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Skin atrophy is part of the normal ageing process, but is accelerated by topical glucocorticoid (GC) treatments
that are widely used in dermatology. Hyaluronan (HA) is one of the most abundant components of the
cutaneous extracellular matrix and is involved in tissue homeostasis, hydration, and repair processes, but little is
known about the effects of GCs on HA synthesis and stability. Here we examined the regulation of HA
metabolism in human skin during GC therapy. Expression of the HA synthesizing enzymes hyaluronan synthase
(HAS)-2 and HAS-3 and the HA degrading enzymes HYAL-1, HYAL-2, and HYAL-3 in response to GC treatment
was evaluated. HAS-2 expression was markedly suppressed by dexamethasone treatment of cultured fibroblasts
and HaCaT keratinocyte cells, and in human skin biopsies taken from volunteers treated with dexamethasone
ointment. Consistently, the HA content of cell culture supernatants and in human skin was reduced after
dexamethasone treatment. Hyaluronidase expression and activity, on the other hand, was not altered by
dexamethasone treatment. These data show that the levels of skin HA rapidly decrease after short-term GC
treatment due to a reduction in HA synthesis, while HA degradation is not changed. This may reflect an
initiation of skin atrophy in response to topically applied GCs.
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INTRODUCTION
Skin atrophy is partly considered to be a physiological
process associated with ageing. However, it is accelerated by
glucocorticoid (GC) treatment. GC-induced skin atrophy
together with purpura, pseudoscarring, laceration, and
dissecting hematoma may lead to significant morbidity and
has recently been termed dermatoporosis (Kaya and Saurat,
2007). GCs are widely used to treat inflammatory diseases,
and their topical application remains the first-line therapy for
many inflammatory skin diseases. Their excellent anti-
inflammatory properties are hampered by side effects if
application is continued for extended periods (for example,
weeks to months). The most prominent irreversible cutaneous
adverse effect is atrophy of the skin, and involves both the
epidermis and the dermis. The characteristics of GC-induced
skin atrophy include increased fragility, tearing and bruising,
as well as an increased transparency and a telangiectatic

surface (Schacke et al., 2002; Kaya and Saurat, 2007). In
addition, thinning of the horny layer results in increased
permeability and transepidermal water loss (Schacke et al.,
2002).

At the molecular level, GCs have been shown to modulate
collagen synthesis in human skin. For example, a decreased
synthesis of type I and type III collagens following GC
application has been shown in numerous studies (Oikarinen
et al., 1998; Nuutinen et al., 2003; Schoepe et al., 2006). A
reduction in glycosaminoglycan production in the skin
subsequent to treatment with GCs has also been described
(Sarnstrand et al., 1982). Hyaluronan (HA) is the major
glycosaminoglycan in the skin and one of the most abundant
components of the cutaneous extracellular matrix. Although a
systematic analysis of HA metabolism in the human skin
remains to be performed, a recent study that dealt with
possible therapeutic options for skin atrophy reported a
reduced HA content in the atrophic skin (Kaya et al., 2006).

Hyaluronan is involved in many biological processes such
as tissue homeostatsis, cell proliferation, cell migration, cell
differentiation, angiogenesis, tumor biology, and repair
processes (Toole, 2004). This linear nonsulfated glycosami-
noglycan is composed of repeating disaccharides of
glucuronic acid and N-acetylglucosamine ((-b(1,4)-GlcUA-
b(1,3)-GlcNAc-)n). Under physiological conditions, high
molecular weight HA molecules of 105 to 107 Da composed
of 2,000–25,000 disaccharide units are predominant
(Stern, 2003). In the skin, HA metabolism and turnover
are rapid, and epidermal HA turns over within 1–2 days
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(Stern, 2003; Tammi et al., 2005). We have recently shown
that dermal HA is also subject to rapid regulation. For
example, during repair processes following acute UVB injury,
an increased HA synthesis and turnover could already be
detected 3 hours post-UVB irradiation (Averbeck et al.,
2007).

Several enzymes are involved in HA metabolism. In
mammals, HA is synthesized by three different HA synthases
(HAS-1, -2, -3) that possess diverse properties (Stern, 2005).
HAS-1 and HAS-2 generate high molecular weight HA
(2–4� 106 Da), while HAS-3 is involved in the production
of lower molecular weight HA (0.4–2.5�105 Da). HAS-1 is
by far the least active of these enzymes, while HAS-2
and HAS-3 show comparable degrees of activity (Itano et al.,
1999). HA catabolism, on the other hand, is mediated
by the family of hyaluronidases (HYALs). HYAL-1 is
associated with the lysosomal compartment, while HYAL-2
is linked to the plasma membrane by a glycosylphosphatidy-
linositol link. HYAL-1 generates tetrasaccharides, whereas
HYAL-2 cleaves high molecular HA into fragments of
10–20�103 Da (Noble, 2002; Stern, 2003, 2005). HYAL-3
is widely expressed but less well characterized (Stern,
2005).

