Exact Controllability for Semilinear Wave Equations

Liangyu Li

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

and

Xu Zhang

School of Mathematics, Sichuan University, Chengdu 610064, Sichuan Province,
People's Republic of China; and
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100080, People's Republic of China
E-mail: xuzhang@fudan.edu

Submitted by M. J. Balas
Received December 8, 1999

In this note, we prove the exact controllability for the semilinear wave equations in any space dimensions under the condition that the nonlinearity behaves like \(o(|\sqrt{\ln s}|) \) as \(s \to \infty \).

1 INTRODUCTION

In this note, we shall consider the exact controllability of the following semilinear wave equation,

\[
\begin{cases}
 y'' - \Delta y = f(y) + \chi_\omega(x)u(t, x) & \text{in } Q, \\
 y = 0 & \text{on } \Sigma, \\
 y(0) = y_0, \quad y'(0) = y_1 & \text{in } \Omega,
\end{cases}
\]

(1.1)

1 This work is partially supported by NSF of China under Grant 19901024.
2 To whom correspondence should be addressed.
where $Q \triangleq (0, T) \times \Omega$, $\Sigma \triangleq (0, T) \times \Gamma$, $T > 0$, $\Omega \subset \mathbb{R}^n$ is a bounded domain with a $C^{1,1}$ boundary $\Gamma \triangleq \partial \Omega$, ω is a subdomain of Ω, and χ_ω denotes the characteristic function of the set ω. In (1.1), $y(t, \cdot)$ is the state, $u(t, \cdot)$ is the control.

We assume the nonlinearity $f(\cdot)$ in (1.1) satisfies
\begin{equation}
\lim_{s \to \infty} \frac{f(s)}{\sqrt{\ln|s|}} = 0.
\end{equation}

The exact controllability problem of (1.1) can be formulated as follows: for any given $(y_0, y_1), (z_0, z_1) \in H^1_0(\Omega) \times L^2(\Omega)$, find (if possible) a control $u \in L^2((0, T) \times \omega)$ such that the weak solution $y(\cdot) \in C([0, T]; H^1_h(\Omega)) \cap C^1([0, T]; L^2(\Omega))$ of (1.1) satisfies
\begin{equation}
y(T) = z_0, \quad y'(T) = z_1.
\end{equation}

The study of exact (boundary and/or internal) controllability for the linear wave equation seems to be complete. Extensive related references can be found in [1–5, 7], and the rich works cited therein.

For the semilinear case, the situation is not so satisfactory. In this case, if the nonlinearity $f(\cdot)$ is globally Lipschitz continuous, one can find Zuazua’s controllability result [9] and its generalization by the author [8]; if the nonlinearity $f(\cdot)$ is allowed to grow superlinearly at infinity, to our best knowledge, there are only a few works [2, 10] giving positive and/or negative controllability results for (1.1) in one space dimension (i.e., the case $n = 1$).

In this note, we shall give a positive controllability result for (1.1) in any space dimension. Our main result (see Section 3) depends on a new explicit observability estimate for the wave equation with a potential in the L^p-classes (see Section 2).

2. EXPLICIT OBSERVABILITY ESTIMATE FOR THE LINEARIZED EQUATION

For any $S \in \mathbb{R}^n$ and $\varepsilon > 0$, we put $\mathcal{S}_\varepsilon(S) \triangleq \{ y \in \mathbb{R}^n | |y - x| < \varepsilon \text{ for some } x \in S \}$. Let us consider the equation
\begin{equation}
\begin{aligned}
&w'' - \Delta w = V(t, x)w & \quad & \text{in } Q, \\
&w = 0 & \quad & \text{on } \Sigma, \\
&w(0) = w_0, \quad w'(0) = w_1 & \quad & \text{in } \Omega.
\end{aligned}
\end{equation}

In (2.1), $V(\cdot)$ is a potential.
The following theorem will play a fundamental role in the sequel.

