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Cellular senescence permanently restricts the replicative capacity of cells in response to various stress signals,
including aberrant activation of oncogenes. The presence of predictive senescence markers in human
premalignant lesions suggests that senescence may function as a genuine tumor suppressor. These markers are
not exclusive to the senescence program, however, and it is possible that their expression in vivo does not
discriminate irreversible from reversible forms of proliferative arrest. In this study, we aimed to clarify whether
human nevus cells can be distinguished from primary and transformed melanocytes by examining the
expression of eight senescence markers, including those previously purported to define nevi as senescent
tumors. Specifically, we analyzed effectors of senescence, including p16INK4a, p53, and DNA damage (g-H2AX),
as well as predictive markers of senescence including Ki67, PML, senescence-associated b-galactosidase,
heterochromatic foci (H3K9Me, 40-6-diamidino-2-phenylindole), and nuclear size. We found that these
commonly accepted senescence markers do not in fact distinguish nevi from precursor/normal and
transformed/malignant melanocytes. We conclude that on the basis of current evidence it cannot be
reasonably inferred that nevi are permanently growth arrested via senescence.
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INTRODUCTION
Cellular senescence permanently restricts the proliferative
capacity of cells in response to various stress signals,
including aberrant activation of oncogenes. For instance,
the sustained activation of oncogenic RAS and its down-
stream kinase effector, B-RAF, promotes a rapid cell cycle
arrest in vitro, known as oncogene-induced senescence
(Michaloglou et al., 2005; Gray-Schopfer et al., 2006).
Importantly, senescent cells are unresponsive to physiologi-
cal mitogenic stimuli, and senescence is thought to act as a
genuine tumor suppressor in vivo. Senescent cells display a
combination of markers that are not exclusive to the
senescence program but in combination represent powerful
predictors of this form of arrest. Senescence markers include

the upregulation of p16INK4a, induction of senescence-
associated b-galactosidase (SA-b-gal) activity, the formation
of senescence-associated heterochromatin foci, and the
accumulation of DNA damage foci (reviewed in Campisi
and d’Adda di Fagagna, 2007; Collado and Serrano, 2006).
Compelling recent data, based on the expression of a limited
number of senescence markers in human premalignant
lesions of the skin, colon, prostate, and nervous system,
support the concept that senescence acts as a genuine tumor
suppression mechanism (Chen et al., 2005; Michaloglou
et al., 2005; Bartkova et al., 2006; Courtois-Cox et al., 2006;
Kuilman et al., 2008).

Evidence demonstrating that B-RAF promotes senescence
in vivo comes from studies in animal models and human
nevi. Nevi are benign tumors of melanocytes that frequently
harbor oncogenic mutations in B-RAF (Pollock et al., 2003).
Nevi remain growth arrested for decades and rarely develop
into melanomas (Kuwata et al., 1993; Maldonado et al.,
2004), presumably because aberrant B-RAF signaling induces
a potent senescence response (Michaloglou et al., 2005;
Gray-Schopfer et al., 2006; Dankort et al., 2009; Dhomen
et al., 2009; Goel et al., 2009). Mutant B-RAF has been
shown to promote nevus formation in murine and fish
melanoma models, and these nevi are growth arrested and
express p16INK4a and SA-b-gal (Dhomen et al., 2009; Goel
et al., 2009). Human nevi also display some features of
oncogene-induced senescence, including intact telomeres,
increased p16INK4a expression, and positive SA-b-gal activity
(Miracco et al., 2002; Michaloglou et al., 2005; Mooi and
Peeper, 2006), although the expression of this enzyme in
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human nevus cells in vivo remains controversial (Cotter et al.,
2007, 2008; Michaloglou et al., 2008). The role of oncogenic
B-RAF in initiating human melanocytic proliferation and
nevus formation is also contentious, as mutant B-RAF is not
present in every cell within a nevus (Ichii-Nakato et al., 2006;
Lin et al., 2009).