Limited studies using cultured cells indicate that GCs can
influence HA metabolism. Zhang et al. (2000) showed a
downregulation of HAS mRNA levels after GC treatment of
cultured fibroblasts and an osteoblast-like osteosarcoma cell
line. Similar results were obtained using fibroblast-like
synoviocyte cultures and leukocytes isolated from the
synovial fluid of rheumatoid arthritis patients (Stuhlmeier
and Pollaschek, 2004b). In both studies, the mRNA levels of
HA synthesizing enzymes were assessed in vitro. Neither the
impact of these changes on the actual HA synthesis, nor the
expression and activity of HA-degrading enzymes has been
investigated to date. Furthermore, in vivo studies that verify
findings made using cultured cells are lacking.

In this study, we aimed at investigating the influence of
GCs on HA metabolism in human skin. In addition to
analyzing GC-treated human skin, we also investigated GC
effects in vitro on dermal fibroblasts and a keratinocyte-
derived immortalized cell line, representative of the
major cell types in dermis and epidermis, respectively.
The expression of HA metabolizing enzymes was evaluated
by quantitative RT–PCR, as well as by measuring the
accumulation of HA in cell culture supernatants and in
human skin. We found a profound downregulation of
HAS-2 mRNA in response to GC treatment that was
reflected in a decrease in the HA content of cell culture
supernatants and in human skin. In contrast, HYAL mRNA
levels and HYAL activity as measured by zymography
were not affected by treatment with GCs. Moreover, dermal
microdialysis fluid from GC-treated skin did not reveal any
increase in low molecular weight HA fragments, which
would have been indicative of increased HYAL activity.
We conclude that the rapid decrease in HA production
following GC treatment is mainly due to a suppression of
HAS-2-mediated HA synthesis and not to increased HA
catabolism.

RESULTS
Dexamethasone treatment causes a profound downregulation
of HAS-2 mRNA

To determine whether dexamethasone treatment affects the
expression of HA synthesizing enzymes, cultured fibroblasts
and keratinocyte-derived immortalized cells were incubated
with 150 nM dexamethasone for 24 hours. The keratinocyte-
derived immortalized cell line was used rather than primary
keratinocytes because the media required for the culture of
primary keratinocytes contains hydrocortisone, which would
have hampered our analyses. Human skin was also treated
three times daily with 0.1% dexamethasone ointment for
72 hours. The mRNA expression levels of HA metabolizing
enzymes in both settings were assessed by quantitative
RT–PCR. We used rps26 to normalize expression between
the different samples, as ribosomal proteins show particularly
stable expression under various conditions and stimuli
(Vincent et al., 1993), whereas expression of commonly used
housekeeping genes such as glyceraldehyde-3-phosphate
dehydrogenase and b-glucuronidase is affected by GCs
(Nishimura et al., 2006). Indeed, in preliminary experiments
we found that rps26 expression was not affected by GC
treatment (data not shown), consistent with other studies
using human skin that show that rps26 is a reliable house-
keeping gene for normalization (Bonnet-Duquennoy et al.,
2006).

As we have previously demonstrated that HAS-1 is only
expressed at very low levels in fibroblasts, HaCaT and in
human skin specimens (Averbeck et al., 2007), we focused
our attention on HAS-2 and HAS-3 expression. HAS-2
expression was strongly downregulated after dexamethasone
treatment in fibroblasts, the keratinocyte-derived immorta-
lized cell line and GC-treated skin (Figure 1a). HAS-3
expression was not changed significantly (Figure 1b). To
investigate the dose-dependency and kinetics of the
GC-induced reduction in HAS-2 expression, fibroblasts
(Figure 1c) and keratinocyte-derived immortalized cells
(Figure 1d) were incubated with 1.5 nM, 150 nM, and 1.5 mM

dexamethasone for 3, 6, 24, and 48 hours, respectively.
Treatment with 150 nM and 1.5 mM dexamethasone gave a
stronger inhibition of HAS-2 expression than 1.5 nM. Incuba-
tion with 150 nM gave the maximal inhibition, and this
concentration was therefore chosen for further experiments.
Although a trend toward stronger effects with longer
incubation times or higher GC concentrations was observed,
no significant difference between the four investigated time
points or the dexamethasone concentrations used could be
determined. To test whether cytosolic receptors mediate the
GC-induced HAS-2 downregulation, we used RU486 (mife-
pristone), an archetypal antagonist for cytosolic steroid
hormone receptors. In fibroblasts (Figure 1e) and keratino-
cyte-derived immortalized cells (Figure 1f), we found that at
least part of the GC-induced HAS-2 downregulation is
mediated by cytosolic steroid hormone receptors, as pre-
incubation with RU486 reduced this effect significantly in
keratinocyte-derived immortalized cells. In fibroblasts, the
dexamethasone-induced HAS-2 downregulation could not be
blocked significantly by preincubation with RU486.
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HA levels in cell culture supernatants are reduced by
dexamethasone
To test if the observed modulation of HAS gene expression
affects the amount of HA synthesized by cells, medium
conditioned by fibroblasts and keratinocyte-derived immor-
talized cells treated with 150 nM dexamethasone for 3 and
24 hours was analyzed by ELISA. After 3 hours treatment
(Figure 2a), only a weak reduction in the amount of HA
released by fibroblasts (left panel, 85 ng ml�1) and keratino-
cyte-derived immortalized cells (right panel, 57 ng ml�1)
could be observed compared with the untreated controls
(fibroblasts: 159 ng ml�1, keratinocyte-derived immortalized
cells: 68 ng ml�1). After 24 hours treatment (Figure 2b),
dexamethasone reduced the amount of HA produced

