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Eighty Years of Sommerfeld’s Radiation Condition

STEVEN H. ScHoOT

Department of Mathematics, The American University, Washington, District of Columbia 20016

In 1912 Sommerfeld introduced his radiation condition to ensure the uniqueness of the
solution of certain exterior boundary value problems in mathematical physics. In physical
applications these problems generally describe wave propagation where an incident time-
harmonic wave is scattered by an object, and the resulting diffracted or scattered waves need
to be calculated. When formulated mathematically, these problems usually take the form of
an exterior Dirichlet or Neumann problem for the Helmholtz partial differential equation.
The Sommerfeld condition is applied at infinity and, when added to the statement of the
boundary value problem, singles out only the solution which represents ‘‘outgoing’’ (rather
than ‘“‘incoming’’ or *‘standing’’) waves in the physical applications. Since its introduction,
the Sommerfeld radiation condition has become indispensable for these types of problems
and has stimulated a considerable amount of mathematical research, especially in uniqueness
theorems. The present note traces the motivation and reasoning that led Sommerfeld to the
original formulation of his radiation condition and surveys the extensions and modifications
this condition has undergone since then. © 1992 Academic Press, Inc.

En 1912 Sommerfeld introduisit sa condition de rayonnement pour assurer I’unicité de la
solution de certains probléemes extérieurs de valeurs au bord en physique mathématique. Dans
les applications physiques ces problémes décrivent en général des propagations d’ondes, o
une onde harmonique incidente est diffractée par un objet et I’on cherche a calculer I'onde
diffractée ou dispersée. Quand on les formule mathématiquement, ces problémes prennent
le plus souvent la forme d’un probléme de Dirichlet ou de Neumann extérieur pour I’équation
aux dérivées partielles de Helmholtz. La condition de Sommerfeld est appliquée a I'infini et,
quand on ’ajoute & I’énoncé du probléme au bord, elle séléctionne la seule solution qui dans
les applications physiques représente les ondes ‘‘sortantes’” (et non pas les *‘entrantes’’ ou
‘“‘stationnaires’’). Depuis son introduction la condition de rayonnement de Sommerfeld est
devenue indispensable pour les problémes de ce type et a stimulé une grande quantité de
recherches mathématiques, en particulier des théorémes d’unicité. La note présente retrace
la motivation et le raisonnement qui ont conduit Sommerfeld & la formulation originale de sa
condition de rayonnement et passe en revue les extensions et modifications que cette condi-
tion a subi depuis. © 1992 Academic Press, Inc.

Im Jahre 1912 filhrte Sommerfeld die nach ihm benannte Ausstrahlungsbedingung ein, um
die Eindeutigkeit der Losung von gewissen dusseren Randwertaufgaben in der mathema-
tischen Physik zu sichern. In physikalischen Anwendungen beschreiben diese Aufgaben im
allgemeinen Wellenausbreitungen, in denen eine eintreffende harmonische Welle durch ein
Hindernis gestreut wird und die hierdurch entstehenden gebeugten oder gestreuten Wellen
zu berechnen sind. Mathematisch formuliert nehmen diese Aufgaben meistens die Gestalt
eines Dirichletschen oder Neumannschen Problems fiir die Helmholtzsche Schwingungsglei-
chung in einem Aussengebiet an. Die Sommerfeldsche Bedingung wird im Unendlichen
angewandt und wihlt, wenn der Formulierung der Randwertaufgabe beigefiigt, nur die
Losung aus, die ..divergierende’’ (und nicht etwa ..konvergierende’” oder ..stehende’’)
Wellen in den physikalischen Anwendungen darstellt. Seit ihrer Einfithrung ist die Sommer-
feldsche Ausstrahlungsbedingung fiir Aufgaben dieser Art unentbehrlich geworden und hat
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auf die mathematische Forschung—besonders die Unitétssitze betreffend—fordernd ge-
wirkt. Die vorliegende Arbeit sucht, die Beweggriinde und Uberlegungen aufzufinden, die
Sommerfeld zur Originalfassung seiner Ausstrahlungsbedingung veranlassten, und gewéhrt
einen Uberblick iiber die Erweiterungen und Anderungen, die diese Bedingung seitdem
erfahren hat. © 1992 Academic Press, Inc.

AMS 1991 subject classifications: 01A70, 35-03, 35J05, 35J25.
KEeY Worps: Arnold Sommerfeld, radiation condition, Helmholtz equation, boundary value problem.