Theorem 2.1. Let \(\omega = \Omega \cap \mathcal{E}_c(\Gamma) \) for some \(\varepsilon_0 > 0 \) and \(T > T_0 \triangleq \text{diam}(\Omega \setminus \omega) \). Let \(V(\cdot) \in L^{1+\eta}(Q) \) (or \(V(\cdot) \in L^n(0, T; L^n(\Omega)) \)). Then the weak solution \(w(\cdot) \in C([0, T]; L^2(\Omega)) \cap C^1([0, T]; H^{-1}(\Omega)) \) of (2.1) satisfies

\[
|w_0|^2_{L^2(\Omega)} + |w_1|^2_{H^{-1}(\Omega)} \leq L(\ell) \int_0^T \int_\Omega |w|^2 \, dx \, dt,
\]

for some constant \(L = L(\ell) \) with \(\ell \triangleq |V(\cdot)|_{L^{1+\eta}(Q)} \) (or \(\ell \triangleq |V(\cdot)|_{L^n(0, T; L^n(\Omega))} \)). Furthermore, the constant \(L(\ell) \) has the explicit estimate

\[
L(\ell) = O(\exp(C\ell^2)) \quad \text{as } \ell \to \infty
\]

for some positive constant \(C = C(T, \Omega) \), independent of \(\ell \) and \((w_0, w_1) \).

In order to give a proof of Theorem 2.1, let us introduce some notations. Fix any \(\eta \in (0, 1) \) and \(\mu > 0 \) and denote

\[
\begin{align*}
\varphi &= \varphi(t, x) \triangleq \eta^2 t^2 - |x|^2, \\
D_\mu &= \{ (t, x) \in \mathbb{R}^{1+n} \mid \varphi(x, t) > \mu \}.
\end{align*}
\]

We need the following known result (using our notations).

Lemma 2.2 (Ruiz [6]). Let \(K \) be a compact subset of \(D_\mu \). Then there is a \(\lambda_0 > 0 \) and a constant \(C = C(K, \mu) \) such that

\[
\lambda |e^{2\lambda \varphi} v|^2_{L^2(K)} \leq C |e^{2\lambda \varphi} (v'' - \Delta v)|_{H^{-1}(K)}, \quad \forall \lambda > \lambda_0 \text{ and } v \in C_0^\infty(K).
\]

Further, we need the following lemma, which is a simple generalization of a known result (see, for example, [8]).

Lemma 2.3. Let \(0 \leq S_1 < S_2 < T_2 < T_1 \leq T \) and \(V(\cdot) \in L^{1+\eta}(Q) \) (or \(V(\cdot) \in L^n(0, T; L^n(\Omega)) \)) be given. Then there is a constant \(C > 0 \) such that (recall \(\ell \triangleq |V(\cdot)|_{L^{1+\eta}(Q)} \) (or \(\ell \triangleq |V(\cdot)|_{L^n(0, T; L^n(\Omega))} \))

\[
\int_{S_2}^{T_2} |w(t, \cdot)|^2_{H^{-1}(\Omega)} \, dt \leq C (1 + \ell) \int_{S_1}^{T_1} |w(t, \cdot)|^2_{L^2(\Omega)} \, dt,
\]

where \(w(\cdot) \) is the weak solution of (2.1).

Proof. Denote \(\phi(t) = (t - S_1)^2(T_1 - t)^2 \). Multiplying the first equation of (2.1) by \(\phi((-\Delta)^{-1}w) \), integrating it on \((S_1, T_1) \times \Omega \), and proceeding exactly as in [8], we can obtain the desired result. \(\blacksquare \)
Finally, using the usual energy estimate and noting the time reversibility of (2.1), one can easily obtain the following lemma.

Lemma 2.4. It holds (recall $\mathcal{L} \triangleq |V(\cdot)|_{L^1(\Omega)}$ (or $\mathcal{L} \triangleq |V(\cdot)|_{L^2(0,T;L^2(\Omega))}$)

$$E(t) \leq E(s) e^{2T\tau}, \quad \forall t, s \in [0, T],$$

(2.7)

where

$$E(t) \triangleq \frac{1}{2} \left(|w(t, \cdot)|^2_{H^{-1}(\Omega)} + |w(t, \cdot)|^2_{L^2(\Omega)} \right)$$

(2.8)

with $w(\cdot)$ being the weak solution of (2.1).

Now, we can give a proof of Theorem 2.1.

Proof of Theorem 2.1. For simplicity, we assume that $0 \in \Omega$. We note that one can extend (2.5) to functions $v \in L^2_0(K) = H^1_0(H)$ such that $v'' - \Delta v \in H^{-1}(K)$. The proof is split into several steps.