significantly (fibroblasts, 546 ng ml�1; keratinocyte-derived
immortalized cells, 352 ng ml�1) compared with untreated
cells (fibroblasts, 301 ng ml�1; keratinocyte-derived immorta-
lized cells, 245 ng ml�1).

Topical dexamethasone leads to a rapid reduction in dermal HA

To determine whether our in vitro findings are relevant to the
in vivo situation, we examined whether dexamethasone
reduces the HA content in human skin. To address this issue,
we examined the amount of HA in human skin samples
derived from the same dermatome that had either been
treated with 0.1% dexamethasone ointment three times daily
for 72 hours or left untreated. Skin sections taken from
these samples were stained immunohistochemically with
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Figure 1. Dexamethasone induces a strong downregulation of HAS-2. (a and b) Quantitative RT–PCR for HAS-2 (a) and HAS-3 (b) for fibroblasts (Fib),

keratinocyte-derived immortalized cells (KCd), and human skin. Values were normalized to the rps26 housekeeping gene levels and compared with untreated

controls (dotted line¼ 1). RNA was extracted from the cells after 24 hours treatment with 150 nM dexamethasone. Human skin biopsies were taken after either

72 hours of treatment with 0.1% dexamethasone ointment or from an untreated region of the same dermatome. Values are displayed as scatter plots with median

values. Indicated P-values result from paired t-test analysis. (c and d) Quantitative RT–PCR of HAS-2 RNA levels in fibroblasts (c) and keratinocyte-derived

immortalized cells (d) is shown 3, 6, 24, and 48 hours after treatment with 1.5 nM, 150 nM, and 1.5 mM dexamethasone, respectively. Values of at least three

independent experiments are displayed in a category graph as median±range. (e and f) Quantitative RT–PCR of HAS-2 RNA levels in fibroblasts (e) and

keratinocyte-derived immortalized cells (f) is shown. Cells were either treated with 1 mM RU486 (clear bars), 150 nM dexamethasone (grey bars), or with 1mM

RU486 for 8 hours followed by 150 nM dexamethasone for 24 hours (black bars). Values are displayed as scatter plots with median values. The significance of

differences was determined by analysis of variance (P-values Figure 1e: 0.5740; 1f: 0.0184) followed by Tukey’s post-test, which revealed a statistical significant

difference, as shown in Figure 1f, between dexamethasone-treated cells without and with preincubation with RU486.
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biotinylated HA-binding protein. A reduced intensity in the
HA staining within the papillary dermis after treatment with
dexamethasone (Figure 3b) was observed compared with the
untreated control (Figure 3a). Specificity of staining was
confirmed by earlier digestion of the samples with HYAL

(data not shown). These in vivo data therefore support our
in vitro findings, namely that the reduced intensity of the HA
staining was consistent with a reduction in HA concentration
in cell culture supernatants.

Dexamethasone treatment does not affect HYAL mRNA levels
and HYAL activity

Changes in the steady state levels of HA in the skin in
response to GCs could be caused by reduced HAS-2
expression, but also by increased expression or activity of
HYALs. We therefore also examined the expression of the
three major HYALs. As above, RNA was extracted from
fibroblasts and keratinocyte-derived immortalized cells after
incubation with 150 nM dexamethasone for 24 hours,
whereas the expression in the skin was measured after
treatment with 0.1% dexamethasone ointment three times
daily for 72 hours. Although a slight modulation in the
expression of HYAL-1 (Figure 4a), HYAL-2 (Figure 4b) and
HYAL-3 (Figure 4c) could be observed, no significant
differences were detected between GC-treated samples and
untreated controls.

