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ABSTRACT

Certain new perturbation bounds of the orthogonal factor in the QR factorization of a
real matrix are derived. The bounds of this note improve the known bounds in the literature.

1. INTRODUCTION

Let A be areal mx n matrix (A € R™*") withrank A = n. The QR factorization
of A is a decomposition of the form A = QR, in which R € R**" is an upper
triangular matrix with positive diagonal elements, and the matrix @ € R™*"
satisfies QTQ = I, the identity matrix. Here QT is the transpose of Q. The matrix
Q is referred to as the orthogonal factor, and R the triangular factor in the QR
factorization of A. It is well known that the QR factorization of a full-column-
rank matrix is unique, and the QR factorization is one of the most important
decompositions of a matrix (see [3]).

Let E € R™*" withrank(A + E) = n,andletA + E=(Q + W){R + F)be
the OR factorization of A+ E. A number of upper bounds on ||F||/||R|| and |W|| in
terms of || E|| for a certain norm || || have been derived by Stewart [6] and Sun [8].
Recently, Stewart [7] gave asymptotic perturbation bounds on ||F||/||R|| and ||W||,
and Bhatia and Mukherjea [2] presented a new bound on ||W||. Besides, Sun [9]
gives componentwise perturbation bounds of |F| and |W|, where the matrix |F] is
defined by |F| = (| f;]) for F = (fy). It is worthwhile to point out that the bounds
of ||W|| (or |W|) given by [6-9] are derived from certain known bounds of ||F||
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(or |F|) and the relation
W =[E—(Q+W)FIR™.

In this note we derive several new bounds of |W/|| directly. Roughly speaking,
the new bounds of [2] and this note improve the results of [7] and [8] by a factor
1+1/ V2

IWlle S (L+V2)|AM|l|E[lr  (by the results of [7, 81),
IWlls < vZ||AY|,IIElz  (by the new bounds),

where A' denotes the Moore-Penrose inverse of A, and || ||, and || ||+ stand for the
spectral norm and the Frobenius norm, respectively.

Note that the methods and results of this note are different from those of [2].
Bhatia and Mukherjea [2] apply calculus on manifold and matrix Lie groups to
consider complex square matrices. The following inequality was proved in [2]:

12— Qlls < [max lA®~\, IENe,

where A(f) = A+1E, 0 < t < 1. Remark that the quantity maxo<,<i [JA()7!]|2 is
not convenient to calculate. In this note we apply fixed-point theory and elementary
calculus to consider real rectangular matrices. The upper bounds of |Q — Q|lr
obtained in this note are computable.

We shall use /™ to denote the identity matrix of order n, and O the null matrix.
P4 = AA? denotes the orthogonal projection onto the column space of A. The
symbol A( ) denotes the set of the eigenvalues of a matrix or an operator. U"*"
is the set of real n x n upper triangular matrices, and U**", L™X" D™*" are sets
defined by

u;nxn = {A:(aij)ERmxn:aij—_‘OVizj}’
Lr" = {A=(oy) € R™" 1045 =0Vi <},
D™ = {A= (o) € R"™":0; =0Vi#j}.

Obviously, an X € R™*" can be split uniquely as
X =X+ Xp + Xy, X, e £LP", XpeD™" Xye U, (1.1
The matrices X1, Xp, Xy of (1.1) will be denoted by

X1, = low(X), Xp = diag(X), Xy = up(X). 1.2)
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The relation (1.2) gives the definitions of the operators low( ), diag( ), and up( )
defined on R™*" (Reference (4]).

In Section 2 we derive perturbation equations. In Section 3 we discuss some
basic properties of the operator L [defined below by (2.8)] and the function /(R)
[defined below by (3.8)], which are important for studying perturbation bounds
for the orthogonal factor in the QR factorization. In Sections 4 and 5 we apply
fixed-point theory and elementary calculus to derive perturbation bounds of the
orthogonal factor, respectively, and in Section 6 we give a numerical example.

