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Short Solution of Kotzig's Problem for Bipartite Graphs
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In 1975, A. Kotzig posed the following problem: Let G be a t-regular graph
which has a proper edge t-coloring, t�4. Is it possible to obtain, from one proper
edge t-coloring of G, any other proper edge t-coloring of G using only transforma-
tions of 2-colored and 3-colored subgraphs such that the intermediate colorings are
also proper? The author and A. N. Mirumian proved that it is possible if G is a
bipartite graph. We give here a short proof of this result. � 1998 Academic Press

1. INTRODUCTION

We use Bondy and Murty [4] for terminology and notation not defined
here. An edge t-coloring or simply t-coloring of G is a mapping f : E(G) �
[1, ..., t]. If e # E(G) and f (e)=k then we say that the edge e is colored k.
We shall call a path (k, l )-colored if its edges are alternately colored k and
l. The set of edges of color k we denote by M( f, k). A t-coloring of G is
called proper if no pair of adjacent edges receive the same color. Clearly f
is a proper t-coloring if and only if M( f, k) is a matching for every k=
1, ..., t. The minimum number t for which there exists a proper t-coloring
of G is called the chromatic index of G and is denoted by /$(G). It is clear
that /$(G)�2(G) for any graph G. However, the problem of deciding
whether /$(G)=2(G) is NP-complete even for simple regular graphs
[8, 12].

Let f be a proper t-coloring of a graph G. An interchange with respect
to colors : and ; consists in swapping the two colors on the edges of a con-
nected component of the subgraph induced by the set M( f, :) _ M( f, ;),
thus obtaining a new proper edge coloring of G using at most t colors.
Interchanges play a key role in investigations on edge colorings. Indeed the
proofs of many results in this area are based on transformations of one
proper edge coloring of a graph G to another using interchanges (see, for
instance, [5�7, 13, 14]). Consider, for example, reformulations of three
well-known results taking into considerations their proofs.
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Theorem (Ko� nig [11]). For every bipartite graph G, /$(G)=2(G).
Moreover every proper t-coloring of G, t>2(G), can be transformed to a
proper 2(G)-coloring of G by a sequence of interchanges.

Theorem (Folkman and Fulkerson [5]). Let N=(n1 , ..., nt) and
Q=(q1 , ..., qk) be two non-increasing sequences of positive integers such that
�t

i=1 ni=�k
j=1 qj , t�k and �r

i=1 ni�� r
j=1 qj for each r=1, ..., t. If a

graph G has a proper t-coloring f such that exactly ni edges are colored i for
i=1, ..., t then G also has a proper k-coloring g such that exactly qj edges are
colored j for j=1, ..., k. Moreover g can be obtained from f by a sequence of
interchanges.

Theorem (Vizing [14]). For every simple graph G, /$(G)�2(G)+1.
Moreover every proper t-coloring of G, t>2(G)+1, can be transformed to
a proper (2(G)+1)-coloring of G by a sequence of interchanges.

Actually, for a simple graph G with /$(G)=2(G)+1 the result of Vising
means that any proper edge coloring of G can be transformed to a proper
/$(G)-coloring by using interchanges only. Is there a similar result for a
graph G with /$(G)=2(G)? This problem, posed by Vizing [14], is still
open (see [9]).

However, it is known that there exist graphs G such that only inter-
changes, that is, transformations of 2-colored subgraphs of G, are not
enough for obtaining any proper edge coloring of G from any other.

Taking into consideration this fact, Kotzig [10] posed the following
problem: Let G be a t-regular graph with /$(G)=t�4. Is it possible to
obtain, from one proper t-coloring of G, any other proper t-coloring of G
using only transformations of 2-colored and 3-colored subgraphs such that
the intermediate colorings are also proper? The author and Mirumian [3]
showed that for every t�4 and m�3 there exists a t-regular graph on 2m
vertices where this cannot be done. Consider, for example, the graph K6

with vertices x1 , ..., x6 and its two proper 5-colorings f and g, where

M( f, 1)=[x1x5 , x2 x4 , x3x6], M( f, 2)=[x1 x4 , x2x6 , x3 x5],

M( f, 3)=[x1x6 , x2 x3 , x4x5], M( f, 4)=[x1 x3 , x2x5 , x4 x6],

M( f, 5)=[x1x2 , x3 x4 , x5x6], M(g, 1)=[x1x3 , x2x6 , x4x5],

M(g, 2)=[x1x5 , x2x3 , x4x6], M(g, 3)=[x1x6 , x2 x4 , x3x5],

M(g, 4)=[x1x4 , x2x5 , x3x6], M(g, 5)=[x1x2 , x3 x4 , x5x6].