There is clinical and histological evidence that B25% of
melanomas arise from, or are associated with, a pre-existing
nevus (Marks et al., 1990; Bevona et al., 2003; Tsao et al.,
2003), and this suggests that either senescence does not
prevent tumorigenesis or that not all nevus cells have
undergone senescence. In fact, the concept that human nevi
are irreversibly arrested via senescence has not been
rigorously tested, and there is clear evidence for low levels
of mitotic activity in congenital, common acquired, and
dysplastic nevi (Soyer et al., 1989; Moretti et al., 1990;
Rudolph et al., 1997; Florell et al., 2002, 2005; Jensen et al.,
2007; Lebe et al., 2007; Nasr and El-Zammar, 2008; Glatz
et al., 2010; McCarthy and Scolyer, 2010; Ruhoy et al.,
2011).

In this study, we sought to clarify whether human nevi
display a consistent and conclusive senescence signature
by examining the expression of eight senescence markers,
including those previously purported to define nevi as
senescent tumors, namely p16INK4a, Ki67, and SA-b-gal. We
examined a series of fresh-frozen and paraffin-embedded
nevi and melanomas and melanocytic cell lines. Importantly,
we compared whether these markers differentiate nevus
cells from primary and metastatic melanomas, as well
as individual normal melanocytes scattered along the
dermal–epidermal junction in adjacent normal skin. We
confirm that although several senescence markers, including
p16INK4a and SA-b-gal, are common in human nevi, they also
occur frequently in melanoma samples. Further, both nevus
cells and individual skin melanocytes are uniformly negative
for the proliferation marker Ki67. Thus, it cannot be reason-
ably concluded on the basis of current evidence that nevi are
permanently growth arrested via senescence.

RESULTS AND DISCUSSION
In this report, we assessed the expression of eight senescence
markers previously identified in vitro in a series of fresh-
frozen and formalin-fixed, paraffin-embedded human benign
nevi (n¼ 46) and melanomas (n¼ 46). We analyzed putative
effectors of oncogene-induced senescence, including
p16INK4a, p53, and DNA damage (detected using g-H2AX),
as well as markers of senescence including Ki67, PML,
SA-b-gal, senescence-associated heterochromatin foci (de-
tected using 40-6-diamidino-2-phenylindole (DAPI) stain and
histone H3 methylated at lysine 9 (H3K9Me)), and nuclear
size (reviewed in Kuilman et al., 2010; Muller, 2009). Where
possible, the genotype of B-RAF at codon-600 was also
examined and the V600E mutation was detected in 11/17 and
8/17 nevi and metastatic melanomas, respectively (Supple-
mentary Table S1 online).

Initially, we analyzed the behavior of our panel of
senescence markers in cultured human neonatal melanocytes
expressing oncogenic B-RAFV600E. As expected, p16INK4a,

g-H2AX, and PML were all substantially increased in
B-RAFV600E-transduced melanocytes (Figure 1). Staining of
19 formalin-fixed paraffin-embedded nevi and 18 metastatic
cutaneous melanomas (Supplementary Table S1 online) with
antibodies against p16INK4a, g-H2AX, and PML revealed
negligible staining in individual melanocytes in adjacent
normal skin (Figure 2). In contrast, g-H2AX and PML proteins
were equally, highly expressed in both human nevi and
metastatic melanomas (Figure 2, Table 1). The expression of
p16INK4a clearly distinguished nevi from metastatic melano-
mas; most nevi displayed heterogeneous p16INK4a staining
irrespective of B-RAF status, and the expression of p16INK4a

was significantly diminished in the metastatic melanomas
(Figure 2). Elevated expression of p16INK4a in nevi has
supported the notion that oncogene-induced senescence
promotes cell cycle arrest in nevus cells (Michaloglou
et al., 2005), although p16INK4a was shown to be uniformly
expressed in melanomas in situ (Reed et al., 1995). We
explored the link between p16INK4a induction and melanoma
progression by conducting additional immunohistochemical
analyses using paraffin-embedded tumor tissue arrays of an
additional 21 primary cutaneous melanomas and 20 nevi
(Supplementary Table S2 online). As shown in Figure 3,
p16INK4a expression was usually retained in primary mela-
nomas at levels comparable to those seen in nevi (Figure 3,
Table 2). Thus, although p16INK4a induction is commonly
associated with oncogene-induced senescence, it is not
unique to growth-arrested nevi but is also expressed in
proliferating primary melanomas.

