; T ) denote the longest monotone
path from S to T . If dpm(S; T ) is guaranteed to be polynomial, than any neighbor-
hood search technique based on this neighborhood will have a polynomial number of
iterations.
Finally, we consider domination analysis of neighborhood search algorithms. The

domination analysis of a heuristic analyzes the number of solutions that are ‘dominated’
by the solution produced. Let ) be a heuristic algorithm for a combinatorial optimization
problem which produces a solution S∗ in F . The domination number of ), denoted by
dom()), is the cardinality of the set F(S∗); where F(S∗) = {S ∈F :f(S)¿f(S∗)}. If
dom())=|F |; then S∗ is an optimal solution. Domination analysis of various algorithms
for the TSP has been studied in [28–30,33,34,36,58,56]

7. Computational performance of VLSN search algorithms

In this section, we brieBy discuss the computational performance of some of the
VLSN algorithms mentioned in the earlier sections. We 6rst consider the traveling
salesman problem. The Lin–Kernighan algorithm and its variants are widely believed
to be the best heuristics for the TSP. In an extensive computational study, Johnson and
McGeoch [40] substantiate this belief by providing a detailed comparative performance
analysis. Rego [59] implemented a class of ejection chain algorithms for the TSP with
very good experimental results indicating superiority of his method over the original
Lin–Kernighan algorithm. Punnen and Glover [57] implemented a shortest path based
ejection chain algorithm. The implementations of Rego [59] and Punnen and Glover
[57] are relatively straightforward and use simple data structures.
Recently, Helsgaun [37] reported very impressive computational results based on

a complex implementation of the Lin–Kernighan algorithm. Although this algorithm
uses the core Lin–Kernighan variable-depth search, it di<ers from previous implemen-
tations in several key aspects. The superior computational result is achieved by e=cient
data handling, special 5-opt moves, new non-sequential moves, e<ective candidate lists,
cost computations, e<ective use of upper bounds on element costs, information from
the Held and Karp 1-tree algorithm and sensitivity analysis, among others. Helsgaun
reports that his algorithm produced optimal solutions for all test problems for which
an optimal solution is known, including the 7397 city problem and the 13,509 city
problem considered by Applegate et al. [4]. Helsgaun estimated the average running
time for his algorithm as O(n2:2). To put this achievement in perspective, it may be
noted that the 13,509 city problem solved to optimality by an exact branch and cut
algorithm by Applegate et al. [4] used a cluster of three Digital Alpha 4100 servers
(with 12 processors) and a cluster of 32 Pentium-II PCs and consumed three months
of computation time. Helsgaun, on the other hand, used a 300 MHz G3 Power Mac-
intosh. For the 85,900 city problem, pla85900 of the TSPLIB, Helsgaun obtained an
improved solution using two weeks of CPU time. (We also note that the vast majority
of time spent by Applegate et al. [4] is in proving that the optimal solution is indeed
optimal.)
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Table 2
Small TSP Problems: best % deviation from the optimum

Problem REGO HLK MLK SPG

bier127 0.12 0.00 0.42 0.10
u159 0.00 0.00 0.00 —
ch130 — 0.00 — 0.23
ch150 — 0.00 — 0.40
d198 0.30 0.00 0.53 0.33
d493 0.97 0.00 — 2.65
ei1101 0.00 0.00 0.00 0.79
B417 0.78 0.00 — 0.41
gi1262 0.13 0.00 1.30 1.81
kroA150 0.00 0.00 0.00 0.00
kroA200 0.27 0.00 0.41 0.68
kroB150 0.02 0.00 0.01 0.07
kroB200 0.11 0.00 0.87 0.42
kroC100 0.00 0.00 0.00 0.00
kroD100 0.00 0.00 0.00 0.00
kroE100 0.00 0.00 0.21 0.02
lin105 0.00 0.00 0.00 0.00
lin318 0.00 0.00 0.57 1.03
pcb442 0.22 0.00 1.06 2.41
pr107 0.05 0.00 0.00 0.00
pr124 0.10 0.00 0.08 0.00
pr136 0.15 0.00 0.15 0.00
pr144 0.00 0.00 0.39 0.00
pr152 0.90 0.00 4.73 0.00
pr226 0.22 0.00 0.09 0.11
pr264 0.00 0.00 0.59 0.20
pr299 0.22 0.00 0.44 1.30
pr439 0.55 0.00 0.54 1.29
rd100 0.00 0.00 — 0.00
rd400 0.29 0.00 — 2.45
ts225 0.25 0.00 — 0.00
gr137 0.20 0.00 0.00 —
gr202 1.02 0.00 0.81 —
gr229 0.23 0.00 0.20 —
gr431 0.91 0.00 1.41 —

In Table 2, we summarize the performance of Rego’s algorithm (REGO) [59],
Helsgaun–Lin–Kernighan algorithm (HLK) [37], the modi6ed Lin–Kernighan algorithm
of Mak and Morton [49] and the shortest path algorithm of Punnen and Glover (SPG)
[57] on small instances of the TSP problem. In the table we use the best case for each
of these algorithms.
In Table 3, we summarize the performance of Rego’s algorithm (REGO) [59],

Helsgaun–Lin–Kernighan algorithm (HLK) [37], and the Lin–Kernighan implemen-
tation (JM-LK) of Johnson and McGeoch [40]. Reference source not found for large
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Table 3
Large TSP: average % deviation over several runs

Problem Rego JM-LK HLK

dsj1000 1.10 3.08 0.035
pr1002 0.86 2.61 0.00
pr2392 0.79 2.85 0.00
pcb3038 0.97 2.04 0.00
B3795 7.16 8.41 —
B4461 1.06 1.66 0.001
pla7397 1.57 2.19 0.001

instances of the TSP problem. In the table we use the average % deviation for each
of these algorithms.
Next, we consider the capacitated minimum spanning tree problem. This is a

special case of the partitioning problem discussed in Section 4. Exploiting the problem
structure, Ahuja et al. [2] developed a VLSN search algorithm based on cyclic exchange
neighborhood. This algorithm is highly e=cient and obtained improved solutions for
many benchmark problems. It currently has the best available solution for every in-
stance listed in the set of benchmarks, accessible at http://www.ms.ic.ac.uk/info.html.
As our last example, we consider VLSN search algorithms for the generalized as-

signment problems (GAP). Yagiura et al. [77] developed an ejection chain based tabu
search algorithm for the GAP. They report that in reasonable amount of computa-
tion time they obtained solutions that are superior or comparable with that of existing
algorithms. Based on computational experiments and comparisons, it is reported that
on benchmark instances the solutions produced by their algorithm are within 16%
optimal.
Many of the references cited throughout this paper also report computational results

based on their algorithms. For details we refer to these papers. Several neighborhoods
of very large size discussed in the paper have not been tested experimentally within a
VLSN search framework. E<ective implementations of these and related neighborhoods
are topics for further investigation.
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