1. INTRODUCTION

It has been eighty years since Sommerfeld introduced his radiation condition.
This condition prescribes the asymptotic behavior of the solutions of exterior
boundary value problems for certain classes of partial differential equations in
order to ensure the uniqueness of the solution. These boundary value problems
generally govern wave propagation where a given acoustic, elastic, or electromag-
netic wave encounters an object and it is desired to calculate the reflected, dif-
fracted, or scattered waves which result. Typical examples are the scattering of
sound by a small solid sphere, the diffraction of light by a wedge, and the propaga-
tion of radio waves along the earth’s surface. Under certain simplifying assump-
tions these problems can all be formulated mathematically as exterior boundary
value problems for the Helmholtz equation Au + k*u = 0, where u is the function
describing the waves, A = 3*/dx? + 98*/dy? + 3%/3z% is the Laplace operator, and
k is a positive constant.

One of the difficulties with formulating a wave propagation problem in this way
is that the solution may not be unique. Besides the expected outgoing waves which
result when the incident wave is scattered by the object, the mathematical solution
also provides incoming waves which originate at infinity and move towards the
object. These incoming waves are physically meaningless and must be rejected by
some criterion built into the mathematical formulation of the problem. Sommerfeld
was the first to state a mathematically precise and easily applicable condition
which, when added to exterior boundary value problems for the Helmholtz equa-
tion, ensures a unique solution. This condition is applied at infinity and for three-
dimensional problems requires that the solution u satisfy

limr(%—iku)=0, r=Vxl+yl+zl,  i=V-l, (1)
oo
uniformly with respect to all directions in which the limit is approached.

Since its introduction in 1912 Sommerfeld’s radiation condition (1) has become
the standard and indispensable criterion used to ensure the uniqueness of the
solution for these types of problems in mathematical physics. Moreover, it has
also stimulated a considerable amount of research on uniqueness theorems for
these problems from a purely mathematical standpoint. As a result, Sommerfeld’s
condition has been reformulated in a number of equivalent ways, and it has been
modified to make it applicable to a wider class of problems. In this note we will
attempt to trace the reasoning that led Sommerfeld to the original formulation of
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the radiation condition and survey some of the extensions and modifications it has
undergone since then,

Sommerfeld is known primarily for his contributions to theoretical physics [Laue
1951, Heisenberg 1968] and he is revered as the mentor of a whole generation of
physicists [Born 1928]. Since these achievements overshadow his contributions to
mathematics, the latter are often overlooked. Thus his discovery of the radiation
condition and the impact it had on mathematics are not even mentioned in his
biographies [Benz 1975, Eckert et al. 1984]. It should be remembered, however,
that Sommerfeld was originally trained as a mathematician, and as a student,
collaborator, and lifetime admirer of Felix Klein he shared his mentor’s view that
there should be fruitful cross-fertilization between mathematics and physics and
that the two should never become divorced from each other. As Sommerfeld
himself asserts in the introduction to his book on partial differential equations in
physics:

We do not really deal with mathematical physics, but with physical mathematics; not
with the mathematical formulation of physical facts, but with the physical motivation of
mathematical methods, The oft-mentioned ‘‘prestabilized harmony’” between what is mathe-

matically interesting and is physically important is met at each step and lends an esthetic—I
should like to say metaphysical—attraction to our subject.”” [Sommerfeld 1945 v]

The history of Sommerfeld’s radiation condition provides an interesting example
of this interplay between physical intuition and rigorous mathematical reasoning.

2. THE EXTERIOR BOUNDARY VALUE PROBLEM FOR THE
HELMHOLTZ EQUATION

Although Euler and Lagrange considered the equation Au + k%« = 0 in connec-
tion with sound propagation and vibrating membranes as early as 1759, another
century was to elapse before Helmholtz [1860] developed a general solution theory
for this equation. Helmholtz studied sound waves in a tube with one open end
(organ pipe) and showed that the solution of three-dimensional interior boundary
value problems for the equation now named after him couid be represented in
terms of the boundary values « and du/dv by the formula

ikr ikr
Aru(P) = js [%f— - “aa_v (e—)] ds, @)

o r r

where P is a point inside the closed surface S, r is the distance from P to S, and
d/dv denotes differentiation along the outward normal to S. Weber [1870] extended
this result to two dimensions in 1870 and Pockels [1891], on the suggestion of
Klein, wrote a monograph on the Helmholtz equation in 1891. The history up to
1900 of boundary value problems for this equation and other partial differential
equations is summarized in the Encyklopddie article by Sommerfeld [1900]. It is
noteworthy that Sommerfeld does not mention exterior boundary value problems
for the Helmholtz equation in his article since little was known about them at the
time.
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Exterior boundary value problems for the Helmholtz equation first began to
appear in connection with certain physics problems in the final decades of the last
century. Important among these are Lord Rayleigh’s studies on the scattering of
sound by obstacles. These are discussed in his treatise The Theory of Sound
[Rayleigh 1894], a work which Sommerfeld quotes several times in his encyclope-
dia article and elsewhere. Rayleigh distinguishes between outgoing and incoming
waves and rejects the latter in applications [Rayleigh 1894 II, 109, 238]. For
example, in his treatment of what is now called Rayleigh scattering, he considers
only ‘‘a disturbance due to the presence of the sphere, and radiating outwards
from it”’ [Rayleigh 1894 I1, 273]. Since Rayleigh’s solution method became a model
for treating propagation problems of this type we outline it here.