As with B-RAF-transduced melanocytes (Figure 1), we
observed no evidence of proliferation (Ki67 positivity) within
nevi or in individual skin melanocytes. In contrast, Ki67 was
expressed in a high proportion of metastatic melanomas cells
(Figure 2). The appearance of heterochromatin foci in B-RAF-
transduced melanocytes coincided with cell cycle arrest, and
these foci were enriched for the heterochromatin markers
H3K9Me (Figure 1) and HMGA2 (data not shown). DAPI-
stained nuclear foci were not detected in nevi or metastatic
melanomas (Figure 2), and although the heterochromatin
marker H3K9Me was highly expressed it did not differentiate
nevi from these metastatic melanomas (Figure 2, Table 1). It
has been shown that expression of H3K9Me is significantly
increased in human tumors (head and neck squamous
carcinomas and lung and colon cancers) compared with
normal tissue (Di Micco et al., 2011), and we confirmed that
only a small percentage of individual normal melanocytes
stained positive for this marker. Nuclear size enlargement, an
established marker of in vitro senescence, was not observed
in cultured melanocytes expressing B-RAFV600E compared
with control and wild-type B-RAF-transduced cells (Figure
4a), and there was no evidence that nevus cell nuclei were
enlarged compared with normal epidermal melanocytes or
metastatic melanoma cells (Figure 4b).

Senescence can also be initiated by p53 in response to
DNA damage checkpoints triggered by activated oncogenes
(Bartkova et al., 2006; Di Micco et al., 2006). In human
melanocytes, however, p53 does not appear to be a critical
effector of oncogene-induced senescence. In particular, p53
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was not induced by B-RAF in cultured melanocytes (data not
shown; Scurr et al., 2010; Zhuang et al., 2008), and
oncogene-induced senescence is effectively initiated and
maintained in human melanocytes lacking p53 expression
(Denoyelle et al., 2006; Zhuang et al., 2008; Haferkamp
et al., 2009b). Accordingly, accumulation of p53 was not
associated with arrested nevi or skin melanocytes, and
showed higher expression in our panel of metastatic
melanomas (Figure 2, Table 1). The lack of p53 induction
in human nevi has been reported previously (Cristofolini
et al., 1993; Michaloglou et al., 2005), and is intriguing
considering that p53 prevents the conversion of benign nevi
to melanomas in transgenic animals expressing oncogenic
RAS or B-RAF. Indeed, the loss of p53 eliminated nevus
formation and initiated melanoma formation de novo in these
animal models (Patton et al., 2005; Ferguson et al., 2010;
Terzian et al., 2010).

Finally, we analyzed SA-b-gal activity, which reflects
lysosomal expansion rather than senescence (Kurz et al.,
2000), in a small set of frozen human nevi and metastatic
melanomas (Supplementary Table S3 online). As expected,
most nevi (5/7) accumulated detectable levels of this enzyme,
but so did a subset of metastatic melanomas (3/7) stained in

parallel (Figure 5, Supplementary Table S3 online). We found
only two previous reports showing positive SA-b-gal staining
in human nevi. In both reports, enzyme activity was detected
in congenital nevi but not in normal skin, and melanomas
were not included in the analyses (Michaloglou et al., 2005;
Gray-Schopfer et al., 2006). We found only one study looking
at SA-b-gal activity in human malignant and non-neoplastic
lesions, and in this report enzyme activity was limited to
regions of prostate hyperplasia and was not detected in
prostate cancer (Chen et al., 2005). The value of SA-b-gal as
an in vivo marker of senescence requires further investiga-
tion; our data indicate that it does not consistently
discriminate between arrested benign nevi and proliferating
melanoma, and its specificity as a marker of aging tissue
remains controversial (Dimri et al., 1995; Severino et al.,
2000). In vitro, the expression of this enzyme correlates
strongly with the senescence state, although it can also be
induced by stresses such as serum withdrawal and prolonged
cell culture (Severino et al., 2000).