To investigate whether the unchanged HYAL mRNA levels
we observed were reflected in the catabolic HYAL activity of
the corresponding protein, we used zymography. Condi-
tioned medium taken from fibroblasts and keratinocyte-
derived immortalized cells that had been either treated with
150 nM dexamethasone for 24 hours or left untreated were
investigated using this method. The degree of HYAL activity is
reflected in the density of the lysed band in the zymogram. As
can be seen in Figure 5a, no difference in HYAL activity
could be observed between GC-treated and untreated
samples. The analyzed conditioned medium contained 1%
fetal bovine serum, which itself has HYAL activity, so we
therefore also performed control zymographies to determine
the HYAL activity present in 0.1 and 1% fetal bovine serum.
As expected, HYAL activity was measurable in fetal bovine
serum, although to a much lower extent than in conditioned
medium from the cells (Figure 5b, arrows). The cell-derived
HYAL activity therefore accounts for the majority of HYAL
activity detected in the conditioned media (Figure 5a). As the
activity shown in undiluted supernatants is quite high, we
performed zymography of diluted supernatants to detect even
small changes in HYAL activity. Analysis of substantially
diluted supernatants (1:10 and 1:100) did not reveal changes
in HYAL activity in response to GC treatment (Figure 5c).

Levels of dermal low molecular weight HA remain unchanged
by dexamethasone treatment

Hyaluronan exerts different cellular effects depending on the
length of the polysaccharide chain. Small HA oligomers have
numerous biological effects that are not observed with larger
HA molecules (Termeer et al., 2002; Fieber et al., 2004;
Taylor et al., 2004; Stern et al., 2006). Even though we saw
no evidence for a GC-dependent increase in HYAL activity in
our previous experiments, we nevertheless wished to confirm
that the reduction in HA content in GC-treated human skin is
solely due to a reduced HA synthesis. To this end we used
intradermal microdialysis limited by a 100 kDa cutoff filter to
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Figure 2. Dexamethasone treatment reduces the HA content in cell culture

supernatants. (a) HA content of conditioned medium from fibroblasts and
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Figure 3. Dexamethasone reduces the dermal HA content in vivo.

Immunohistochemical staining of HA in human skin treated with 0.1%

dexamethasone ointment three times daily (b) or left untreated (a) from the

same individual and from a similar location. HA was detected using

biotinylated HA-binding protein and visualized using the avidin-biotin

complex technique (red color). Scale bars are 200 mm. The data are

representative of that obtained for five individuals.
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collect the dermal fluid from GC-treated and untreated skin,
and subsequently analyzed the HA content as previously
described (Averbeck et al., 2006, 2007). We have already
shown that catheters with a 100 kDa cutoff membrane are
suitable for the detection of low molecular weight HA
fragments (Averbeck et al., 2007). During the sampling
interval before GC treatment (16–24 hours), the average HA
content of HA fragments was 6.7 ng ml�1 (Figure 5d). GC
treatment was started after this sampling interval. The skin was
treated with 0.1% dexamethasone ointment three times daily
and continued for 48 hours. In microdialysis samples taken at
later time points after commencement of intradermal micro-
dialysis (40–48 and 66–72 hours), the HA content was 4.1 and
5.9 ng ml�1, respectively. No significant difference could be
observed between any of the investigated time points.

DISCUSSION
Glucocorticoids are important anti-inflammatory drugs for
the treatment of a variety of diseases, and a detailed
knowledge about their side effects is therefore required.
Bone and skin atrophy are among the most prominent
irreversible side effects of GCs, especially after long-term use
(Schacke et al., 2002; Jackson et al., 2007). In the last few
decades, great progress has been made in understanding the
molecular mechanisms that lead to a reduction in type I and
type III collagen synthesis after GC treatment of skin
(Oikarinen et al., 1998; Nuutinen et al., 2003; Schoepe
et al., 2006). These findings have demonstrated the impor-
tance of the extracellular matrix in GC-induced skin atrophy
and have revealed important effects such as the reduction in
keratinocyte size and proliferation (Delforno et al., 1978;
Lange et al., 1997), as well as the antiproliferative effects of

GCs on fibroblasts (Ponec et al., 1977). However, little is
known about the effects of GCs on glycosaminoglycans. As
HA is one of the most abundant components of human skin
with rapid turnover due to a high activity of degrading and
synthesizing enzymes (Stern, 2003; Averbeck et al., 2007),
we aimed in this study at investigating the effects of GCs on
HA metabolism and deposition to gain further insight into the
effects of GCs on human skin. The major findings of this study
are that dexamethasone leads to a rapid reduction of HA
levels in vitro and in vivo. This is consequent to a
downregulation of HAS-2, the major HA synthesizing
enzyme in cells of the human skin (Averbeck et al., 2007).
No effects on HYAL expression or activity were observed.

Our in vitro findings are based on experiments using skin
fibroblasts and keratinocyte-derived immortalized cells,
representative of the major cell types in dermis and
epidermis. In our experiments keratinocyte-derived immorta-
lized cells were preferred over primary keratinocyte cultures
because of the special keratinocyte media required for the
culture of primary cells. As this media contains various
supplements including hydrocortisone, a proper investigation
of GC effects on HA metabolism in primary keratinocytes is
not possible without the risk of manipulation of the observed
effects through the necessity of having hydrocortisone in the
culture medium. Furthermore, keratinocyte-derived immor-
talized cells are a well-established model for keratinocytes
(Averbeck et al., 2007) and the observed effects in
keratinocyte-derived immortalized cells are therefore highly
likely to be equivalent in primary keratinocytes.