Rayleigh considers a plane wave incident upon a small solid sphere centered at
the origin and assumes that the resulting scattered wave is spherical with amplitude
A depending on the angle 6 that the direction of the outgoing wave makes with
that of the incoming one. Letting a and w be the propagation speed and frequency,
respectively, the composite wave then satisfies the wave equation Av -
(1/a)*v,, = 0 exterior to the sphere and is

) ei(kr—wl)
U = Ujpe + Uscat = ez(kx—wt) + A(O) r )

where k = w/a. When the time dependent term e ~*' is factored out, the stationary
factor

e ikr

u=e* + A®) -
satisfies Helmholtz’ equation Au + k*« = 0. Together with the condition that the
sphere is impenetrable (du/dv given on the sphere) this forms an exterior boundary
value problem. By expanding ¢** in terms of spherical harmonics and A(8)e*'/r in
terms of spherical harmonics and Bessel functions and retaining only terms which
correspond to outgoing waves, Rayleigh obtains an approximate solution of this
problem in the far field. For spheres which are small compared to the wavelength
A = 2x/k, the scattered amplitude is approximately

__#rf, 3
A(6) = AZ(I 20),

where T is the volume of the sphere. From this Rayleigh deduces his scattering
law that ‘‘the ratio of the scattered and direct waves is in general proportional to
the inverse square of the wave-length’’ [Rayleigh 1894 II, 277]. In a later paper
[Rayleigh 1897] he showed that this law also holds for sunlight scattered by the
water droplets in the earth’s atmosphere. He used this to explain why the sky is
blue: The shorter wavelengths (blue) of sunlight are less attenuated and hence pass
through the atmosphere more readily.

This example shows how in practical problems a unique solution could be
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obtained by ruling out incoming waves on physical grounds. Another exclusion
argument that was sometimes used [Lamb 1895, 499; Sommerfeld 1912, 331] is
based on energy considerations: An outgoing radial wave originates from an energy
emitting source at a finite point, whereas an incoming wave would have to originate
from such a point at infinity (or a sink at a finite point); but this is physically
impossible.

Let us now consider the general exterior boundary value problem

Au+ku=0 outside a closed surface o

u=f ono (or— =gonc|,
ov

where f (or g) is a given function. The solution of this problem is not unique. For
let o be the sphere r = 7/k and let the boundary condition # = 0 be given on this
sphere. Clearly u = 0 and 4 = (sin kr)/r are two different solutions of this problem
outside of . In fact, the second solution represents a standing wave and may be
added to any solution of this problem. (A somewhat similar counterexample was
already given by Pockels [1891, 236], although not in the context of exterior
boundary value problems.)

The undesirable standing wave solution # = (sin kr)/r may be decomposed by
u = (3))(u; — uy) into two other solutions of the Helmholtz equation, namely u, =
e®/r and u, = e */r (the factors =}i have been omitted). These correspond
to the solutions v, = e ~“)/r and v, = e~ *)/r of the wave equation Av —
(1/a®v, = 0, where k = w/a, after the time dependence has been factored out by
making the substitution v = we . (Since this substitution reduces the wave
equation to Helmholtz’ equation the latter is also often called the reduced wave
equation.) The functions v, and v, represent outgoing and incoming spherical
waves, respectively. Hence incoming and standing waves would be ruled out if a
condition could be found which when added to the statement of the boundary
value problem (3) would reject solutions of the type of u,. That is, this condition
has to rule out not only the simple solution u,, but also all solutions of the
Helmbholtz equation corresponding to incoming waves. This then was the condition
which Sommerfeld set out to find in 1912.

3. SOMMERFELD’S EARLY WORK IN MATHEMATICS AND PHYSICS

In his 1912 paper Sommerfeld [1912] cites two examples of exterior boundary
value problems requiring a radiation condition: (1) optical diffraction theory and
(2) radio wave propagation. Sommerfeld [1896, 1909] had written important papers
on these two topics in 1896 and 1909, respectively, and the uniqueness questions
raised therein must have motivated him to search for a mathematically satisfactory
way of resolving these questions. Heretofore these uniqueness questions had
always been resolved by appealing to physical considerations (inadmissible incom-
ing waves, energy transport from infinity, etc.), but to a person with Sommerfeld’s
mathematical background these artifices must have seemed contrived and thus
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encouraged him to look for a single mathematically formulated criterion which
when added to the statement of the exterior boundary value problem (3) makes this
a “‘well-posed’” problem in the sense of Hadamard. To understand Sommerfeld’s
motivation and outlook more clearly we first take a look at his mathematical
background and experience. Fortunately he left us an autobiographical sketch
[Sommerfeld 1951]—written from the perspective of his advanced years—which
clearly portrays the formative influences on his work. From this we will select the
facts relevant for the discussion of our particular topic.