It is clear from our data that it is not easy to recognize
senescent cells in vivo, and this reflects the nature and
specificity of the predictive markers currently available. Our
findings indicate, however, that none of the commonly
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Figure 1. Senescence program induced by oncogenic B-RAFV600E in cultured human melanocytes. (a) Human melanocytes were infected with lentiviruses

carrying B-RAFV600E or control vector. The efficiency of transduction was controlled with the co-expression of copGFP and was consistently above 90%.

Cell proliferation (Ki67) and chromatin condensation (40-6-diamidino-2-phenylindole (DAPI)) were analyzed and quantified 5 days after infection of

melanocytes. Cells enlarged to show DAPI-stained chromatin foci are indicated with arrows. LM, light microscopy. (b–d) Representative examples of

chromatin condensation (DAPI) in human epidermal melanocytes expressing B-RAFV600E (day 5) and staining for (b) H3K9Me, (c) g-H2AX, and (d) PML.

(e) Expression of the indicated proteins was determined by western blot analysis after infection of melanocytes with lentiviruses expressing copGFP (�)

or B-RAFV600E (þ ). Transduced B-RAFV600E (MYC tagged) was detected using the MYC antibody.
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accepted senescence-associated markers differentiate benign
nevus cells from melanoma cells or skin melanocytes. More-
over, the critical markers used to define nevi as senescent
tumors in previous studies, namely Ki67 negativity, and
p16INK4a and SA-b-gal positivity, did not distinguish nevi from
their precursor and transformed melanocyte counterparts.
For instance, both nevi and individual skin melanocytes were
Ki67 negative, p16INK4a displayed a mosaic pattern of

expression in nevi but also in primary melanomas, and SA-
b-gal was expressed in a subset of nevi and melanoma
metastases. These data were not age dependent, as there was
no significant difference in the expression of any of the eight
senescence markers in nevi excised from younger patients
(o40; n¼10) versus older patients (440; n¼9; data not
shown). There is no doubt that benign nevi are usually growth
arrested, but considering that the majority of individual skin

Nevi

Ki67

PML

H3K9Me

p53

γ-H2AX

p16INK4a

Melanoma
100

Epidermal melanocytes

Metastatic melanomas

Nevi

80

60

40

20

0
100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

Figure 2. Expression of senescence markers in human nevi and melanoma. (Left) Paraffin-embedded sections of human nevi and metastatic melanomas

were subjected to dual-fluorescence immunohistochemistry with the indicated antibodies. The pan-melanoma cocktail (antibodies against HMB45,

MART1, and tyrosinase (green)) was used to identify melanocytes. Representative examples of nevi and metastatic melanomas demonstrating Ki67, p16INK4a,

g-H2AX, PML, H3K9Me, and p53 staining are shown (red). Nuclei were stained with 40-6-diamidino-2-phenylindole (blue). Bar¼ 20mm. (Right) Scatter

plot analysis showing the percentage of cells scoring positive for each marker in nevi, metastatic melanoma tissue, and in individual melanocytes scattered along

the epidermal–dermal junction in adjacent normal skin. The horizontal bar indicates the median expression values in nevi and melanoma samples.
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melanocytes are also arrested, that nevi show no distinguish-
ing senescence markers, and that proliferation of nevus cells
can occur in vitro and in vivo (Soyer et al., 1989; Moretti
et al., 1990; Rudolph et al., 1997, 1998; Tronnier et al., 1997;
Florell et al., 2002, 2005; Lebe et al., 2007; Chan et al.,
2010), it is premature to define nevi as senescent lesions. In
addition, the mix of B-RAF wild-type and B-RAF mutant cells
within clonal nevi (Ichii-Nakato et al., 2006; Lin et al., 2009)
suggests that these tumors may not be permanently restricted
from transformation via oncogene-driven arrest.