Downregulation of HAS-2 was observed even at low doses
of dexamethasone and occurred as early as 3 hours following
GC treatment. While our experiments did not show a
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Figure 4. RNA expression levels of HYALs are only marginally changed by dexamethasone. Quantitative RT–PCR for HYAL-1 (a), HYAL-2 (b), and HYAL-3 (c)

using RNA extracted from fibroblasts (Fib), keratinocyte-derived immortalized cells (KCd) and human skin. Values were normalized to the rps26 housekeeping

gene levels and compared with untreated controls (dotted line¼1). RNA was extracted from the cultured cells after 24 hours treatment with 150 nM

dexamethasone. Human skin biopsies were taken after either 72 hours of treatment with 0.1% dexamethasone ointment or from an untreated region of the same

dermatome. Values are displayed as scatter plots with median values. Indicated P-values result from paired t-test analysis.
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completely tight correlation between downregulation of
HAS-2 and the length of treatment or concentration of
dexamethasone used, nevertheless a trend toward a more
pronounced downregulation with the highest dexamethasone
concentrations used was observed (1.5 mM, Figure 1c and d).

HAS-3 mRNA levels were not changed significantly. HAS-1 is
by far the least active HAS (Itano et al., 1999) and significant
expression in fibroblast-like synoviocytes is only seen, for
example, after stimulation with tissue growth factor-b (TGFb)
(Stuhlmeier and Pollaschek, 2004a). In our own studies, we
also found that HAS-1 expression in fibroblasts, HaCaT, and
human skin samples was very low and at the detection limit
(Averbeck et al., 2007, and data not shown).

Reduced HA synthesis and an increased HA catabolism
could both lead to a diminished HA content. As HA
fragments have proinflammatory, immunostimulatory, and
angiogenic properties (Stern et al., 2006; Jiang et al., 2007),
expression patterns of HA-degrading enzymes are also of
great interest. However, we show here that GCs do not
significantly affect the expression of HYALs. Furthermore, the
zymographic analyses show that equivalent levels of HYAL
activity are produced by GC-treated and untreated cells.
Moreover, GC treatment did not lead to a detectable
production of low molecular weight HA fragments in human
skin, as determined by dermal microdialysis. As HA synthesis
is decreased by GCs, one could argue that levels of HA
fragments should also be decreased after GC treatment in the
dermal microdialysis experiments. However, due to the fact
that the baseline levels in the sampling period 16–24 hours
(Figure 5c) were already at the detection limit, a reduction in
the level of HA fragments could not be measured reliably.
Together, these data support the notion that GC treatment
reduces steady state HA levels in the skin through reduced
HA synthesis but not increased HA catabolism.

The high turnover of HA in the skin means that the
reduced HA synthesis capacity we observed should lead to a
detectable reduction in the HA content of GC-treated
samples. Indeed, a reduced HA content in conditioned
medium from GC-treated fibroblasts and keratinocyte-de-
rived immortalized cells was already observed after 3 hours
treatment, and became more pronounced after 24 hours.
Fibroblasts make up the majority of cells in the dermal
compartment of human skin, whereas the epidermal com-
partment is composed mainly of keratinocytes. Our data
therefore suggest that HA synthesis should be reduced in both
compartments by GC treatment. Consistently, a decrease in
HA content could be observed immunohistochemically in
human skin following GC treatment.

A short treatment period (3 days) was sufficient to induce a
distinct reduction in steady state HA levels in the papillary
dermis of GC-treated human skin. In contrast, it took 3 weeks
before a reduction in the synthesis of type I and type III
collagens could be observed in response to GC treatment
(Nuutinen et al., 2003). HA in the skin is abundant,
accounting for half of the total body HA (Stern, 2003). It is
therefore significant that reduced HA levels were observed
only after 3 days of GC treatment, and raises the question as
to whether the decrease in dermal HA might be the initial
step in GC-induced skin atrophy and dermatoporosis. If so,
the measurement of HA synthesis and deposition could prove
to be a useful tool as an early indicator of GC-induced skin
atrophy, which in turn could contribute to the development
of new GCs with lower atrophogenic potential.
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Figure 5. Zymographic analysis shows unchanged HYAL activity after

dexamethasone treatment and dexamethasone does not alter the quality of

HA in human skin in vivo. (a) Zymography of conditioned medium taken from

fibroblasts and keratinocyte-derived immortalized cells (KCd) that were either

treated with 150 nM dexamethasone (þ ) or were left untreated (�). Equal

amounts of protein were analyzed. For size analysis, a protein ladder is shown

on the left. HYAL activity in cell culture medium containing 0.1% fetal bovine

serum (FBS) and 1% FBS is also shown (b). (c) Zymography of conditioned,

diluted (1:10 or 1:100) medium taken from fibroblasts and keratinocyte-

derived immortalized cells that were either treated with 150 nM

dexamethasone (þ ) or were left untreated (�). Equal amounts of protein were

analyzed. For size analysis, a protein ladder is shown in the middle. (d) HA

content of dermal microdialysis fluid samples from human skin. For dermal

microdialysis, a 100 kDa cutoff catheter was placed intradermally at a depth

of 1 mm in the ventral forearm as controlled by 20 MHz ultrasound.