Arnold Johannes Wilhelm Sommerfeld was born in Konigsberg (East Prussia)
in 1868 and attended the Gymnasium and studied mathematics at the Albertus
Magnus University in his home town. Among his teachers at the university were
Hilbert, Hurwitz, and Lindemann, and he completed his doctoral dissertation
entitled *‘Arbitrary Functions in Mathematical Physics’’ under Lindemann. In
1893 he went to Gottingen, which he calls the ‘‘Ort mathematischer Hochkultur’’
[Sommerfeld 1951, 675] and a year later became Felix Klein’s assistant there. This
association became crucial for his entire professional development:

The impression I received of F. Klein’s imposing personality through his lectures and in
conferences with him was overpowering. Klein resolutely tried to captivate my interest in
problems of mathematical physics and to get me to accept his view of these problems which
he had expounded in his earlier lectures. I have always regarded Klein as my real teacher,
not only in mathematical, but also in mathematical-physical matters, and in the conceptual
interpretation of mechanics. The model he provided with his extraordinary expository skill
was an incisive influence on my later teaching career. [Sommerfeld 1951, 675]

Under Klein’s direction, Sommerfeld {1896] completed his Habilitationsschrift
in 1896 entitled ‘‘Mathematical Theory of Diffraction.”” In this brilliant paper
he gives the first mathematically rigorous solution of diffraction from the straight
edge of a screen as a boundary value problem (previous theories by Kirchhoff,
Fresnel, and others were less precise). Sommerfeld’s approach to the problem
earned him Poincaré’s accolade: ‘‘méthode extrémement ingénieuse’’ [Sommer-
feld 1951, 675].

Assuming the light source to be a large distance from the screen, the incident
wave is plane and meets the edge of the screen at an angle. The diffracted
electric field is then also parallel to the edge of the screen and the problem
becomes two-dimensional; i.e., it can be represented in terms of polar coordi-
nates r and ¢. The field as modified by the presence of the screen then
satisfies (after the time-dependent term has been factored out) a two-dimensional
boundary value problem of the type (3) with the boundary condition u = 0
given along the edge of the screen. (A weakly singular edge condition r gradu
— 0 must also be imposed to ensure that the edge does not radiate or absorb
energy.) Sommerfeld then solves the boundary value problem by the method
of images, but with an important and novel modification: one of the image
sources is located on the second sheet of a two-sheeted Riemann surface so
that it does not interfere with the illuminated part of the field. The field is then
represented by the wave packet
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u= JA(B)e—ikrcos(¢—B) dB’

where A(B) is the amplitude distribution of the field and the integration takes place
along a path on the Riemann surface. Sommerfeld chooses this path judiciously
so that u satisfies the boundary conditions and the field has a radiative (and not
an absorptive) character. Thus he obtains a closed form solution in terms of real
definite integrals which can be evaluated and yield approximations agreeing with
the results of earlier investigators. This work clearly shows Klein’s imprint, and
it should be mentioned that it also provides perhaps the earliest example of what
von Laue in his eulogy of Sommerfeld calls his ‘‘sportive virtuosity in the evalua-
tion of definite integrals in the complex plane’ [Laue 1951, 214]. Heisenberg also
tells the story that Sommerfeld’s students in Munich were advised by the more
advanced students to ‘‘integrate a few times in the complex plane’’ to receive a
good grade from him [Heisenberg 1968, 530].

After earning his right to teach at the university level, Sommerfeld served as
Privatdozent at the Georg August University in Géttingen for five semesters and
collaborated with Klein on what was to become their four-volume treatise Theory
of the Spinning Top (completed in 1910). In 1897 Sommerfeld obtained a professor-
ship in mathematics through Klein’s efforts at the comparatively little known
Bergakademie Clausthal in the Harz mountains near Goéttingen. Here he taught
primarily elementary mathematics and spent much time on his duties as one of the
editors of the monumental Encyklopddie der mathematischen Wissenschaften
organized by Klein. The aforementioned encyclopedia article on boundary value
problems [Sommerfeld 1900] was written at this time. In 1900 Sommerfeld was
appointed to a professorship at the more prominent Technical Institute in Aachen,
again through the efforts of Klein. The titles of his papers written during his tenure
there suggest that he had to concern himself primarily with engineering problems
(**On the Theory of Railroad Brakes’’ (1902), ‘‘On the Hydrodynamic Theory of
Lubrication’” (1904), etc.).