There is also substantial clinical evidence that nevus cells
are capable of proliferation. For instance, low-level mitotic
activity has been reported in nevi (Soyer et al., 1989; Moretti
et al., 1990; Rudolph et al., 1997; Florell et al., 2002, 2005;
Jensen et al., 2007; Lebe et al., 2007; Nasr and El-Zammar,

2008; Glatz et al., 2010; McCarthy and Scolyer, 2010; Ruhoy
et al., 2011), and nevus cell proliferation can be induced
during pregnancy (Gerami et al., 2009; Chan et al., 2010) by
UV irradiation (Tronnier et al., 1997; Rudolph et al., 1998)
and upon incomplete surgical removal of a benign nevus
(Scolyer et al., 2004, 2006; Sommer et al., 2011). Spitz nevi
are considerably more mitotically active than other melano-
cytic nevi (Hofmann-Wellenhof et al., 1993; Crotty et al.,
2002; Dahlstrom et al., 2004; Florell et al., 2005), and over
30% of choroidal nevi showed slow growth over several
years without evidence of transformation (Mashayekhi et al.,
2010). In addition, growing melanocytic nevi are more likely
to carry the B-RAFV600E mutation compared with lesions
showing no changes in structure or growth (Loewe et al.,
2004; Zalaudek et al., 2011). Further, the histological
recognition of nevi in contiguity with 20–40% of melanomas
indicates that a substantial proportion of melanomas may
have arisen from the proliferation of benign or dysplastic
nevus cells (Rhodes et al., 1983; Duray and Ernstoff, 1987;

Table 1. Median and interquartile ranges of
senescence markers by melanocytic tumor type
together with associated P-value (Mann–Whitney test)

Nevus Metastatic melanoma

Marker Median (LQ, UQ) Median (LQ, UQ) P-value

H3K9Me 40 (30, 53) 40 (13, 80) 0.945

Ki67 0 (0, 0) 55 (15, 68) o0.001

p16INK4a 40 (16, 44) 0 (0, 2) o0.001

p53 4 (0, 15) 20 (5, 65) 0.028

PML 70 (65, 80) 60 (60, 80) 0.165

g-H2AX 55 (10, 80) 70 (50, 92) 0.570

Abbreviations: LQ, lower quartile; UQ, upper quartile.
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Table 2. Median and interquartile ranges of p16INK4a

protein expression by melanocytic tumor type
together with associated P-value (Mann–Whitney test)

Nevus Primary melanoma

Marker Median (LQ, UQ) Median (LQ, UQ) P-value

p16INK4a 45 (25, 70) 20 (0, 70) 0.159

Abbreviations: LQ, lower quartile; UQ, upper quartile.
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melanocytes or nevi. (a) Human melanocytes transduced with control vector,

wild-type B-RAF, or B-RAFV600E were stained with 40-6-diamidino-2-

phenylindole (DAPI) 5 days post transduction. Average nuclear area was

determined using the Image J software and is shown as histograms, which
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transduction experiments. The number of cells analyzed (n) are also

indicated. (b) Nuclear area of DAPI-stained epidermal melanocytes, nevus

cells, and metastatic melanoma cells, from paraffin-embedded sections, was

determined using the Image J software. The average nuclear area is shown as

histograms, which correspond to the mean±SD derived from 13, 17, and 5

independent sections, respectively. Total number of cells analyzed (n) is

indicated.
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Bevona et al., 2003). Finally, whereas melanocytes from
adult skin proliferate only for 4 weeks in vitro, melanocytes
from dysplastic and congenital nevi (which express SA-b-gal;
Michaloglou et al., 2005) proliferate in the presence of
mitogens for 4–6 weeks in culture before becoming quiescent
(Halaban et al., 1986). Importantly, only a small fraction of
explanted nevus cells grow in vitro, highlighting the
heterogeneity in the proliferative potential of these precursor
lesions (Soo et al., 2011).

Taken together, these data challenge the prevailing view
that benign nevus cells have undergone permanent prolif-
erative arrest via oncogene-induced senescence.

MATERIALS AND METHODS
Specimen collection

The formalin-fixed, paraffin-embedded, and fresh-frozen human

nevi, as well as primary and metastatic melanomas (Supplementary

Tables S1–3 online), were surgically excised between 1993 and

2010. The use of these specimens for this study was approved by the

Sydney South West Area Health Service Institutional Ethics Review

Committee (RPAH Zone) under Protocol No. X08-0155/HREC 08/

RPAH/262 and Protocol No. X11-0023/HREC 11/RPAH/32. The

fresh-frozen nevi and melanomas were obtained under sample

procurement Protocol X07-0202/HREC/07/RPAH/30. The histo-

pathologic features of each sample were reviewed by a pathologist

(RAS) to confirm diagnosis and tumor content.