Clearly, g cannot be obtained from f by renaming the colors. On the other
hand any proper edge 3-coloring of a subgraph G(t1 , t2 , t3) induced by the
set of edges M( f, t1) _ M( f, t2) _ M( f, t3) gives the same partition of edges
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of G(t1 , t2 , t3) into perfect matchings, for any 1�t1<t2<t3�5. It follows
from the fact that G(t1 , t2 , t3) contains a triangle and edges of this triangle
belong to disjoint, uniquely defined perfect matchings. Therefore g cannot
be obtained from f by transformations of 2-colored and 3-colored sub-
graphs.

So, in the general case the answer to Kotzig's question is no. Fortunately,
for bipartite graphs the question has an affirmative answer. Two different
transformations, named a 2-transformation and a 3-transformation, of
proper t-colorings of t-regular bipartite graphs were defined in [1, 2] (see
below), where the k-transformation uses a k-colored subgraph for k=2, 3.
The following theorem was obtained by using these transformations.

Theorem 1 (Asratian and Mirumian [1,2]). Let t�3 and let G be a
t-regular bipartite graph. Then every proper t-coloring of G can be obtained
from any other by a sequence of 2- and 3-transformations so that all inter-
mediate colorings are also proper.

A similar result for arbitrary bipartite graphs follows from Theorem 1.

Corollary 2 [1,2]. Let H be an arbitrary bipartite graph. If f is a
proper m-coloring and g is a proper n-coloring of H, then f can be trans-
formed into g such that each intermediate coloring is proper and differs from
the previous coloring by a 2- or 3-colored subgraph.

Note that these results can be useful in practice because many scheduling
problems can be reformulated as edge coloring problems in bipartite
graphs (see, for example, [15, 16]).

Theorem 1 was first annonced without proof in [1]. The proof given in
[2] is complicated.

In this paper we give a simplified proof of Theorem 1. The proof is
constructive and contains a polynomial algorithm for transforming one
proper edge coloring of G to another. This algorithm can be used for trans-
formations of latin squares because every latin square of order t can be
represented as a properly t-colored complete bipartite graph Kt, t . The
paper is concluded with a conjecture.

2. PROOF OF THEOREM 1

We begin by describing the two transformations.
Let G be a t-regular bipartite graph, f a proper t-coloring of G, and let

C=v0e1v1e2 } } } e2k&1v2k&1e2k v0 be a cycle of G, in which the color of all
the even numbered edges is :. If the color of all the odd numbered edges
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is ;, then we could carry out the first of our transformations, a 2-transfor-
mation of G (along C), by exchanging the colors of the edges along the
cycle. (Actually, this is an interchange along the cycle C.)

Suppose instead that the odd numbered edges are colored with one of
two colors, ; and #. Then the cycle C is called a 3-color (:, ;, #)-cycle or
sometimes a 3-colored cycle. In this case we can carry out our second type
of transformation: divide the set

(M( f, ;) _ M( f, #) _ [e2 , ..., e2k])"[e1 , ..., e2k&1]

into two matchings P1 and P2 , and define a new proper t-coloring g by

g(e)={
:
;
#
f (e)

if e # (M( f, :)"[e2 , ..., e2k]) _ [e1 , ..., e2k&1],
if e # P1

if e # P2 ,
if f (e) � [:, ;, #].

This transformation we shall call a 3-transformation of G (along C).
Such a 3-transformation also only changes the original coloring locally: if
E0 denotes the set M( f, :) _ M( f, ;) _ M( f, #), the transformation first
changes the matching M( f, :) along the cycle C, and then colors the rest
of E0 with the remaining two colors ; and #.

The effects of this pair of transformations can perhaps be better under-
stood from the 3-colorings f and g of K3, 3 , shown in Fig. 1. It is easy to
check that g cannot be obtained from f by a sequence of 2-transformations
alone, but g is the result of a 3-transformation of f along the 3-colored
cycle C.

Now we need a little more notation and three preliminary lemmas.
Let f and g be two distinct proper t-colorings of G. We shall say that f

and g differ by an m-colored subgraph if there is a set of colors S, of size
m, so that M( f, j){M(g, j) for each j # S, but M( f, j)=M(g, j) for each
j � S. We denote by G( f, g, j) the colored subgraph induced by the edge
subset M( f, j) q M(g, j)=(M( f, j) _ M(g, j))"(M( f, j) & M(g, j)), where
each edge e # M( f, j) q M(g, j) has the color f (e). Since G is regular, all

FIGURE 1
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the components of G( f, g, j) are cycles of even length, and the following
lemma is evident.

Lemma 3. If f and g differ by a 2-colored subgraph then g can be
obtained from f by a sequence of 2-transformations.

Lemma 4. If f and g differ by a 3-colored subgraph then g can be
obtained from f by a sequence of 2- and 3-transformations.