Finally in 1906 Sommerfeld was appointed to the important chair in theoretical
physics at the Ludwig Maximilians University in Munich, a position he was to
occupy for the next 32 years. He recalls:

In Munich I had the opportunity for the first time to lecture on the various fields of theoretical
physics and to give special lectures on topics of current interest. From the beginning I have
tried and I have spared no effort through my seminars and colloquia to establish a growth
center for theoretical physics in Munich. [Sommerfeld 1951, 677]

Indeed, Sommerfeld became the mentor of a whole generation of physicists.
Max Born [1928], who took a head count in 1928, found that nearly one third
of all the chairs in theoretical physics in the German-speaking countries were
occupied by Sommerfeld’s students. Among his students and assistants were
several who later won Nobel prizes, namely Bethe, Debye, Heisenberg, and
Pauli. Research fellows flocked to his institute from all over the world, including
the American scientists E. U. Condon, Linus Pauling, and I. I. Rabi [Sommerfeld
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1949]. During his years in Munich, Sommerfeld was again able to focus on
boundary value problems in mathematical physics. In 1909 he attacked one of
the important technical problems of the day as a boundary value problem,
namely the influence of the earth’s proximity on the propagation of radio waves.
This problem was to occupy him and his students for many years, and an entire
chapter of more than 50 pages is devoted to it in his text on partial differential
equations [Sommerfeld 1945].

In his 1909 paper [Sommerfeld 1909] the mathematical model of radio
wave propagation is idealized drastically. The transmitter is represented by an
oscillating Hertz dipole placed at a distance h above the earth. The earth is
assumed to be flat and homogeneous with constant conductivity, electric
permittivity, and magnetic permeability. The atmosphere is also assumed to be
homogeneous and reflections from the ionosphere are neglected. If the plane z
= 0 is taken to represent the air—earth interface in cylindrical coordinates r,
¢, z, then the boundary value problem becomes (after the time-dependent term
has been factored out)

{Au+k%u=0 inz>0
Au+ k3u=0 inz <0,

where k&, and k, are two different constants which describe the two media, air and
earth. In addition, certain boundary conditions hold at the interface z = 0. For
propagation over long distances the angular coordinate ¢ may be neglected and
the field represented by

kR

u= ER— = Lmjo(hr)e"‘fz’%‘i—h, R=Vr?+ 72 w="V\ -k,

where J; is the Bessel function of order zero. The total disturbance then breaks
up into a primary disturbance created by the transmitter and a secondary
disturbance due to the currents induced in the ground. Moreover, this secondary
disturbance acts differently in z > 0 and z < 0 because different electric
constants describe the two media in these two half-spaces. To single out the
waves that propagate in a direction away from the transmitter, Sommerfeld
splits up the Bessel function Jy(Ar) in the integral into the sum of two Hankel
functions H{’(A\r) and HP(Ar) by J, = 3(HY’ + HY) and retains only the part
$H{M(Ar) which corresponds asymptotically to outgoing cylindrical waves. (The
Hankel functions H{’(*) and H®(r) behave asymptotically like e*/Vr
and e~ "/Vr, respectively.) The remainder of the solution method need not
concern us here; it leads to a convenient approximation formula which qualita-
tively and even quantitatively yields good results. Sommerfeld, his students,
and other investigators later improved the model by taking into account the
inhomogeneous nature of the ground (dry ground, wet ground, fresh water, sea
water), the curvature of the earth, and—most importantly—the reflections from
the ionosphere [Sommerfeld 1945].
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4. DERIVATION OF THE RADIATION CONDITION

By 1910 Sommerfeld saw the need for combining the various propagation prob-
lems he had encountered in mathematical physics under the single rubric of an
exterior boundary value problem and to provide a uniform mathematical treatment
therefor. To accomplish this he found it necessary to first derive a condition which
would ensure the uniqueness of the solution. He does this in his 1912 paper
[Sommerfeld 1912] by first posing a general exterior boundary value problem and
then deriving a radiation condition for it and showing that it yields a unique solution
(provided a certain Green’s function exists). He did not consider the question of
existence (or stability) for the boundary value problem, probably because this
could be expected to entail difficulties in light of the history of the Dirichlet
principle for the potential equation (k = 0).

The 1912 paper consists of two parts. The first part constructs Green’s functions
for interior boundary value problems for the Helmholtz equation; it had already
been presented at the Annual Meeting of Natural Scientists in Kénigsberg in 1910
[Sommerfeld 1910]. (An interesting sidelight here is that Sommerfeld uses the
picturesque term ‘‘Zackenfunktion’ (spike function) for 8(x) = 0 for x # 0,
8(x) = oforx = 0, [8(x) dx = 1. This function was later named after Dirac!) The
second part deals with the corresponding exterior boundary value problem and
was presented at a meeting of the same group in Miinster in 1912.

At the beginning of the second part, Sommerfeld first discusses the lack of
uniqueness in exterior boundary value problems for the Helmholtz equation. He
then poses the following general problem:

Find « such that

(a) Au + k*u = foutside a closed surface o,
(b) u = 0 on o (or a similar homogeneous boundary condition),
(c) ““Finiteness condition’” [*‘Endlichkeitsbedingung’’]
lim,_,, # = 0 such that ru remains bounded,
(d) ‘‘Radiation condition’’ [** Ausstrahlungsbedingung’’]
lim,_, . r(du/dr — iku) = 0 uniformly with respect to direction.