Step 1. First of all, recall $T > T_0 \triangleq \text{diam}(\Omega \setminus \omega)$. Thus we can find a $\eta \in (0, 1)$ (close to 1), a $\varepsilon_1 \in (0, \varepsilon_0)$ (close to ε_0), and a $\mu > 0$ (close to 0) such that

$$\eta^2 T^2 > \text{diam}(\Omega \setminus \omega_1)^2 + \mu,$$

(2.9)

where $\omega_1 \triangleq \Omega \cap \mathcal{C}_\varepsilon(\Gamma) \subseteq \omega$. Then it is easy to see that one can find a small $\delta > 0$ such that

$$\eta^2 t^2 > \text{diam}(\Omega \setminus \omega_1)^2 + \mu, \quad \forall t \in [T - \delta, T].$$

(2.10)

By (2.10), we see that

$$K \triangleq (T - \delta, T) \times (\Omega \setminus \omega_1),$$

(2.11)

is a compact subset of D_{μ}.

Next choose a function $\xi(\cdot) \in C^\infty(\overline\Omega; [0, 1])$ such that

$$\begin{cases}
\xi(x) = 1, & x \in \Omega \setminus \omega, \\
\xi(x) = 0, & x \in \omega_1.
\end{cases}$$

(2.12)

Denote

$$v = v(t, x) \triangleq \xi(x)w(t, x), \quad (t, x) \in Q,$$

(2.13)

where $w(\cdot)$ is the weak solution of (2.1). Then one sees that $V(\cdot)$ satisfies

$$\begin{cases}
v'' - \Delta v = V(t, x)v - w \Delta \xi - 2(\nabla w) \cdot (\nabla \xi) & \text{in } Q, \\
v = 0 & \text{in } (0, T) \times \omega_1.
\end{cases}$$

(2.14)
Step 2. Let us use Lemma 2.2. By Lemma 2.2 and (2.14), we conclude that
\[\lambda |e^{2\lambda \xi}u|_{L^2(K)}^2 \leq C |e^{2\lambda \xi} [V(t, x) v - w \Delta \xi - 2(\nabla w) \cdot (\nabla \xi)] |_{H^{-1}(K)}, \]
\[\forall \lambda > \lambda_0. \quad (2.15) \]

Note that by the Sobolev embedding theorem, and noting (2.12), we get (recall \(\mathcal{L} \triangleq |V(\cdot)|_{L^1(\Omega)} \) (or \(\mathcal{L} \triangleq |V(\cdot)|_{L^1(\Omega)} \))
\[|e^{2\lambda \xi} [V(t, x) v - w \Delta \xi - 2(\nabla w) \cdot (\nabla \xi)] |_{H^{-1}(K)} \]
\[= \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K e^{2\lambda \xi} [V(t, x) v - w \Delta \xi - 2(\nabla w) \cdot (\nabla \xi)] f \, dx}{|f|_{H^1_0(K)}} \]
\[\leq \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K e^{2\lambda \xi} V(t, x) v f \, dx}{|f|_{H^1_0(K)}} \]
\[+ \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K e^{2\lambda \xi} [-w \Delta \xi - 2(\nabla w) \cdot (\nabla \xi)] f \, dx}{|f|_{H^1_0(K)}} \]
\[\leq \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K e^{2\lambda \xi} V(t, x) v f \, dx}{|f|_{H^1_0(K)}} \]
\[+ \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K e^{2\lambda \xi} w \Delta \xi \, dx}{|f|_{H^1_0(K)}} \]
\[+ \sup_{0 \neq f \in H^1_0(K)} \frac{\int_K w \sum_j (\hat{f}_j, e^{2\lambda \xi}) \, dx}{|f|_{H^1_0(K)}} \]
\[\leq C[\mathcal{L} |e^{2\lambda \xi} v|_{L^2(K)} + e^{C\lambda} |w|_{L^2(0, T) \times \omega}]. \quad (2.16) \]

Combining (2.15)–(2.16), we have
\[\lambda |e^{2\lambda \xi} u|_{L^2(K)}^2 \leq C_1 \left[\mathcal{L}^2 |e^{2\lambda \xi} u|_{L^2(K)}^2 + e^{C_1 \lambda} |w|^2_{L^2(0, T) \times \omega} \right], \quad \forall \lambda > \lambda_0. \quad (2.17) \]

Denote
\[\lambda_1 \triangleq C_1 \mathcal{L}^2 + 1. \quad (2.18) \]
Now, let us take
\[\lambda \triangleq \max(\lambda_0, \lambda_1). \]
(2.19)

Then, by (2.17), we get
\[|u|_{L^2(K)}^2 \leq C e^{CA} |w|_{L^2((0, T) \times \omega)}^2. \]
(2.20)

