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Abstract 

Unexpected disruptive events in manufacturing systems always interrupt normal production conditions and cause production loss. A resilient 
system should be designed with the capability to suffer minimum production loss during disruptions, and settle itself to the steady state quickly 
after each disruption. In this paper, we define production loss (PL), throughput settling time (TST), and total underproduction time (TUT) as 
three metrics to measure system resilience, and use these measures to assist the design of multi-stage reconfigurable manufacturing systems. 
Numerical case studies are conducted to investigate how the system resilience is affected by different design factors, including system 
configuration, level of redundancy or flexibility, and buffer capacities.  
Keywords: resilience; manufacturing system design 

1. Introduction 

Modern manufacturing systems consist of machines, 
inspection stations and intermediate buffers, that are 
interconnected to perform required production operations. 
A disruptive event (such as machine failure) could lead to full 
or partial loss of production in the system. Therefore, gaining 
fundamental understanding and evaluation of disruptive 
events and associated impacts on system performance will 
have significant impact on the economic sustainability of the 
manufacturing enterprises.  

Nomenclature 

I               number of stages of the system 
id                     the index of the stage where the disruption occurs 
Si              number of machines in stage i 
Ti(k)         cycle time for each machine at stage i at time k 
Ci             capacity of buffer Bi  
Ni(k)         the level of buffer Bi  at the end of time k   
ri(j,k)        the probability that there are j machines in stage i 
                that are available at the beginning of time k  

( , )NS
ir j k  the probability that there are j machines in stage i\ 

                that are available and not starved at the beginning 
                of time k  

( , )NB
ir j k  the probability that there are j machines in stage i 

                 that are available and not blocked at the beginning 
                of time k  
tD             duration of the disruption 

tR             duration of reconfiguration  

Resilience is defined as the ability of a system to withstand 
potentially high-impact disruptions, and it is characterized by 
the capability of the system to mitigate or absorb the impact 
of disruptions, and quickly recover to normal conditions. For 
example, built-in redundancy and flexibility of a system 
enables it to resume production from machine faults or 
failures by task rescheduling, workload reallocation, etc. Such 
capability plays an important role in manufacturing system 
design, operation and life management against disruptive and 
adverse events [1].  

The research on manufacturing system resilience hasn’t 
attracted much attention until recent years when there are 
increasing occurrences of disasters and hazards [2]. Most of 
the studies have focused on a variety of external disruptive 
events to the manufacturing systems ranging from natural 
disasters (e.g., hurricanes, earthquakes) to man-made 
accidents (e.g., terrorism, supplier bankrupt). Many of these 
studies focus on supply chain networks where risk/disaster 
management tools are developed to reduce impact of supply 
chain disruptions [3]. Nevertheless, methods for intrinsic 
resilience with regard to internal disruptions, such as machine 
failure or unscheduled downtime, are still lacking.  

Therefore, modeling and analysis of manufacturing system 
resilience is of significant importance to manufacturing 
enterprise systems design and operations management in a 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82274465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


136   Xi Gu et al.  /  Procedia CIRP   36  ( 2015 )  135 – 140 

dynamic global environment. The goal of this paper is to 
contribute to gaining fundamental understanding of 
manufacturing systems resilience by developing methods and 
tools to evaluate capabilities of fault-tolerance, performance 
recovery and achieving high resilience. The insights from this 
paper will provide fundamental principles and guidelines for 
the optimal design for resilience of system configurations, 
investment decisions on built-in redundancy and flexibility, 
and control strategies for risk mitigation. 

In this paper, we consider an unexpected disruptive event 
that occurs on one machine and causes the machine to be 
down for a certain period. It may be an unexpected downtime 
or a planned downtime based on the machine degradation [4]. 
When the disruption ends, the machine resumes to its normal 
working condition and the system recovery starts. The system 
will eventually return to its steady state again. Impact of the 
disruption could be reflected in various system performance 
measures, such as reduced throughput and higher work-in-
process. As an example, Fig. 1 shows how the throughput 
evolves over time when an unexpected disruption occurs. It 
also demonstrates that the disruption on one machine may 
cause production losses in the entire system. In this problem 
setting, the production loss can be evaluated through two 
stages [5]. The first stage is the time during the disruption and 
the second stage is from the time when disruption ends until 
the time the system fully recovers. Naturally, one may ask: 
what is the production loss caused by the disruption? How 
long will it take for the system to recover to its steady state? 
What is the total time in which the system throughput is 
below the planned level? To answer these questions, we study 
in this paper three resilience measures: production loss (PL), 
throughput settling time (TSTε) and total underproduction 
time (TUTε). When disruption occurs, a resilient system 
should have smaller values of these three measures than a 
system that is not resilient. 