The function fin (a), Sommerfeld explains, represents the net source strength of
any sources which may be located in the finite part of space. For the derivation of
the radiation condition these are irrelevant; hence we assume f = 0 here. By a
‘‘similar homogeneous condition’’ in (b), Sommerfeld means ou/ov = 0 or u +
adu/dv = 0, where 0 = o < @ and v is normal to o. If f= 0 in (a) then the boundary
condition (b) is usually formulated to be the Dirichlet condition # = g or the
Neumann condition du/dv = h on o, where g and % are given functions. Actually
Sommerfeld states condition (d) in two forms. In the 1912 paper he also writes:
“‘at infinity # must be representable as a sum (or integral) of waves of the divergent
traveling type.”” He then asserts that this is equivalent to (d) as given above. In
his 1935 article on electromagnetic oscillations in the second (1935) edition of
Frank and von Mises’ compendium [Sommerfeld 1935] (the first (1927) edition
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does not contain a discussion of the radiation condition) condition (d) is given only
in the more precise form above. In every other respect his discussion in this article
parallels that in the 1912 paper. It should also be noted that in either paper
Sommerfeld does not explicitly spell out any regularity condition for 4 (usually u
is required to be twice continuously differentiable), nor any restrictions the surface
o must obey.

Sommerfeld now derives conditions (c) and (d) by first obtaining a representation
formula for « at a point P outside of o and inside a sphere 2 with radius r, which
is large enough to include o. This formula is the same as (2), but includes an
additional term for X, namely

du e o (e ~ (314 . ) ke A2 ikr A2
fz[ar - uar<r)]d2—f2r P iku)e 3 +f2ue o 4

The last integral on the right-hand side of (4) now vanishes by imposing condition
(c) and the first integral on this side will vanish if

lim r (i‘f - iku) =0, (1)

rosx \OF

uniformly with respect to all angles through which this limit can be approached.

Since e*"/r was used in (4), this condition singles out only outgoing waves. Because

of its simplicity this is the radiation condition most frequently cited and applied.
Sommerfeld points out that if e~*/r had been used instead of ¢*/r in (4) then

an ‘‘absorption condition’’ [*‘Einstrahlungsbedingung’’]

Hm r <§£ + iku) =0
r—x or
would result which singles out incoming waves. He then proves that the solution
of the exterior boundary value problem (a)-(d) is unique ‘‘if one postulates the
existence of the Green’s function for the exterior region” [Sommerfeld 1912, 3321.
We do not reproduce this proof here since it is superseded later by proofs which
do not require this assumption. The discussion of the radiation condition concludes
with the statement of (d) in its two-dimensional form (the factor r in (d) is replaced
by \/;) and in its one-dimensional form (the factor r in (d) is deleted). The remain-
der of the 1912 paper derives Green’s functions for various unbounded regions.
Since these Green’s functions are often represented by integrals in the complex
plane, Sommerfeld shows how to satisfy the radiation condition by an appropriate
choice of the path of integration.

5. UNIQUENESS THEOREMS AND THE EXISTENCE QUESTION

Thirty years after Sommerfeld’s original paper appeared, Magnus [1942, 1949]
gave a uniqueness proof for the exterior boundary value problem (a)-(d) without
assuming the existence of Green’s function for the exterior region. To do so, he

e
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assumes that this problem has two solutions #, and u, and then shows that u =
u, — u, must vanish identically outside of o. This is accomplished by expanding
the first integral on the right-hand side of (2) (the additional integrals (4) vanish
by conditions (¢) and (d)) in a uniformly convergent series of surface spherical
harmonics and powers of 1/r and then showing that the boundary condition on ¢
makes the coefficients in this series vanish. Magnus acknowledges Sommerfeld’s
‘‘kind interest and valuable advice’’ in writing this paper [Magnus 1942, 178]. A
year later Rellich [1943], who had heard Magnus give a lecture on this subject in
Dresden, strengthened this result by proving uniqueness for the problem (a), (b),
(d), without using condition (c). This shows then that the finiteness condition (¢)
is superfluous in the formulation of the exterior boundary value problem!

To prove uniqueness, Rellich assumes that the problem (a), (b), (d) has two
solutions u, and u, and forms u = u; — u,. Then u also satisfies (a), (b), (d), even
if the original boundary condition (b) for u, and u, is of the Dirichlet type u; = g
(j = 1, 2). The conjugate function u also satisfies (a) and (b), but (d) is replaced
by

d limr (@ + ikﬁ) = 0.
or

r—o

Rellich now combines the conditions (d) and (d) by forming the integral

2
i (2% — o (% ) €E i ]2
0—}1_2[2’(& zku) r(ar+zku) rz_ll_TJz P ikul dX

and showing that this implies lim,_,. fs|u> d= = 0 if X # 0. From this it follows
that ¥ = 0 outside of o, a result that is now known as Rellich’s lemma [Rellich
1943, 57; Hellwig 1960, 109].