2. PERTURBATION EQUATIONS

Let A € R™" with rankA = n, and let A = A + E, where E € R™*" satisfies
e = ||AT||, IE]l2 < 1. .1

Then obviously rankA = n. LetA = QR,X = éﬁ be the QR factorizations of
A, A, respectively, and let

E=A-A, W=0-Q, F=R-R. 2.2)
Then it is easy to verify that the perturbation matrices W, F satisfy the equation
E = WR + QF. (2.3)

Take a matrix P € R™*™=m guch that U = (Q, P) is an orthogonal matrix,
and let

~ ~ X
E=U"E, X=U"W= (x@))’ xM e rrxn, (2.4)
Then from (2.3)

XR + (g) =E. (2.5)

Moreover, from the relations QTQ = I and
b -
-X=U"
<0> ¢

X0 4 xO" = xTx, (2.6)

we get
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Let X be a solution to the equations (2.5)—(2.6). Define the matrices X;, Xp, Xy
by (1.1)~(1.2). Then from (2.5) and low(XR) = low(X.R) it follows that

low(X,R) = low(E). Q2.7
Define the operator L : L7*" — L7*" by
LX, =low(X,R), X, € Lm*", (2.8)
Then the equation (2.7) can be rewritten as
LX; = low(E). (2.9)

Moreover, from (2.6)

14 T Tyy _ (D7
Xp = (2 dlagO(X X))’ Xy = (up(X X()) X >, 2.10)

where X{V = low(X™).

In Section 4 we shall prove that there is a unique solution X to the equations
(2.9)~(2.10) in the case of small ||E||r, and derive upper bounds of || X||r for the
solution X.

3. THE OPERATOR L AND FUNCTION KR)

Before we go on to derive perturbation bounds of ||X||r from the equations
(2.9)—~(2.10), it will be necessary to discuss the basic properties of the operator L
defined by (2.8).

We first consider the relation

Y = XR, 3.1
where X, Y € R™ " R = (rj) € U"*". Let

X=(x1, ..., ) =&, Y=01,..., y) =),

T T
x=(xf,...,x), y=01,...9) -
The relation (3.1) can be rewritten as

y = (RT @ ")z,
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where A ® B = (oy;B) is a Kronecker product. Write

L=RT®1™ = (L), Ly e R™™  ij=1,...

we have
0, i <],
Lij=( radd™, i=j,
rd™, Q> j.
Let

YL = LXL = IOW(XLR)
Define x](-'“), y](."), D,y by

&+1,i Mj+1,j

6 mj Tmj

L L L T L L L T
Jf() (]:g),.”’xsl‘)),y() (y(l)""’yfll))$
Where

m=dn if m>n,
"“\n-1 if m=n

The relation (3.4) can be rewritten as

YO = [0

where

w _ (1D @O _ . i+1L,i+2,....,m
W= L _L”(j+1,j+2:...:m

i7j= 1’2’ <y B,
in which n, is defined by (3.5), and

L. i+1,i4+2,....,m
Y\j+1,j+2,....,m
denotes the submatrix of L; consisting of rows i +-1,i+2, ...
j+1,j+2, ..., m Combining (3.7) with (3.3), we see that

ni ny
AML®) =2 p) =]_L=Jl{’fi’ coos i)

Jj=1 mej

X7 = : y Y= , j=1,2,...

99
, 1 3.2)
3.3)

(34)

y M1,

3.5)

(3.6)

) ’ 3.7

, m and columns
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where n; is defined by (3.5). Since (3.6) is equivalent to (3.4), we have the
following

THEOREM 3.1. Let R = (ryj) € U™*", and let L be the operator defined by
(2.8). Then the eigenvalues of L are

(11’"',r111122’""r22)""rnn,"'7rnn'
~— 2 N — )
m—1 m—2 m—n

Let L be the operator defined by (2.8). Now we define the function I(R) by

(R)= inf |LX||. (3.8)

X eLrxn

f1%e|le=1

It is easy to verify that
_JIETE 0 €W,
IR) = { n DE N (3.9)
where ||[L™!|| is the subordinate operator norm defined by

L7 = max (™Yl (3.10)

e "

I7ellp=1

Therefore, from Theorem 3.1 we get the following

COROLLARY 3.2. Let l(R) be the function defined by (3.8). IfR is nonsingular,
then
< min |ry
0<UR) <  in |ridl,

where ny is defined by (3.5).
The following result gives a relation between I(R) and 1/||Af|,.

THEOREM 3.3. LetA € R™ " withrank A = n, A = QR be the OR factor-
ization of A, and let L, I(R) be defined by (2.8), (3.8), respectively. Then

1
KR) > AT (3.11)

PROOF. By (3.9) and ||AT||; = ||[R™!|,, the inequality (3.11) is equivalent to

L~ < IR o (3.12)
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Now we are going to prove (3.12).
Let X = (xq, x2, ..., X,) € R™*", where

xng) ) f.lj 179} §,~+.1,,~
xj=(x@), I N R :

! fjj fmj

j = 11 caey By,

where n; is defined by (3.5), and X’ = x, if m = n. By (1.1)-(1.2) X, =
&0, L x9) € R™*%, where

0 0 , .
x](.):(x(L)), ]=1,...,n1, XS‘O)=0 if m=n.
J

T
Letx = (x], ..., x1) ,and let

T T
L LT T UT T
x()z(xg),...,xff)) , x(U)=(x§),...,xf,U)) .