disruption starts disruption ends
time

throughput

“fully” recover

TUTε

TSTε

PL
threshold

 
Fig. 1. Disruption profile and resilience measures 

     A resilient system should be designed with the capability 
to mitigate the effect of the disruption. Such capability mainly 
comes from the redundancy and flexibility embedded in the 
system. In this paper, we consider two control policies, both 
enabled by these built-in capabilities. The first policy is to 
increase the speed of the other machines in the system when 
the disruption occurs. North American automotive factories 
operate typically at efficiency levels of 60 - 70%, so if 
necessary, there often exists an opportunity to increase the 
speed of machines [6]. We regard such capability as system 
redundancy, because in a normal condition the system is not 
operating at its full capability. The second policy we consider 

in this paper is system reconfiguration, which takes advantage 
of the system flexible architecture. Reconfigurable 
manufacturing system (RMS), introduced by Koren et al. [7], 
is a system that can rapidly and cost-effectively adjust its 
production resources in response to unpredictable market 
changes and intrinsic system events [8-9]. The RMS has the 
capability to scale up production by adding production 
machines, reallocate the tasks and rebalance itself when 
higher throughput is needed [10-12]. Design for resilience 
also requires rapid adjustment of production resources by 
performing task reallocation and rebalancing.   
   Performance of manufacturing systems depends heavily on 
the configurations [13], which can be classified into cell 
configurations (i.e., several serial lines arranged in parallel 
without crossovers), RMS configurations (i.e., multiple stages 
connected by crossovers), and hybrid configurations (i.e., a 
combinations of the previous two classes) [7]. In this paper, 
we study the systems designed with RMS configurations, and 
with buffers between stages. These built-in buffers may delay 
or mitigate the propagation of the disruption [14, 15]. 
Moreover, since our interest is the behavior of the system 
under disruptions, we focus more on the transient behavior of 
the system, which is relatively unexplored compared to the 
steady-state behavior of the system. 

The remaining of the paper is organized as follows. In 
Section 2, the model of the system is built and the resilience 
measures are evaluated. Section 3 is a case study where we 
investigate how the system resilience measures are affected 
by different factors. Section 4 is the conclusion.  

2. Model and method 

2.1. Assumptions 

We consider an I-stage reconfigurable manufacturing 
system as shown in Fig. 2. The assumptions of the system are: 
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Fig. 2. An I-stage system 

 The machines in the same stage work synchronously. They 
are available (i.e. can change the system dynamics) only at 
the beginning of one cycle of that stage. 

 In every cycle, each machine in stage i  is “up” with 
probability pi, and “down” with probability 1‒pi. 

 If the number of available machines in stage Si is larger 
than the number of parts in buffer Bi−1, then the excessive 
machines will be starved; if the number of available 
machines in stage i is larger than the available spaces in 
buffer Bi (after the non-starvation machines in stage i+1 
have taken some parts out from Bi), the excessive machines 
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will be blocked. The machines in stage 1 are never starved 
and that in stage I are never blocked. 

 Only one disruptive event is considered, which occurs 
when the system is in its steady state. 

 The required production rate is constant and equal to the 
steady-state system production rate. 

2.2. System dynamics 

The system follows a Bernoulli reliability model, which 
fits real production practice where the machine downtime is 
resulted mainly from quality problems. Extensive work has 
been done to on the serial Bernoulli lines with an identical 
cycle time for each machine [16], which can be regarded as a 
special type of reconfigurable system where there is only one 
machine in each stage. The dynamic behavior of the system 
can be analyzed by using a discrete time Markov Chain 
(DTMC). The state of the Markov Chain can be represented 
by the probability distribution of the inventory levels of all the 
buffers, and the transition between states can be obtained by 
enumerating the up/down states of all machines [17]. This 
method is efficient to analyze the system performance when 
the dimension of state is small. However, when the number of 
stages increases, the curse of dimensionality arises, which 
makes the exact analysis intractable. We will analyze the 
dynamics of a two-stage-one-buffer (2S1B) system in Section 
2.2.1, and use it as a building stock to investigate the 
dynamics of multi-stage systems in Section 2.2.2.  