The proof also shows that Sommerfeld’s radiation condition (1) may be replaced
by the weaker integral condition

lim f
oz JZ

In other words, condition (5) is sufficient to ensure uniqueness and may be used
to replace (c) and (d). Rellich carried out his uniqueness proof in n dimensions and
he also generalized his uniqueness theorem to include the case where o extends
to infinity. For the latter he had to restrict o to have a paraboloidal shape at large
distances.

After his retirement in 1938 Sommerfeld prepared his Lectures on Theoretical
Physics for publication. They appeared in six volumes [Sommerfeld 1952] during
the years 1943-1952 (English edition 1949—-1956). The sixth volume is the book
on partial differential equations mentioned earlier [Sommerfeld 1945] and it was
published two years after Rellich’s paper appeared in print. In it Sommerfeld gives
a new presentation of the radiation condition. He includes a new uniqueness proof
styled after Magnus’ and then he acknowledges:

2
dz = 0. (5)

ou .
> iku




396 STEVEN H. SCHOT HM 19

The author’s original proof of this uniqueness theorem assumed in addition to the conditions
(a), (b), (d) for u, the existence of Green’s function for the exterior of the surface and an
additional ‘‘finality condition’> [This is the translator’s inaccurate translation of
‘Endlichkeitsbedingung’’]. The fact that the latter is superfluous has been rigorously proven
by F. Rellich [1943] even for the case of an arbitrary number of dimensions n where the
radiation condition reads

Tim p&- D12 (éﬁ - iku) =0
. or
[Sommerfeld 1945, 192-193]

These then were the uniqueness proofs influenced directly by Sommerfeld’s
original work. After the war, a book appeared by Vekua [1967] in which the author
presents a uniqueness proof for an exterior boundary value problem and remarks
in a footnote that similar proofs had been given earlier by Russian authors. The
earliest was given by Kupradze [1934] in a 1934 paper and repeated in Kupradze’s
book [1956]. However, Vekua cautions, ‘‘But the book contains a number of
inaccuracies as remarked by the author himself”’ [Vekua 1967, 318]. In another
footnote Vekua points out that he himself had given a proof of a form of Rellich’s
lemma in 1943 [Vekua 1943]. It seems that in England the wartime papers by
Magnus, Rellich, and Vekua had also gone unnoted, for in 1949 Atkinson [1949],
who mentions only Sommerfeld’s early work, published a paper showing that
uniqueness could be proved without assuming the existence of Green’s function.
In the proof he replaces Sommerfeld’s conditions (c), (d) by two equivalent condi-
tions, namely

reikr [(z‘k — l) u— é‘_‘] -0 or Pe ik [(;’k - 1) u - 6—”] bounded,
¥ or r or

hardly any simpler than Sommerfeld’s; however, he allows the constant & in the
Helmholtz equation to be a nonzero complex number. A further extension is
presented in 1956 by Wilcox [1956], who proves uniqueness, representation, and
expansion theorems for complex &, using only Rellich’s integral condition (5).
Another generalization along these lines is given by Levine [1964] in 1964 who,
like Wilcox, allows k to be complex and uses (5), but permits the boundary surface
o to belong to a certain fairly general class of piecewise smooth closed surfaces
which may have edges and corners. Furthermore he allows mixed boundary con-
ditions to be given on these surfaces; i.e., # may vanish on some parts of o and
ou/dv + au vanish over the remainder of o, with a being in general a (possibly
discontinuous) nonnegative function of position on o. These corners, edges, and
boundary conditions occur frequently in applications.

Finally it is interesting to note that uniqueness theorems have also played a role
in proving the existence of the solution of the exterior boundary value problem for
the Helmholtz equation. Although the earlier existence proofs by Weyl [1952],
Miiller {1957], Kupradze [1956], and others were more complicated, Brakhage and
Werner [1965] gave a comparatively simple existence proof in 1965 based on the
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uniqueness theorem and on the first part of the Fredholm alternative in integral
equation theory.

6. EXTENSIONS AND MODIFICATIONS

So far we have discussed only problems for the Helmholtz equation. However,
these methods and results have also been extended to other equations and more
general boundary value problems. It would take us too far afield to consider all of
these here, especially since the subject of scattering and inverse scattering prob-
lems has grown very rapidly in recent years. Hence we briefly mention only three
extensions of Sommerfeld’s original investigations.