Twenty-four hours following catheter placement, treatment with 0.1%

dexamethasone ointment three times daily was initiated, followed by

sampling for another 48 hours. Sampling intervals were 16–24, 40–48, and

66–72 hours. HA present in the dermal microdialyis fluid was measured by

ELISA. Data are presented as a line graph for each individual patient. The

significance of differences between the different sampling periods was

determined by Friedman test (P¼ 0.7402).
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Glucocorticoids exert their effects through different
molecular pathways, for example, through the classical
cytosolic steroid hormone receptors (Schoepe et al., 2006),
through cell-surface steroid hormone receptors (Song and
Buttgereit, 2006), and through cross-regulation of other
transcription factors through steroid hormone receptors
(Schoepe et al., 2006). To our knowledge, the HAS-2
promoter does not contain GC responsive elements. Thus,
the classical cytosolic steroid hormone receptor pathways are
not likely to account for the observed suppression of HAS-2
through a direct effect on the transcription of HAS-2.
However, these receptors can transrepress transcription
factors such as AP-1 and NF-kB (Schacke et al., 2002)
without GCs exerting a direct effect on the transcription of the
investigated gene. The observed inhibition of GC-induced
HAS-2 downregulation by RU486 (Figure 1e and f), an
antagonist of cytosolic steroid hormone receptors, suggests
that such a mechanism may be operative here.

More than one mechanism may be involved in the
downregulation of HAS-2 by GCs. GCs, for example, can
influence the stability of various mRNAs encoding proteins
such as MMP-1, MMP-3, and various integrins (Ing, 2005).
Therefore, a destabilization of HAS-2 mRNA would be
another possible explanation for the observed downregula-
tion of HAS-2. In addition, cAMP can induce HAS-2
transcription in vascular smooth muscle cells (Sussmann
et al., 2004) and GCs are known to affect the cAMP pathway
(Thompson, 2008), offering another possible regulatory loop
for the observed downregulation of HAS-2. Furthermore, it is
known that TGFb induces HAS-1 and HAS-2 expression
(Sugiyama et al., 1998; Dai et al., 2007). We found that TGFb
mRNA and protein levels in fibroblasts, HaCaT cells, and skin
were not changed significantly by GC treatment (data not
shown), ruling out the possibility that GCs suppress HAS-2
through a direct effect on TGFb. Nevertheless, GCs suppress
the effects of this cytokine by targeting Smad 3 (Song et al.,
1999). Moreover, the TGFb-dependent induction of HAS-2 is
mediated through Smad 2, 3, and 4 (Nishitsuka et al., 2007).
Thus, the observed GC-induced suppression of HAS-2 could
conceivably be mediated in part through effects on TGFb
signaling. Taken together, these observations might explain
why the downregulation of HAS-2 in fibroblasts cannot be
totally inhibited by RU486 (Figure 1e).

In summary, we could show here that GC treatment
induces a rapid loss of dermal HA, which is mainly mediated
by a strong suppression of HAS-2 expression without
induction of HA degradation. The decrease in dermal HA
levels may reflect the initiation of a process that ultimately
leads to skin atrophy. These data suggest that a possible link
between prolonged HA suppression and irreversible skin
atrophy due to long-term GC treatment deserves to be
investigated.

MATERIALS AND METHODS
Cell culture

Human skin was obtained from foreskin circumcision operations

after informed consent. This study was approved by the institutional

review board of Leipzig University. Subconfluent monolayers of

human dermal fibroblasts were obtained by outgrowth from the skin

sections. For monolayer cultivation, trypsinized fibroblasts were

grown in DMEM (Biochrom, Berlin, Germany) supplemented with

glutamine (1� , Invitrogen, Karlsruhe, Germany), penicillin-G

(50 U ml�1; Gibco/Invitrogen, Karlsruhe, Germany), streptomycin

(50 mg ml�1; Gibco/Invitrogen), 2 mmol l�1
L-glutamine (Gibco/Invi-

trogen), 0.1 mmol l�1 MEM non-essential amino acids (Gibco/

Invitrogen) and 10% or 1% fetal bovine serum (PAN Biotech,

Aidenbach, Germany). Cells were incubated in a humidified

atmosphere of 5% CO2 at 371C, grown to 80–90% confluency and

used until the 5th or 6th passage. Keratinocyte-derived immortalized

cells (also termed HaCaT cells) were cultivated under the same

conditions as described above. Conditioned medium was collected

3 or 24 hours after treatment with dexamethasone (Sigma-Aldrich,

Munich, Germany), RU486 (Sigma-Aldrich) or mock treatment,

centrifuged at 1,000� g, then stored at �201C until required.