2.2.1 Dynamics for two-stage systems 

First, we study a two-stage reconfigurable system, where 
there are S1 upstream machines and S2 downstream machines. 
Since there is only one buffer, we denote it as B, its capacity 
as C and its inventory level at (the end of) time k as N(k). Let 

( ) : Pr( ( ) )s k N k s and 0 1( ) ( ) ( ) ... ( ) T
Ck k k kπ  is 

the probability distribution of the system states at time k, 
which satisfies 

1
( ) 1kπ .  

Then system dynamic is represented by Equation (1). 

1 2( ) ( ( ), ( ), ) ( 1)NS NBk k k C kπ P r r π                         (1) 

where ( ) [ (0, ), (1, ),..., ( , )]X X X X T
i i i i ik r k r k r S kr (X=NA,NB; 

i=1,2 ). 1 2( ( ), ( ), )NS NBk k CP r r is the ( 1) ( 1)C C matrix of 
the transition probabilities, whose elements can be easily 
obtained by taking condition on the number of machines that 
are up in either stage. See [18] for the analytical expression of 

1 2( ( ), ( ), )NS NBk k CP r r . 
     Moreover, in a 2S1B system, the machines in stage 1 are 
never starved and the machines in stage 2 are never blocked, 
we have 1 1( , ) ( , )NSr j k r j k  and 2 2( , ) ( , )NBr j k r j k , where  

(1 ) if stage  is available at 
( , )

{ 0} if stage  is not available at 

ii S jj
i i

i

S
p p i k

r j k j
j i kI

   (2) 

{ }XI is an indicator function, representing the true(1)/false(0) 
value of the statement X. 

     Similar as Equation (1), the transient production rate (i.e., 
expected number of parts produced by the last machine) and 
consumption rate (i.e., the expected number of parts entering 
the first machine) of the system can also be calculated, as 

2 1 2( ) 0 1 ( ( ), ( ), ) ( 1)NS NBPR k S k k C kp r r π222 ((((     (3) 

 1 1 2( ) 0 1 ( ( ), ( ), ) ( 1)NS NBCR k S k k C kc r r π111 (((((     (4) 

where 1 2( ( ), ( ), )NS NBk k Cp r r (resp., 1 2( ( ), ( ), )NS NBk k Cc r r ) 
transfers the distribution of buffer levels into the distribution 
of the number of parts completed by the system (resp., 
entering the system). Their analytical expression can also be 
found in [18]. 

 2.2.2 Dynamics for multi-stage systems 

S1 B1 S2 B2 …... BI-1 SI
 (a) An I-stage system 

B1 B2 BI-1…...

 (b) Decomposition of the system 

Fig. 3. Decomposition of an I-stage system 

We consider the I-stage system in Fig. 2 and simplify it as 
shown in Fig. 4(a). Similar as the decomposition method in 
serial line [19], we denote NS

iS  and NB
iS as the non-starvation 

and the non-blockage “dummy” stage Si, respectively. Then, 
viewed from buffer Bi ( 1,..., 1i I ), the system can be 
represented as a two-stage system 1

NS NB
i i iS B S . Therefore, 

the entire system can be decomposed into I-1 2S1B 
subsystems (as shown in Fig. 4(b)), where in these 2S1B 
systems, ( )NS

i kr  and ( )NB
i kr (i = 1,2,…,I) can be calculated 

by the law of conservation, as shown in Equations (5) and (6).  

 1( ) ( ( ), ( ), ) ( 1)  ( 1,..., 1)NB NB
i i i i ik k k C k i Ir c r r π   (5) 

1 1( ) ( ( ), ) ( 1)  ( 2,..., )NS
i i i ik k C k i Ir p r π          (6) 

A recursive algorithm has been developed in [18] to 
calculate ( )NB

i kr  and ( )NS
i kr for each i=1,…,I.  Once they are 

obtained, the distribution for buffer Bi (i=1,…, 1I ) can be 
analysed from Equation (1), as   

1( ) ( ( ), ( ), ) ( 1)  ( 1,..., 1)NS NB
i i i ik k k C k i Iπ P r r π   (7) 

Equations (5) to (7) can be used recursively to update the 
system dynamics at every time k, and the production rate of 
the system at time k can be calculated as  

1 1 1( ) 0 1 ( ( ), ( ), ) ( 1)NS NB
I I I I IPR k S k k C kp r r πI ((((((   (8) 

2.3. Process description 

A resilient system is designed with redundancy or 
flexibility that can mitigate the effect of the disruption. As 
introduced in Section 1, here we consider two policies (policy 
A and policy B, which will be introduced below) that can be 
applied when the disruption occurs. Specially, we also denote 
policy O for the system without such capability (i.e., policy O 
means no control action during the disruption).    