Moreover, we use the vectors y € R™, y) ¢ Rmm—mmu+)/2 yU) ¢ Runt+1)/2
to correspond to ¥ € R™*", Then the relations

Y = XR, Y., =LX; = low (XL.R)

are equivalent to

y=Lx, YO =L10xD, (3.13)
respectively, when L and LV are expressed by (3.2)—(3.3) and (3.7). From the first
relation of (3.13)

(0, k<j,

I 0
Yk (r”I ) k=i
‘m—j ) .’7
B_J:j =9 0 r,-jl( 1)

Thus, we have ayiL) / 8x](.u) =0Vk, j, and

y(L) ID 9 XD
Go) = (% %) ()
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This means that there is a permutation matrix P such that

(L)
P(RT ®1(m))PT — (L 0) ,

* *
ie.,
* *

-1 o
P(RT ®1<'">) PT = (L 0) . (3.14)

Observe that from the second relation of (3.13) x& = L® ~'y: hence by the
definition (3.10) and (3.14) we have

I = L2 7, < IR @ 1) 7|, = IR
The inequality (3.12) is proved. |

The following result shows that the function I(R) is insensitive to perturbations
of R.

THEOREM 3.4, Let R, M € U"*". Then
UR) — [M|l2 < R 4+ M) < KR) + ||M]|2. (3.15)

PROOF. By the definition (3.8), we have

IR) = min {||low QR) |lr: XL € L*", || X¢]lp = 1}
= flow OGR) [l Xz e L™, Xzl =1,
and
IR + M) = min {|[low (X.(R+ M) ||.: X € L, |X,|lp = 1}
< [low (X R + M) |,
< ltow (X;R) || + [iow (X;M) ||
< UR) + ||M]|2-
Similarly, we can prove the first inequality of (3.15). u
Let
X(l) mXn 3
X = X eER with rankX = n,
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where X € R"*". Define the operator L; : L2%" — L**" by

LX) = low (xS)R) . XD e grxn (3.16)
and define the function /4 (R) by

hR)= inf [LiX{"|le. (3.17)
X;-I)Ec;lxn
||X;_1)||F=1

Observe that L, is just L for the case m = n; hence the operator L, and the function
11 (R) have the same properties as L and /(R) stated by Theorem 3.1, Corollary 3.2,
and Theorems 3.3-3.4.

4. PERTURBATION THEOREMS (I)

Now we are going to discuss the solution X to the equations (2.9)—(2.10) under
the assumption that all the diagonal elements of R are positive.

By the assumption and Theorem 3.1, the operators L and L; defined by (2.8)
and (3.16) are nonsingular. Moreover, from (2.4)—2.5)

X =Ly [low(QTE)].

Thus, the equations (2.9)-(2.10) can be rewritten as a continuous mapping
& RMX" — R™MX" expressed by

X, = L7 low(E)],

X — (%diag(XTX))
D — )

0
<up(XTX> -L;! [low@TE)])
XU = 0 ’
or simply
X =¢X)+G, 4.1
where
14 T T
S0 = <2 diag(X X())+ up(X X)>,

G = L' low(®)] - ((LI—I[IOw(éTE)])T)‘

0 4.2)
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_ V5 _(1EIEN? |, [ IPEIRY?
T 7T \/< @) * (Far) @)

where I(R) and [;(R) are the functions defined by (3.8) and (3.17), respectively.
One can verify the following inequalities:

M [l60||x < X
@) || — d)|| < 27 max {|IX[le, [¥]le}IX = YilF,
3) ||Glle £ 7.

Hence, by Stewart [5, Theorem 3.1], if 4yn < 1, then the mapping ® expressed
by (4.1)~(4.2) has a unique fixed point X in the neighborhood

Let

S©O;27) = {X € R™":|X||r < 2v}

of the origin R™*", and

2y
Xle < —=1 .
X1l < 14+ +/1—4vy

_ v _ |V[/[IE]e 2 I PE|| 2
E”“%‘Ji[(lm)) +( h® ) ' @9

Then the condition 4yn < 1 can be rewritten as

Let

2v/10¢;,;, < 1. 4.5)
Observe that from (2.4) and (2.2)
Xl = IW]le = | — Qllr-
Hence, we get the following perturbation theorem.