Human skin biopsies

Gluteal skin biopsies in GC-treated and untreated areas were

obtained from nine healthy volunteers (five women and four men

of mean age 25.3 years; skin type I–II). All patients gave their

informed consent according to the Declaration of Helsinki Princi-

ples. The study was approved by the local ethics committee of

Leipzig University (no. 168/2007). GC treatment was performed

three times daily with 0.1% dexamethasone ointment under

occlusion with Tegaderm (3M Deutschland GmbH, Neuss, Germany)

for 72 hours. After this time, a 6 mm punch biopsy was taken from

the treated area, together with a corresponding untreated control

biopsy from the same dermatome. Each biopsy was halved and

either conserved in RNAlaterTM (Qiagen, Hilden, Germany) or

directly frozen and subsequently used for HA staining.

Quantitative RT–PCR

Total RNA was prepared from cells following standard procedures

using the Rneasy kit (Qiagen). RNA from skin biopsies was prepared

using Trizol reagent (Invitrogen) and homogenization with a

rotorstator homogenizer T25basic (IKA, Staufen, Germany). First-

strand cDNA synthesis was performed with 1mg of total RNA from

each sample using M-MLV reverse transcriptase according to the

manufacturer’s instructions (Promega, Mannheim, Germany) and a

GeneTherm thermocycler (Pharmacia, Freiburg, Germany). The

cDNA equivalent of 20 ng of total RNA was amplified using a

Rotorgene 3000 cycler (Corbett Research, Sydney, Australia). Each

reaction mixture contained a 1:50,000 dilution of SYBR green I

(Molecular Probes/Invitrogen, Karlsruhe, Germany) 2,500� in

dimethyl sulfoxide (Sigma-Aldrich), 0.25 mmol l�1 dNTP mixture

(Bioline, Luckenwalde, Germany), 0.5 mmol l�1 forward and reverse

primers (MWG-Biotech, Ebersberg, Germany), 0.5 U GenTherm

DNA polymerase (Rapidozym, Berlin, Germany), 2.5 mmol l�1

MgCl2 (Rapidozym) and 2ml of 10� PCR buffer (Rapidozym). The

amplification consisted of an initial denaturation (951C, 5 minutes),

followed by 40 cycles of 951C (10 seconds), annealing at 60 1C

(20 seconds), extension 72 1C (45 seconds) and fluorescence

measurement at 80 1C (15 seconds). After amplification, melt

analysis was performed by heating from 70 to 951C. Primers with

the following sequences were used: rps26: forward: 50-GCAGCAGT

CAGGGGACATTTCTG-30, reverse: 50-TGCTTCCCAAG-CTGTATGT

GAA-30. Has-2: forward: 50-CCTCATCATCCAAAGCCTGT-30,
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reverse: 50-AAACAGTTGCCCTTTGCATC-30. Has-3: forward: 50-

GTCAGTGGTCACG-GGTTTCT-30, reverse: 50-ATTGGCCTCATTCC

TGTGTC-30. Hyal-1: forward: 50-CAGAGCC-GTGCCCTCTATC-30,

reverse: 50-ACTTTCTGCCCCTGGATGA-30. Hyal-2: forward: 50-CTC

ACGGGGCTTAGTGAGAT-30, reverse: 50-GTGGTCAATGTGTCCT

GGG-30. Hyal-3: forward: 50-CCTCCAGTGCCCTCTTCC-30, reverse:

50-CTGTCCCAGGATGACCTTGT-30. The specificity of each primer

was ensured by BLAST analysis and visualization of the PCR

products on ethidium bromide-stained agarose gels. The ribosomal

protein s26 (rps26) was used as a reference gene as previously

described (Vincent et al., 1993). Expression of rps26 did not change

in response to the dexamethasone treatment (data not shown). The

relative level of each mRNA was calculated on the basis of dCt

values. Genes were normalized to rps26 and the fold change of gene

expression was calculated compared with the untreated controls,

taking the reaction efficiency (E) of each sample into account

according to the formula described by Pfaffl et al. (2002):

Ratio ¼
ðETargetgeneÞDCTTargetgeneðcontrol�TreatedÞ

ðEReferencegeneÞDCTReferencegeneðcontrol�TreatedÞ

The reaction efficiency was determined with a cDNA dilution

series of cloned PCR products. For statistical analysis parametric

tests (paired t-test or analysis of variance) was used (Pfaffl et al.,

2002).