138   Xi Gu et al.  /  Procedia CIRP   36  ( 2015 )  135 – 140 
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Fig. 4. Evolution of system production rate under different policies 

    Policy A is to increase the speed of the machines in the 
stage where the disruption occurs. We assume that the time to 
change the machine speed is negligible, so the process under 
policy A can be divided into two periods. Period A1 (k = 1 to 
tD) is the duration under the disruption, during which the 
speed of the machines in stage id is increased while that in the 
other stages does not change. Moreover, Period A2 (k > tD) is 
the post-disruption period where all the machines are running 
with the original speed. Policy O can be regarded as a special 
case of policy A where the increase in speed is 0.  
    Policy B is to reconfigure the system and to reallocate the 
tasks among stages. In other words, the stage with fewer 
machines needs to do fewer tasks, and thus its cycle time will 
be smaller than the other stages. We assume that the 
reconfiguration process takes a duration of tR, and during the 
reconfiguration periods, parts in the buffers can be adjusted to 
be ready for the next stage of the new system (the system after 
reconfiguration). Then the process under policy B can be 
classified into four periods. Periods B1 (k = 1 to tR) and B3 (k 
=tD−tR+1 to tD) are two reconfiguration periods during which 
the entire system is shut down for reconfiguration and hence 
there is no throughput. Period B2 (k=tR+1 to tD ‒ tR) is the 
reconfigured system with the reallocated tasks. Period B4 
(k>tD) is the transient between the completion of the second 
reconfiguration and the time when the system runs back to its 
steady state. In Period B4, the system is back to its original 
configuration. 

Fig. 4 shows the evolution of the system production rate 
under different policies.      

2.4. Resilience measures 

The transient production rate of the system under different 
policies can be evaluated based on the method developed in 
Section 2.2. Let ( )PPR k  denote the production rate at time k 
under policy P (P=A, B, or O; and hereafter we use the 
superscript ‘P’ to represent the corresponding performance 
under policy P). Then the three throughput-related resilience 
measures can be calculated based on ( )PPR k ’s. 

The first resilience measure is production loss caused by 
the disruption. It consists of the production loss during the 
disruption and that after the disruption. It can be calculated as 

1 1
(0)

( ) (0)
(0)

P
D

P D
O
I

t t
P S P S P OD

IO
tk tI k

T

t
PL PR PR k PR PR kT

T
 (9) 

where { }P
Rt t P BI . 

    The second one, throughput settling time, is the time that 
the production rate of the system returns to (1−ε) of its steady-
state value, and keeps at least that value afterwards, as  

max , ( (0)) (1 ) (0)
(0)

           (0)

P P O S OD
I IO

I

O
I D

t
TST k k PR kT PR T

T

T t

(10) 

    The third one, total under production time, measures the 
total time that the production rate of the system is below (1−ε) 
of its steady-state value. It can be calculated as 

1
(0)

2
( )

1

{ ( (0)) (1 ) } (0)

( )
           { ( ( )) (1 ) } ( )

(0)

D
O
I

P
D

P P
I

P P O S O
D I I

t
k

T

t t
T t P P

P P P P S P PI
I IO

k I

TUT t PR kT PR T

T t
PR t kT t PR T t

T

I

I

(11) 

In the following section, a numerical case study will be 
conducted to further study how the resilience measures are 
affected by these built-in capabilities. 

3. Case study 

We consider the design of a system composed of six 
machines with an identical reliability of 0.95, and a total 
buffer size of 10. The manufacturing process consists of 30 
operations, with each taking 10 seconds. Therefore, the total 
process time for one part is 300 seconds. Two reconfiguration 
configurations are used for comparison, as shown in Fig. 5, 
where configuration (a) is two-stage system whose buffer size 
is 20, and configuration (b) is a three-stage system with two 
buffers, each of which has a capacity of 10. 

M11

M12 B1

M21

M22

M23M13

M11

M12

B1

M21

M22

B2

M31

M32

(a) (b)  

Fig. 5. Configurations of the six-machine systems 

    It is assumed that under policy A, the cycle time of each 
machine can be reduced by at most 20%, and under policy B, 
the system can be fully reconfigured. Table 1 shows the cycle 
times of the original systems and that of the systems under 
policies A and B. For example, in the original configuration 
(a), all machines need to do half of the total tasks, and thus the 
cycle time is 150 seconds. However, when the system is 
reconfigured, the stage where the disruption occurs has two 
machines, and thus it only needs to perform two fifths of the 
total tasks, indicating a cycle time of 120 seconds. Similar 
calculation can be applied to configuration (b).  