Proof. Suppose we have colors :, ;, and # so that M( f, j){M(g, j)
if and only if j # [:, ;, #]. Now we construct a sequence [ fk], k�0, of
proper t-colorings of G in the following way. Put f0=f. Suppose we have
already constructed a sequence f0 , ..., fk of proper t-colorings of G, where
M( fk , j)=M(g, j) for each j � [:, ;, #].

If the coloring fk differs from g by a 2-colored subgraph then, by the pre-
vious lemma, g can be obtained from fk by a sequence of 2-transformations.

If the coloring fk differs from g by a 3-colored subgraph then
M( fk , j){M(g, j) for each j # [:, ;, #] and the subgraph G( fk , g, :) con-
tains a d-colored cycle Ck for some d # [2, 3]. A d-transformation along Ck

provides a new proper t-coloring fk+1 such that

|M( fk+1 , :) & M(g, :)|>|M( fk , :, ) & M(g, :)|.

By repeating this process, we can obtain g from f by a sequence of 2- and
3-transformations. K

Now we continue with the main lemma.

Lemma 5. Let t�4, and f and g be two distinct proper t-colorings of G.
If M( f, t){M(g, t) then for some k�1 there exists a sequence of proper
t-colorings f0 , f1 , ..., fk such that f =f0 and

|M( fk , t) & M(g, t)|>|M( f, t) & M(g, t)|

with fi and fi+1 differing by a 2- or 3-colored subgraph, for each i=
0, 1, ..., k&1.

Proof. If the subgraph G( f, g, t) contains a 2- or 3-colored cycle C,
then we can take k=1, produce f1 from f by an appropriate 2- or 3-trans-
formation along C, and we are done. If this is not the case we must work
a little harder.

Consider a component C of the colored subgraph G( f, g, t). Clearly, C
is a cycle. Let C=v0e1v1e2 ...v2m&1e2mv2m , where v2m=v0 . Without loss of
generality we assume that f (e2j&1)=t for j=1, ..., m, and f (e2){ f (e2m).
Then there are integers n0 , n1 , ..., nk+1 and colors s0 , s1 , ..., sk such that
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k�2, si {si+1 for i=0, 1, ..., k&1, s0 {sk , 0=n0<n1< } } } <nk+1=m,
and the path

Pi=v2ni e2ni+1v2ni+1e2ni+2 ...e2ni+1
v2ni+1

is a (t, s i)-colored path, for each i=0, 1, ..., k.
Now we will construct a sequence of proper t-colorings f0 , f1 , ...,

fk&1 , fk and a sequence of auxiliary improper colorings f $0 , f $1 , ..., f $k&1 in
the following way.

Put f0= f. We denote by f $0 the improper coloring obtained from f0 by
interchanging the colors s0 and t along the edges of the path P0 , and by
interchanging the colors s1 and t along the edges of the path P1 . Then f $0
has the following properties:

(1a) There is no edge incident with v0 of color t, but there are two
edges of color s0 , and one of each color j{s0 , 1� j�t&1.

(1b) There is no edge incident with v2n1
of color s0 , but there are two

of color s1 , and one of each color j{s0 , s1 , 1� j�t.

(1c) There are no edges incident with v2n2
of color s1 , but there are

two of color t, and one of each color j{s1 , 1� j�t&1.

(1d) At each vertex other than v0 , v2n1 , and v2n2 each color appears
on precisely one edge, and M( f $0 , t) & M(g, t)=(M( f, t) & M(g, t)) _
[e2 j : j=1, 2, ..., n2].

Suppose that we have already constructed proper t-colorings f0 , ..., f i ,
and improper t-colorings f $0 , ..., f $i of G, 0�i�k&2, such that f $i satisfies
the following conditions:

(2a) There is no edge incident with v0 of color t, but there are two
edges of color s i , and one of each color j{si , 1� j�t&1.

(2b) There is no edge incident with v2ni+1
of color si , but there are

two of color si+1 , and one of each color j{si , si+1 , 1� j�t.

(2c) There are no edges incident with v2ni+2
of color si+1 , but there

are two of color t, and one of each color j{si+1 , 1� j�t&1.

(2d) At each vertex other than v0 , v2ni+1
, and v2ni+2

each color
appears on precisely one edge, and

M( f $i , t) & M(g, t)=(M( f, t) & M(g, t)) _ [e2j : j=1, 2, ..., ni+2].

Now we construct a proper t-coloring fi+1 of G. Consider the subgraph
H induced by the sets M( f $i , si) _ M( f $i , si+1). It follows from (2a)�(2d)
that H contains, with respect to f $i , an (si , si+1)-colored path of even length
with end vertices v0 and v2ni+1

. Let us interchange the colors si and si+1
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along this path to obtain a new t-coloring f $i1 . Then f $i1 is not proper, and
has the following properties:

(3a) There is no edge incident with v0 of color t, but there are two
edges of color s i+1 , and one of each color j{si+1 , 1� j�t&1.