THEOREM 4.1. Let A € R™” withrankA = n, A = QR be the QR factor-
ization of A, and A = A + E, and let €; and ¢, ;, be defined by (2.1) and (4.4),
respectively. If e2 < 1 and € ), satisfies the condition (4.5), then rankA = n and
the QR factorization A = OR satisfies

2\/561, h

Eb(e“l)
1+4/1 _2\/E€l,l|

V2, + V56, +5V2€, +0(el ) (4.6)

12 - Cllr

IA
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[IEIZ + 1PZEIE _
ey < AT lelA__F =z @.7)

2V/102 > 2v/5 A" 2| Elle > 1A 2]1E]z = ex.

By Theorem 3.3

Moreover, we have

Hence, Theorem 4.1 gives the following

COROLLARY 4.2. Let A, Q, X, E be as in Theorem 4.1, and let € be defined

by (4.7. If
2V/106 < 1,
then rank A = n, and the QR factorization A = QR satisfies
~ 2v/2€
10-Qllp € ————=— =)
1++/1-2V10¢
= V2E+ V58 +5v2E + 0 (%) (4.8)

5. PERTURBATION THEOREMS (II)

LetA € R™*" withrank (A) = n, A = QR be the QR factorization of A, A(z) =
A+1tE,0<t<1,A=A(1), and let ¢; be defined by (2.1). It is known that if
€3 < 1, then rank A(¢) = n, and A(#) has the unique QR factorization

A() = Q(R(1) 5-D

for each t € [0, 1], where R(r) € R"*" is a upper triangular matrix with positive
diagonal elements, and Q(f) € R™*" satisfy

oo =1. (5.2)

In this section we shall apply elementary calculus [1, 8] to derive perturbation
bounds of the orthogonal factor in the QR factorization of A. Differentiating (5.1)
and (5.2), we get

Edt = dO@®) R(t) + Q) dR(t) (5.3)

and

dow)" O + (T do@) = 0. (5.4)
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Take P(f) € R™<™=" sg that U(t) = (Q(?), P(#)) is orthogonal, and let

5XO(p)
6X(2)(t)) :

XV (@) e RM*". (5.5)

SA(t) = U@TEdt, 8X(H) = UT dQ(t)=<

Then (5.3) and (5.4) can be rewritten as

-1
§X(H) = SAORE)™' — (dR(')g(’) ) (5.6)
and
XV + 6xV() = 0. .7

By (1.1)~(1.2), the matrix 6X(¢) can be split uniquely as
6X(r) = 6X(t), + 6X()p + 6X(t)y.
Thus, the relation (5.7) implies 6X(9)p = 0. Moreover, from (5.5)—(5.7) we get

6X(t), = low(6A(R(®™")

and
XM —[6XD(g), ]T
Xty = ( O(t)u) :( [ 0(¢)L]>
_ T —1\1T
_ ( [ow(Q(®) (;sR(t) )] dt)_ 58
Hence,
lde@le = 16Xl = /I8XOLIR + 18X @
< V2|E||R®) |2 dt = V2| E|llA®) ||z dz. (5.9)
Consequently,
- 1 1
18- Qlr = H f dow|| < / o
0 F 0
1 1
d
< V2| / 1AW 2 dt = V3IEllr / 9 (510
0 0 on(t)
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where o,(2) is the smallest singular value of the matrix A(z). Let g, be the smallest
singular value of A. Combining (5.10) with the well-known relation o,() >
an — ||El|2t, we get

1
~ dt
0-0lr < V2 E||F/ 4
1€=Clle < V2IElr | =Tz
_ \/§”E||Fl 1
= n
IElla 1= [lAt[l2]|Ell2
= \/Ew(ez)ef,
where ¢; is defined by (2.1), and
; 1 1
¢ = [A'l2|Elr,  wl=-Ing—, O0<e<L (5.11)

Hence, we have proved the following result.

THEOREM 5.1. Let A, Q,Z,E be as in Theorem 4.1, and let €;, ¢, and w(e)
be defined by (2.1) and (5.11), respectively. If e; < 1, thenrank A = n, and the
OR factorization A = QR satisfies

10— Qlls < V2u(er)er = biler, &)

V2 V2
\/§Ef + —2—626f + —B—E%Gf +0 (6;) .