DNA extraction and genotyping
DNA of nevi from three consecutive 4-mm sections from the

paraffin blocks was isolated using the QIAamp DNA FFPE Tissue

kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s

recommendations. Subsequently, B-RAF exon 15 (encompasses

Val-600) was PCR amplified and sequenced in both directions using

the following primers: B-RAF_exon15_Fwd 50-TCATAATGCTTGCT

CTGATAGGA-30 and B-RAF_exon15_Rev 50-GGCCAAAAATTT

AATCAGTGGA-30. B-RAF testing of the archival paraffin-embedded

melanoma samples was performed at the Peter MacCallum Cancer

Centre, Department of Diagnostic Molecular Pathology (Melbourne,

Australia). Samples were microdissected and subjected to high-

resolution melting analysis using primers flanking codon 600 in the

B-RAF gene. These primers identify variations in exon 15 of the

B-RAF gene between nucleotides c.1788 and c.1823 in reference

sequence NM_004333.4, corresponding to codons 597–607. All

abnormal high-resolution melting traces were subjected to bidirec-

tional DNA sequencing using the primers described above.

Cell culture

Human neonatal epidermal melanocytes (HEM1455) were obtained

from Cell Applications (San Diego, CA). Melanocytes were grown in

HAM’s F10 media supplemented with ITS premix (Becton Dick-

inson, Franklin Lakes, NJ), 12-O-tetradecanoylphorbol-13-acetate

(Sigma-Aldrich, St Louis, MO), 3-isobutyl-1-methylxanthine (Sigma-

Aldrich), cholera toxin (List Biological Laboratories, Campbell, CA),

20% fetal bovine serum, and glutamine (Gibco BRL, Carlsbad, CA;

modified from Halaban et al., 1986). Cells were cultured in a 37 1C

incubator with 5% CO2.

Lentiviral transductions

Lentiviruses were produced in HEK293T cells as described

previously (Haferkamp et al., 2009a). Cells were infected using a

multiplicity of infection between 5 and 10 to provide an efficiency of

infection above 90%.

Nevi Melanoma

HMB45/
MART-1/
tyrosinase

DAPI

Case no. 6 Case no. 9Case no. 2

SA-β-gal

Figure 5. Human nevi and melanomas display increased senescence-associated b-galactosidase (SA-b-gal) activity. Sequential frozen sections of human nevi

and metastatic melanomas were subjected to immunohistochemistry with antibodies against HMB45/MART1/tyrosinase (red) to identify melanocytes and SA-b-

gal staining. 40-6-Diamidino-2-phenylindole (DAPI) co-staining was used to identify nuclei. Cases 2 and 9 stained positive for SA-b-gal expression.
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Constructs
The wild-type and mutant B-RAF complementary DNAs were kindly

provided by Professor R Marais (London, United Kingdom). Cloning

of MYC-tagged wild-type and mutant B-RAF complementary DNAs

into the pCDH-CMV-MCS-EF1-copGFP lentiviral vector, which

co-expresses copGFP (System Biosciences, Mountain View, CA),

has been described previously (Scurr et al., 2010).

Western blotting

Total cellular proteins were extracted at 4 1C using RIPA lysis buffer

containing protease inhibitors (Roche, Basel, Switzerland). Proteins

(30–50 mg) were resolved on 12% SDS-polyacrylamide gels and

transferred to Immobilon-P membranes (Millipore, Bedford, MA).

Western blots were probed with antibodies against p16INK4a (N20;

Santa Cruz, Santa Cruz, CA), c-MYC (A14; Santa Cruz), phosphory-

lated ERK (E4; Santa Cruz), total ERK (137F5; Cell Signaling,

Danvers, MA), and b-actin (AC-74; Sigma-Aldrich).