(3b) There are no edges incident with v2ni+2
of color si+1 , but there

are two of color t, and one of each color j{si+1 , 1� j�t&1.

(3c) At each vertex other than v0 and v2ni+2
each color appears on

precisely one edge.

It follows from (3a)�(3c) that there is a (t, si+1)-colored path Q of even
length with end vertices v0 and v2ni+2

. This path Q finally allows the
construction of a proper t-coloring fi+1 from f $i1 by interchanging the
colors t and si+1 along Q. It is clear that M( f i+1 , j)=M( f i , j) for each
j � [si , si+1 , t], that is, fi and f i+1 differ by a 2- or 3-colored subgraph.
Now we denote by f $i+1 an improper t-coloring obtained from fi+1 by
interchanging the colors t and si+1 along Q (we again obtain f $i1), and also
by interchanging the colors t and si+2 along Pi+2 . It is clear that
M( f $i+1 , t) & M(g, t)=(M( f, t) & M(g, t)) _ [e2j : j=1, 2, ..., ni+3].

If i<k&2 we construct fi+2 from f $i+1 by the above procedure.
If i=k&2 then M( f $k&1 , t) & M(g, t)=(M( f, t) & M(g, t)) _ [e2j : j=

1, ..., m]. Moreover, the coloring f $k&1 satisfies the following conditions:

(4a) There is no edge incident with v0 of color sk , but there are two
edges of color sk&1 , and one of each color j{sk , sk&1 , 1� j�t.

(4b) There is no edge incident with v2nk of color sk&1 , but there are
two of color sk , and one of each color j{sk , sk&1 , 1� j�t.

(4c) At each vertex other than v0 and v2nk each color appears on
precisely one edge.

It follows from (4a)�(4c) that there is an (sk , sk&1)-colored path Q$ with
end vertices v0 and v2nk . By interchanging the colors along Q$ we obtain a
new proper t-coloring fk with M( fk , t) & M(g, t)=(M( f, t) & M(g, t)) _
[e2j : j=1, ..., m]. K

Proof of Theorem 1. We shall prove the theorem by induction on t. For
t=3 the result follows from Lemmas 3 and 4. Let us turn then to the
induction step and suppose that G is a t-regular bipartite graph and that
the induction hypothesis holds for (t&1)-regular graphs, t�4.

Let , and � be two distinct t-colorings of G. The proof breaks into two
cases.

Case 1. M(,, t)=M(�, t). Then the graph G$=G&M(,, t) is (t&1)-
regular. Let ,$ and �$ be the two distinct proper (t&1)-colorings of G$
induced by , and �, respectively. Then, since by the inductive hypothesis
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,$ can be obtained from �$ by a sequence of 2- and 3-transformations, the
same must be true of , and �.

Case 2. M(,, t){M(�, t). By Lemma 5, we can obtain a sequence of
proper t-colorings ,=,0 , ,1 , ..., ,k so that M(,k , t)=M(�, t) and ,i+1

differs from ,i by a 2- or 3-colored subgraph, for each i=0, 1, ..., k&1.
Then Lemmas 3 and 4 imply that ,k can be obtained from , by a sequence of
2- and 3-transformations. Finally then, as in Case 1, � can be obtained from ,k

by the induction hypothesis, and the proof of the theorem is complete. K

It is not difficult to see that this proof provides a polynomial algorithm
for transforming one proper t-coloring of G into another.

Proof of Corollary 2. Take two disjoint copies H$ and H" of H,
with V(H$)=[x$: x # V(H)] and V(H")=[x": x # V(H)] and let t=
max[m, n]. Then we can define a t-regular bipartite graph G obtained from
H$ and H" by joining x$ and x" with t&dH(x) parallel edges, for each ver-
tex x # V(H). The coloring f of H induces a proper t-coloring , of G in the
following way: we color the copies H$ and H" in the same way as H, and
then color the set of parallel edges joining x$ to x" with those colors from
[1, ..., t] which are not used to color an edge incident with x in H.
Similarly, the coloring g induces a proper coloring � on G. Thus, since the
theorem ensures that , can be transformed into � by a sequence of 2- and
3-transformations, it is clear that these transformations also define a
sequence of proper colorings of H, beginning with f and ending with g. K

Finally, I would like to formulate the following conjecture.

Conjecture. Let f and g be two proper t-colorings of a t-regular graph
G with t�5. Then there exists a sequence f0 , f1 , ..., fk of proper t-colorings
of G such that f0= f, fk= g and the colorings fi and fi&1 differ by a
di -colored subgraph, where di�4 for i=1, ..., k.
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