Table 1. Cycle times for machines under different policies 
 cycle time of each stage (sec) 

Pol.O Pol. A (Period A1) Pol. B (Period B2) 
all w/ dis. w/o dis w/ dis. w/o dis. 

(a) 150 120 150 120 180 
(b) 100 80 100 60 120 
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Next, we evaluate the three resilience measures in both 
configurations, where the disruption may occur in any stage. 

3.1. Effect of system configuration, disruption duration, and 
disruption location 

First, we assume that the disruption lasts for one hour (3600 
seconds) or two (7200 seconds), and each reconfiguration 
period is 300 seconds. From Section 2, one can obtain these 
resilience measures for each configuration, as shown in Table 
2, where the unit for each 0.02

PTST and 0.02
PTUT is second.  

Table 2. Resilience measures under different policies 
tD = 3600 sec 

Resilience 
Measures 

Configuration (a) Configuration (b) 
Stage 1 Stage 2 Stage 1 Stage 2 Stage 3 

OPL  19.58 19.58 30.85 31.92 30.85 
APL  5.48 9.16 18.30 21.59 22.83 
BPL  23.11 15.34 21.30 20.91 19.11 

0.02
OTST  1650 150 3300 1100 100 

0.02
ATST  900 150 3300 1100 100 

0.02
BTST  150 150 100 100 100 

0.02
OTUT  4800 3600 6400 4500 3600 

0.02
ATUT  2700 3600 6100 4300 3600 

0.02
BTUT  3600 3600 3600 3600 3600 

tD = 7200 sec 
Resilience 
Measures 

Configuration (a) Configuration (b) 
Stage 1 Stage 2 Stage 1 Stage 2 Stage 3 

OPL  42.19 42.19 64.52 65.59 64.52 
APL  14.98 20.59 42.52 46.29 48.56 
BPL  34.34 31.58 32.48 31.97 31.04 

0.02
OTST  1650 150 3300 1100 100 

0.02
ATST  1650 150 3300 1100 100 

0.02
BTST  150 150 100 100 100 

0.02
OTUT  8400 7200 10000 8100 7200 

0.02
ATUT  6150 7200 9700 7900 7200 

0.02
BTUT  7200 7200 7200 7200 7200 

 
Table 2 illustrates the following characteristics of the three 

resilience measures. 
   OPL when the disruption occurs in the beginning/end of  the 
system is smaller than that when the disruption occurs in the 
middle of the system, because the stages in the middle of the 
system are more easily to be blocked or starved. Moreover, 
the more stages the system has, the more production loss will 
be saved by policy B, but the less production loss will be 
saved by policy A. When the duration of the disruption tD gets 
larger, policy B becomes more advantageous, because it 
rebalances the system to the maximum extent.  
    OTST  decreases as id increases (i.e., as the location of the  
disruption is closer to the last stage). The reason is that after 
the disruption, it will take a shorter time for the production 
recovery to propagate to the last stage if the disruption is 
closer to it. In most cases, ATST is smaller than OTST , and 

BTST  equals the system cycle time, indicating an immediate 

recovery of the system production rate when the disruption 
ends. Moreover, PTST (P=A, B, and O) is relatively 
independent of tD.  
    OTUT also decreases as id increases. When the disruption 
occurs in an upstream stage, the buffers in the system can 
reduce the variation of the system production rate caused by 
the disruption. In most cases, BTUT  equals to the duration of 
the disruption, while in some cases ATUT is even smaller than 
it, indicating that policy A introduces a larger variation on the 
system production rate. Additionally, PTUT (P=A, B, and O) 
increases as tD increases. 

3.2. Effect of buffer capacity on the scaled marginal 
production loss 

As discussed above, the production loss increases as the 
duration of disruption increases. In this section, we study the 
marginal increase of the production loss, and investigate how 
it is affected by the buffer capacities. 

We set the durations of the disruption as Dt = 900n (n = 
1,...,10) seconds, and define the scaled marginal production 
loss under policy P (P=A, B, and O) 
as ( ) ( ( ) ( 900)) /P P P S

D D DPL t PL t PL t PR , where (0) 0PPL , 
and 1/ SPR  is a scaled parameter to compensate for the 
difference in the steady-state production rates caused by 
different buffer capacities.  