Il

V2¢ + V2erer + V2her + O (€f) . (6.12)

‘We note that the perturbation bound (5.12) can be improved by observing that
from (5.8)

l6X@ule < |QOTER®™ defl, < [|R®™|,||Q®TE]| dr
de

t T
(/ do(r) + Q) E
0 F

t
o], (llEllz [ 1aei + uPAEnF) .

la@l,

IA
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Combining it with

I3 1
/O ldQ(Mllr < /O 1dO(IIF < V2u(e)er  [see (5.10)~(5.12)],

we get
6X@®ulle < |A®T ||, [V2IEl2wle)e + |PaE|F]dr.

Substituting it into (5.9), we obtain

A

1400le < [JA@! |,y IEIE + (VZIElw(e + [IPAE]e? dt

Ao, (\/nEn% T IPAER + fannzw@z)ef) d

V2||a@t]), [IAY5 e + | Ellaw(eer] dt,

IA

i

where

o = fat), VIS TPAERE 51

2

Hence,

1
10— 0l < / I4Q)r

IA

VE(Iatl5 e+ [Blawtee] [ 40 o

V2w(es) le + w(ez)ezef] .

IA

Thus, we have proved the following

THEOREM 5.2. Let A,Q,Z,E be as in Theorem 4.1, and let €, €7, w(€), €
be defined by (2.1), (5.11), (5.13). Ife; < 1, then rankA = n, and the QR
Sfactorization A = QR satisfies

10— Qllr < V2w(er) [e + wle)eres] = bole, €2, ¢f)

= V2e+ ‘/;ez(e + 2€r) + -‘g—ieg(e +3¢)+ 0 (¢f) . (5.14)

6. ANEXAMPLE

The following result has been proved in [8]: Let A, Q, R, A, E be as in Theorem
4.1, and let €3, ¢ be defined by (2.1), (5.11). If €2 < 1, then there is a unique QR



PERTURBATION BOUNDS 109
factorization A= ék, and

10— Qllr < A+ V2w(e)er = Biler, €f)

a1+ \/E)Ef
1—62

IA

= Baler, &) (6.1)

It is easy to verify that there are the following relations between the upper
bounds b(e,,1, ), b(€), bi(ez, &), and Si(ez, &):

b () < H(E), by (e2,¢r) < B (2, €f) -

Moreover, the bound by(c, €2, €r) expressed by (5.14) is better than by(e2, €f) for
very small perturbations of A, and by the author’s numerical tests the bound b(¢; ,)
is better than all the others.

Now we give a numerical example.

EXAMPLE 6.1. Let

1-21 2 3

0 24 1-5

0 03-1 2],
0 00 4 1

0 00 0 5
andletZ=A+E, E = TEy with 7 > 0, and

02-05 03 01 04
-01 04 0.1 -03 02
05 07-02 01 06
03 -06 0.1 -01 02
02 01 07 03-04
04 08 -02 0.1 03
0.6 -0.1 -0.5 0.1 —-0.2
0.1 -03 02 06 0.7

Ey =
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TABLE 1.
T 1.000000e-01  1.000000e-02  1.000000e-05  1.000000e-08
IElie 243104901  2.431049e-02  2.431049-05  2.431049¢-08
0 —Qlle  3355805e-01  3.162668e-02  3.138194e-05  3.138170e-08
bleyy,) 9.834899e-02  8.765590e-05  8.764743e-08
b(e) 1.037806e-01  9.189167e-05  9.188238¢-08
bo(e, €2,¢7)  2.104630e+00  9.913509e-02  9.188933e-05  9.188238e-08
bilez ) 1397628400  1.065221e-01  1.040365¢-04  1.040340e-07
baez, ) 1.939075¢400  1.090902e-01  1.040389%-04  1.040341e-07
Bi(er,e)  2385901e+00  1.818447e-01 1.776013e-04  1.775972e-07
Brer,er) 3310208400  1.862287e-01  1.776055e-04  1.775972-07

Obviously, A has the QR factorization A = QR with

Q

1 8x5
(1) enos

By MATLAB we get the QR factorization A = QR of A for small 7. Some
numerical results by using MATLAB are listed in Table 1, where the scalars
€2, €11, €, €, € are defined by (2.1), (4.4), (4.7), (5.11), (5.13), and the bounds
b(el,l1)?b(é)7 bi(EZ, €f) (l = 1: 2)1 b0(6, €2, Ef)7 ﬂi(GZa Ef)(l = 172) are defined by
(4.6), (4.8), (5.12), (5.14), (6.1), respectively.

I am grateful to the referee for helpful comments and suggestions.
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