Indirect immunofluorescence

Cells were seeded on coverslips in 12-well plates at 3� 104 cells per

well at each time point and incubated overnight. Cells were washed

in phosphate-buffered saline (PBS) and fixed with 4% formaldehyde/

PBS for 15 minutes at room temperature. Cells were rinsed three

times with PBS, permeabilized with 0.2% Triton-X100/PBS for

10 minutes, and then rinsed and blocked in 10% fetal calf serum/PBS

for 1 hour. Cells were incubated with primary antibodies for

50 minutes, and then washed and incubated with Alexa Fluor-594

and -488 secondary antibodies (Invitrogen, Carlsbad, CA) and

1mg ml�1 of the nuclear DNA stain 40,6-diamidino-2-phenylindole

(DAPI; Sigma-Aldrich) for 50 minutes. The following primary

antibodies were used: Ki67 (MIB-1; Dako, Glostrup, Denmark),

trimethyl-histone H3 (Lys 9) (H3K9Me; 07-442; Millipore), g-H2AX

(20E3; Cell Signaling, Boston, MA), p53 (FL-393; Santa Cruz), and

p16INK4a (N20; Santa Cruz) and PML (H-238; Santa Cruz). SA-b-Gal

activity was detected as described previously (Dimri et al., 1995).

Sections were mounted using ProLong Gold antifade with DAPI

(Invitrogen).

Immunohistochemistry

Tissue arrays and paraffin-embedded sections were dewaxed before

they were rehydrated by washing twice with absolute ethanol, twice

with 70% ethanol, and finally once with bi-distilled water. Samples

were antigen retrieved by heating at 90 1C for 20 minutes in antigen-

retrieval solution (pH 6; S1699; Dako), cooled for 20 minutes, and

then blocked in 50% fetal calf serum/1% BSA/1% Tween 20 in TBS

(0.9% NaCl, 20 mM Tris-Cl, pH 7.4) for 1 hour. Tissue arrays were

incubated with biotinylated anti-goat antibody (BA-5,000; Vector

Laboratories, Burlingame, CA or P0449; Dako) for 25 minutes; slides

were washed with PBS, incubated in streptavidin–HRP (K0690;

Dako) or streptavidin/biotin-HRP (Invitrogen) for 25 minutes, and

placed in Vector NovaRed or 3,30-diaminobenzidine substrate for

10–15 minutes (Vector Laboratories). Sections were counterstained

with hematoxylin and mounted using Faramount (Dako). A

pathologist performed the evaluation of the staining in a blinded

manner.

For dual immunofluorescence staining of paraffin tissue, sections

were dewaxed as detailed above and then incubated with primary

antibodies for 2 hours, followed by washing three times in TBS

containing 0.05% Tween 20. Subsequently, the slides were incub-

ated with Alexa Fluor-594 and -488 secondary antibodies (Invitro-

gen) for 1 hour, washed with TBS/0.05% Tween 20, and mounted

using Prolong antifade with DAPI (Invitrogen). Staining of pan-

melanoma-positive cells was evaluated by at least two investigators

in a blinded manner. The following primary antibodies were used:

pan-melanoma cocktail (HMB45þM2-7C10þM2-9E3þ T311;

BIOCARE Medical, Concord, CA), Ki67 (MIB-1; Dako), trimethyl-

histone H3 (Lys 9) (07-442; Millipore), g-H2AX (20E3; Cell

Signaling), p53 (FL-393; Santa Cruz), p16INK4a (N20 and C20; Santa

Cruz), and PML (H-238; Santa Cruz). SA-b-Gal activity was detected

as described previously (Dimri et al., 1995). The specificity of all

antibodies was validated using paraffin-embedded control samples

(Supplementary Figure S1 online).

Nuclear area was calculated using Image J v10.2 (NIH Image,

Bethesda, MA) on DAPI-stained images. Outlined nuclei were

manually selected to include only complete, well-separated nuclei

(DeCoster, 2007).

Statistical analysis

Scatter plots were used to illustrate the distribution of gene

expression. Medians and interquartile ranges were applied to

summarize the distributions, and the Mann–Whitney test was used

to determine the differences between the B-RAF wild-type and

B-RAF mutant populations.
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