2000 4000 6000 8000
0

0.5

1

1.5

2

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy O, stage 1

 

 

C=10
C=20
C=30
C=40
C=50

2000 4000 6000 8000

0

1

2

3

4

5

6

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy A, stage 1

 

 

C=10
C=20
C=30
C=40
C=50

2000 4000 6000 8000
0

1

2

3

4

5

6

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy B, stage 1

 

 

C=10
C=20
C=30
C=40
C=50

2000 4000 6000 8000
0

0.5

1

1.5

2

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy O, stage 2

 

 

C=10
C=20
C=30
C=40
C=50

2000 4000 6000 8000

0

1

2

3

4

5

6

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy A, stage 2

 

 

C=10
C=20
C=30
C=40
C=50

2000 4000 6000 8000
0

1

2

3

4

5

6

duration of disruption (sec)

sc
al

ed
 m

ar
gi

na
l p

ro
du

ct
io

n 
lo

ss

policy B, stage 2

 

 

C=10
C=20
C=30
C=40
C=50

 

Fig. 6. Scaled marginal production losses with different buffer capacities 

We only evaluate the scaled marginal production losses in 
configuration (a). The machine reliability is still 0.95 and the 
buffer capacity C varies among 10, 20, 30, 40 and 50. 

( )P
DPL t under different policies are plotted in Fig. 6. It 

shows that, OPL converges as the duration of disruption 
increases. Moreover, under different buffer capacities, the 
converged OPL ’s are similar, while their convergence rates 
are different. As C gets larger, the convergence rate of 

OPL becomes slower, and OPL becomes smaller under a 
short disruption. This result indicates that a larger buffer is 
more capable of mitigating the effect of the disruption, 
especially when the disruption is short. The pattern of 
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APL also indicates that, under Policy A, the system will have 
less production loss when the buffer capacity increases. 
However, BPL is relatively insensitive with regard to C, 
because the production loss under Policy B is mainly 
contributed by the two reconfiguration periods.   

3.3. Discussion 

From the numerical results in Sections 3.1 and 3.2, we 
suggest the following observations. (1) The system resilience 
can be improved by built-in redundancy (i.e., capability of 
speed increase) and flexibility (i.e., option for system 
reconfiguration). (2) Reconfiguration is very advantageous 
when the duration of disruption is long or the system has more 
stages. (3) The system with more parallel machines is more 
resilient. (4) Buffers can make the system more resilient 
(smaller production loss) under short-duration disruptions, 
especially when the capacities of the buffers are large.  

These observations offer insights to the design of 
manufacturing system for resilience. There are also other 
factors that need to be considered. For example, a more 
resilient system is usually more expensive. We should also 
note that a parallel configuration may increase the variations 
on the quality of the products. Integrating the resilience 
analysis in this paper with other techniques, such as 
prognostics analysis [20] and stream-of-variation analysis 
[21], one can decide which level of flexibility and redundancy 
should be built in the system so that the system is both 
resilient and cost-effective. These decisions include the 
system configuration, the number and capability of the 
machines in each stage, and the size of buffers between stages, 
etc. 

4. Conclusion 

In this paper, we proposed three important resilience 
measures for manufacturing systems under disruptions. These 
three resilience measures ‒ production loss (PL), throughput 
settling time (TSTε), and total underproduction time (TUTε) ‒ 
are analyzed by using a Bernoulli reliability model. Two 
built-in capabilities of the system are considered to mitigate 
the effect of disruptions. We conduct numerical studies to 
investigate how the system resilience measures are affected 
by the system configurations, the built-in system capability, 
and the buffer capacities. The results show that, the built-in 
redundancy and flexibility can improve the system resilience 
performance, especially when the disruption is long, or the 
system has small number of parallel machines in each stage. 
For systems without redundancy or flexibility, parallel 
configurations are more resilient than serial configurations. 
Moreover, the existence of buffers in the systems can mitigate 
the impact of the short-duration disruptions, and thus a system 
with larger buffers is more resilient.  

The resilience analysis considering the propagation of 
unexpected disruptive events and the capability of recovery 
provide a novel, useful guidance for manufacturing system 
design. It helps the system designer to determine the optimal 
level of redundancy and flexibility to be built in the 
manufacturing systems, in order to make the system both 

resilient and cost-effective.   
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