First of all, Sommerfeld’s condition has been applied to more general equations.
Radiation conditions for the iterated Helmholtz equations (A + k3)(A + k3u = 0
and (A + k»™u = 0, where m is a positive integer, were given by Subeika [1968]
and Vekua [1967]. Kato {1959] found asymptotic growth estimates for the solution
of the Helmholtz equation with variable k. Several authors have extended these
results to obtain uniqueness theorems for equations where the Laplace operator
A has been replaced by more general self-adjoint operators. In particular, Jiger
[1967] considers exterior boundary value problems for the n-dimensional equation
with variable coefficients a;,(x;, . . ., X,):

n n

d
S 2wt k=0
S1m=10% 7 0%y,

Extensions to certain higher order partial differential equations were also given by
Vainberg {1963, 1966], Grushin [1963], and other Russian authors. For the so-
called vector Helmholtz equation (where £ is a positive constant)

VX (VXA)—Kk’A=V(V-A) - AA — kA =0 6)
the radiation condition takes the form

lim r[(V X A) X e, — ikA] = 0, )]
where e, is a unit vector in the radial direction. Equation (6) occurs in electromag-
netic wave propagation in a homogeneous, isotropic, nonconducting medium. The
electromagnetic waves are governed by the time-independent Maxwell equations

VXE-ikH=0 and V x H + ikE = 0,

where E and H describe the electric and magnetic fields, respectively, and it
follows from these equations that both E and H satisfy (6). The radiation condition
for the electromagnetic field then follows from (7) and is

limr(HX e, — E) = 0.

In electromagnetic theory this is known as the Silver—Miiller radiation condition
[Silver 1949, Miiller 1957].



398 STEVEN H. SCHOT HM 19

Second, the surface o carrying the boundary data has been permitted to extend to
infinity, a situation which occurs frequently in diffraction problems. As mentioned
earlier, Rellich [1943] had already established uniqueness in the case where the
boundary surface o resembled a paraboloid (more precisely, o is a surface which
has the property that every plane perpendicular to a fixed direction cuts off at most
a finite portion of o and the angle this fixed direction makes with the exterior
normal to o is not less than 90°). Miranker [1957] extended this result to cones
with a sufficiently large apex angle, but had to restrict the boundary data given
thereon somewhat. The physical reason for these outward flaring shapes is that a
surface o which pinches in toward infinity can trap standing waves and thereby
lead to a nonunique solution [Jones 1953]. Other cases of infinite boundaries were
considered by Odeh [1963]. Peters and Stoker [1954] deduce a uniqueness theorem
tailored for certain two-dimensional optical and water wave diffraction problems
where a single half-ray boundary extends to infinity.

The last extension considered here is much more general and far-reaching in
that it suggests a wholly new method for deriving and formulating radiation condi-
tions. The three examples of propagation problems considered earlier (Rayleigh
scattering, light diffraction, and radio wave propagation) were made amenable to
mathematical solution by factoring out the time-dependent term e~ and thereby
reducing a difficult initial-value problem for the wave equation to an easier-to-
solve pure boundary value problem for the Helmholtz equation. This simplification
was gained at the expense of incurring incoming and/or standing wave solutions
which did not arise in the original initial-boundary value problem. These extrane-
ous solutions then had to be eliminated by imposing a radiation condition.

This suggests that one might try to solve the original initial-boundary value
problem directly without first reducing it to a pure boundary value problem. One
would then assume the incoming wave to have started impulsively at a finite time,
say t = ( (after all, no wave can have existed for all time!). If the initial conditions
are specified properly, this would produce a time-harmonic wave and a superim-
posed transient wave, but the transient wave would die out as r — . If properly
posed, with only a boundedness condition at infinity, the initial-boundary value
problem should have a unique solution, thus obviating the need for an additional
radiation condition. In fact, it should be possible to derive a radiation condition,
or at least the asymptotic behavior of the solution, by letting r — o« (the two limiting
processes in time and space may not be interchanged, however).

Although this approach had probably been considered for a long time, Stoker
[1956, 1957] may have been the first to propose it formally and actually carry it
out. In general these initial-boundary value problems are difficult to solve, but
Stoker succeeded in the case of two problems involving water waves. The first
entails simple harmonic waves traveling outward from a periodic impulse given to
an infinite ocean originally at rest and in the second, unsteady waves are created
by a disturbance on the surface of a running stream. A different program of this
type was carried out for a purely mathematical problem by Wilcox [1959]. He
considers a special initial-boundary value problem where the outgoing wave char-
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acter of the solution (‘‘radiation function’’) is built into the formulation of the
problem. He then uses this condition to derive four equivalent radiation conditions
(the Sommerfeld condition (1) and the Rellich condition (5) are among them).

These extensions illustrate the mathematical development that has radiated
outward in time and space from Sommerfeld’s 1912 paper. He certainly was correct
in believing that this paper ‘‘introduces a new and, it would seem, mathematically
interesting class of problems’’ [Sommerfeld 1912, 352].
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