Thus, by (2.11)–(2.13), we arrive at
\[|w|_{L^2((T - \delta, T) \times (\Omega \setminus \omega))}^2 \leq C e^{CA} |w|_{L^2((0, T) \times \omega)}^2. \]
(2.21)

Adding both sides of (2.21) by \(|w|_{L^2([0, T])}^2\), we end up with
\[|w|_{L^2((T - \delta, T) \times \Omega)}^2 \leq C e^{CA} |w|_{L^2((0, T) \times \omega)}^2. \]
(2.22)

Step 3. Let us complete the proof of Theorem 2.1. By Lemma 2.3, we get
\[
2|w|_{L^2((T - \delta, T) \times \Omega)}^2 \geq |w|_{L^2((T - \delta/2, T - \delta/2 + \delta) \times \Omega)}^2 + |w|_{L^2((T - \delta, T) \times \Omega)}^2 \\
\geq |w|_{L^2((T - \delta/2, T - \delta/2 + \delta) \times \Omega)}^2 \\
+ \frac{C}{1 + \epsilon} \int_{T - \delta/2}^{T - \delta/2 + \delta} |w(t, \cdot)|_{H^{-1}(\Omega)}^2 \, dt \\
\geq \frac{C}{1 + \epsilon} \int_{T - \delta/2}^{T - \delta/2 + \delta} E(t) \, dt,
\]
(2.23)

where \(E(t)\) is defined by (2.8). Combining (2.22)–(2.23), we get
\[
\int_{T - \delta/2}^{T - \delta/2 + \delta} E(t) \, dt \leq C(1 + \epsilon) e^{CA} |w|_{L^2([0, T])}^2.
\]
(2.24)

However, by Lemma 2.4, we have
\[
\int_{T - \delta/2}^{T - \delta/2 + \delta} E(t) \, dt \geq C e^{-2T} E(0).
\]
(2.25)

Consequently, combining (2.24)–(2.25), we conclude that
\[
E(0) \leq C(1 + \epsilon) e^{CA} |w|_{L^2([0, T])}^2,
\]
(2.26)

which gives (2.2). Finally, by (2.18)–(2.19) and (2.26), we get (2.3) immediately.

3. STATEMENT AND PROOF OF THE MAIN RESULT

Our main result can be stated as follows:

THEOREM 3.1. Let \(\omega = \Omega \cap \Theta_{e_0}(\Gamma) \) for some \(e_0 > 0 \) and \(T > T_0 \triangleq \text{diam} (\Omega \setminus \omega) \). Let \(f(\cdot) \in C^1(\mathbb{R}^d) \) satisfy (1.2). Then (1.1) is exactly controllable in \(H_0^1(\Omega) \times L^2(\Omega) \) at time \(T \) by using control \(u \in L^2((0, T) \times \omega) \).

Proof. Let us fix the initial and final date \((y_0, y_1), (z_0, z_1) \in H_0^1(\Omega) \times L^2(\Omega)\) and let us introduce the continuous function

\[
 h(s) \triangleq \begin{cases}
 \left[f(s) - f(0) \right] / s, & \text{if } s \neq 0; \\
 f'(0), & \text{if } s = 0.
\end{cases} \tag{3.1}
\]

For any given \(z(\cdot) \in L^2(0, T; L^2(\Omega)) \), by Theorem 2.1, using HUM (see [4, 5]) and proceeding as in [10], we conclude that there exists a control \(u \in L^2((0, T) \times \omega) \) such that the solution \(y = y(\cdot ; z(\cdot)) \) of the equation

\[
\begin{align*}
 y'' - \Delta y &= h(z(\cdot))y + f(0) + \chi_\omega(x)u(t, x) \quad &\text{in } Q, \\
y &= 0 \quad &\text{on } \Sigma, \\
y(0) &= y_0, \quad y'(0) = y_1 \quad &\text{in } \Omega
\end{align*} \tag{3.2}
\]

satisfies

\[
y(T) = z_0, \quad y'(T) = z_1; \tag{3.3}
\]

furthermore, concerning the control \(u \), one has the estimate

\[
 |u|^2_{L^2((0, T) \times \omega)} \leq C \exp \left(C \int_{L^2(0, T; L^\infty(\Omega))} \right) \tag{3.4}
\]

for some constant \(C = C(T, \Omega, f(0), |y_0|_{H^1_0(\Omega)}, |y_1|_{L^2(\Omega)}, |z_0|_{H^1_0(\Omega)}, |z_1|_{L^2(\Omega)}) \). Thus, for any \(\epsilon \in (0, 4] \), we have

\[
 |u|^{2(1 + \epsilon)}_{L^2((0, T) \times \omega)} \leq C \exp \left(C \int_{L^2(0, T; L^\infty(\Omega))} \right). \tag{3.5}
\]