HYAL zymography
Zymographic analysis was performed with conditioned medium

from dexamethasone-treated or untreated samples. The separation

gel (12%) contained 2 ml acrylamide/bisacrylamide, 1.25 ml 4�
separation gel buffer (Tris-HCl 18.8 g l�1, SDS 0.4 g l�1, Na azide

0.1 g l�1, pH 8.8), 1 ml HA solution (0.4 mg ml�1), 0.75 ml distilled

water, 5ml TEMED (tetramethylethylenediamine) and 8 ml ammo-

nium persulfate (0.4 g ml�1). The stacking gel contained 0.83 ml

acrylamide/bisacrylamide, 3.08 ml distilled water, 1.25 ml stacking

gel buffer (Tris 6.06 g, SDS 0.4 g, Na azide 0.01 g/100 ml, pH 6.8),

5ml TEMED and 5ml ammonium persulfate (0.4 g ml�1). The

protein content of the conditioned medium was measured and

sample volumes equivalent to 5mg protein were mixed with 2�
sample buffer (0.125 M Tris-HCl pH 6.8, 4% SDS 20% glycerol,

0.002% vol/vol bromophenol blue) and loaded onto the gel.

Electrophoresis was performed for 30 minutes at 120 V and

45 minutes at 200 V. Subsequently the gel was washed for 1 hour

in 3% Triton X-100 (in 50 mM Hepes, pH 7.4) and incubated for

20 hours at 37 1C with Hyal-Assay buffer (0.15 M NaCl in 0.1 M

formiate buffer, pH 3.7). Following HA digestion, the bands in the

gel were visualized by staining with Alcian blue (0.5% in 3% acetic

acid for 2 hours), followed by destaining in 7% acetic acid.

Counterstaining was performed with Coomassie Brilliant Blue for

30 minutes.

Dermal microdialysis

Microdialysis experiments were performed as described previously

(Averbeck et al., 2006, 2007) . The catheter used in all experiments

was the commercially available sterile CMA 60 catheter (Axel

Semrau GmbH, Sprockhövel, Germany) customized with a 30 mm

polyethylensulphone 100 kDa cut-off membrane. After an initial

flush for 5 minutes at a flow rate of 15 ml min�1, the membrane was

perfused with Ringer’s solution (Naþ 147 mmol l�1, Kþ 4 mmol l�1,

Ca2þ 2.25 mmol l�1, Cl� 155.5 mmol l�1, pH 5–7, osmolarity

309 mosm l�1) at a constant flow rate of 0.3 ml min�1 using the

CMA 107 microdialysis pump (CMA Microdialysis AB, Solna,

Sweden). The microdialysis catheter was inserted into the ventral

forearm. Specifically, after anesthesia for 45 minutes with lidocaine-

ointment (EMLA, AstraZeneca, Wedel, Germany) the catheter was

placed intradermally with an allocated guide cannula at a depth of

0.8–1.2 mm (1,093 mm±203.6 (n¼ 3) controlled by 20 Mhz ultra-

sound (DUB-20, tpm, Lüneburg, Germany). Samples were fractio-

nated in micro vials (CMA) every 8 hours and immediately frozen

at �201C.

HA assays

Microdialysis fluid and supernatants from treated and untreated

fibroblast and HaCaT cultures were collected at the indicated time

points. The HA content was determined using an ELISA assay

(Corgenix, Peterborough, UK). The ELISA assays were performed

according to the manufacturer’s instructions, with a sample dilution

of 1:10. ELISA readings were measured at an extinction of 450 nm

with a SynergyHT Reader and analyzed using the Gene5 software

(both Biotek, Bad Friedichshall, Germany).

Immunohistochemistry

Cryostat sections (Cryo Star HM560M, Microm International,

Walldorf, Germany) were incubated with 1% BSA in phosphate-

buffered saline (blocking buffer) for 30 minutes at room temperature,

followed by overnight incubation at 41C with 3 mg ml�1 of

biotinylated HA-binding protein (Seikagaku, Tokyo, Japan) in

blocking buffer. After washing with phosphate-buffered saline, the

bound biotinylated HA-binding protein was visualized using the

avidin-biotin complex technique according to the manufacturer’s

protocol (Supersensitive Multilink AP Ready-to-use Detection

system, Biogenix, San Ramon, CA). Bound proteins were detected

colorimetrically using the New Fuchsin substrate system (Dako,

Hamburg, Germany). The sections were counterstained with Mayer’s

hematoxylin for 2 minutes, washed, dehydrated, and mounted in

DePex (BDH Laboratory Supplies, Poole, England). The specificity of

the staining was controlled by preincubating the sections with 100 U

of HYAL SD (Seikagaku, Tokyo, Japan) for 3 hours at 371C to remove

HA from the tissue (data not shown).

Statistical analysis

Statistical analysis was performed using the Graphpad Prism

software (GraphPad Software Inc., San Diego, CA). Indicated

P-values derive from paired t-test analysis if matched pairs are

compared. Comparison of more than two groups was performed by

Friedman test or by analysis of variance followed by Tukey’s post-

test (see Figure legends for details).
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