However, by calculus, we have

\[
\exp \left(C \int_{L^2(0, T; L^\infty(\Omega))} \right) = \sum_{j=0}^{\infty} \frac{C^j}{j!} \left(\int_{\Omega} \left| h(z(t, x)) \right|^n \, dx \right)^{2j/n}
\]

\[
= \sum_{j=0}^{n-1} \frac{C^j}{j!} \left(\int_{\Omega} \left| h(z(t, x)) \right|^n \, dx \right)^{2j/n}
\]

\[
+ \sum_{j=n}^{\infty} \left(\int_{\Omega} \left| h(z(t, x)) \right|^n \, dx \right)^{2j/n}
\]

\[
\text{for some constant } C = C(T, \Omega, f(0), |y_0|_{H^1_0(\Omega)}, |y_1|_{L^2(\Omega)}, |z_0|_{H^1_0(\Omega)}, |z_1|_{L^2(\Omega)}).
\]
\[\leq C + \text{ess sup}_{t \in (0, T)} \left(\int_{\Omega} |h(z(t, x))|^{n} \, dx \right)^{2} \]
\[+ \sum_{j=n}^{\infty} \frac{C^j}{j!} \text{ess sup}_{t \in (0, T)} \left(\int_{\Omega} |h(z(t, x))|^{n} \, dx \right)^{2j/n} \]
\[\leq C + 2 \sum_{j=n}^{\infty} \frac{C^j}{j!} \text{ess sup}_{t \in (0, T)} \left(\int_{\Omega} |h(z(t, x))|^{n} \, dx \right)^{2j/n}. \quad (3.6)\]

Note that for any \(j \geq n \), it holds
\[\int_{\Omega} |h(z(t, x))|^{n} \, dx \leq C \left(\int_{\Omega} |h(z(t, x))|^{2j} \, dx \right)^{n/2j}. \quad (3.7)\]

Thus, by (3.5)–(3.6), we have
\[
\begin{align*}
\exp(C|h(z(\cdot))|^{2}_{L^{\infty}(0, T; L^{n}(\Omega))}) \\
&\leq C \left[1 + \sum_{j=n}^{\infty} \frac{C^j}{j!} \text{ess sup}_{t \in (0, T)} \left(\int_{\Omega} |h(z(t, x))|^{2j} \, dx \right) \right] \\
&\leq C \left[1 + \text{ess sup}_{t \in (0, T)} \int_{\Omega} e^{Ch(z(t, x))L^{2}} \, dx \right]. \quad (3.8)
\end{align*}
\]

However, by our assumption (1.2), we have
\[e^{Ch(z(t, x))L^{2}} \leq C \left(1 + |z(t, x)|^{2} \right). \quad (3.9)\]

Thus, by (3.5) and (3.8)–(3.9), we conclude that
\[|u|^{2}_{L^{2}(0, T; \Omega)} \leq C \left(1 + |z|^{2}_{L^{2}(0, T; L^{2}(\Omega))} \right). \quad (3.10)\]

Thus
\[|u|^{2}_{L^{2}(0, T; \Omega)} \leq C \left(1 + |z|^{2}_{L^{2}(0, T; L^{2}(\Omega))} \right). \quad (3.11)\]

Now, concerning (3.2), by means of the usual energy estimate, we end up with
\[|y|_{C(0, T; H^{1}(\Omega))} \leq C \left(1 + |z|^{2}_{L^{2}(0, T; L^{2}(\Omega))} \right), \quad \forall \varepsilon \in (0, 4) \quad (3.12)\]
for some constant \(C = C(T, \Omega, f(0), |y_{0}|_{H^{1}(\Omega)}, |y_{1}|_{L^{2}(\Omega)}, |z_{0}|_{H^{1}(\Omega)}, |z_{1}|_{L^{2}(\Omega)}) \).

Consequently if we take \(\varepsilon = 4 \) in (3.12), the desired result follows from the fixed point technique. \(\blacksquare \)
REFERENCES