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ABSTRACT 

Certain new perturbation bounds of the orthogonal factor in the QR factorization of a 
real matrix are derived. The bounds of this note improve the known bounds in the literature. 

1. INTRODUCTION 

Let A be a real m x n matrix (A E T?T”) with rankA = n. The QR factorization 
of A is a decomposition of the form A = QR, in which R E %Yx” is an upper 
triangular matrix with positive diagonal elements, and the matrix Q E Rmx” 
satisfies QTQ = I, the identity matrix. Here QT is the transpose of Q. The matrix 
Q is referred to as the orthogonal factor, and R the triangular factor in the QR 
factorization of A. It is well known that the QR factorization of a full-column- 
rank matrix is unique, and the QR factorization is one of the most important 
decompositions of a matrix (see [3]). 

Let E E 7Px” with rank(A + E) = n, and IetA + E = (Q + W)(R + F) be 
the QRfactorization ofA+E. A number of upper bounds on ljFll/llRl/ and ]I WI1 in 
terms of l/E/l for a certain norm ]I 11 have been derived by Stewart [6] and Sun [8]. 
Recently, Stewart [7] gave asymptotic perturbation bounds on llFll/llRll and )I WJI, 
and Bhatia and Mukherjea [2] presented a new bound on 1) W(I. Besides, Sun [9] 
gives componentwise perturbation bounds of IFI and I WI, where the matrix IFI is 
defined by IFI = (]hj]) for F = (&)a It is worthwhile to point out that the bounds 

of IIWII (or IW g iven by [6-91 are derived from certain known bounds of llF[l 
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(or IFI) and the relation 

W = [E -.(Q + W)F]R-‘. 

In this note we derive several new bounds of ]]W]] directly. Roughly speaking, 
the new bounds of [2] and this note improve the results of [7] and [8] by a factor 
1+ l/Jz: 

II WIIF 5 (1 + JZNAt IWIIF (by the results of [7,8]), 

]I Wl]F 5 fi l\A+ [I2 ]I’% (by the new bounds), 

where A+ denotes the Moore-Penrose inverse of A, and (1 I(2 and ]I IIF stand for the 
spectral norm and the Frobenius norm, respectively. 

Note that the methods and results of this note are different from those of [2]. 
Bhatia and Mukherjea [2] apply calculus on manifold and matrix Lie groups to 
consider complex square matrices. The following inequality was proved in [2]: 

IIG - QIIF 5 oy~, (IA(~)-’ II2 IIEIIF~ -- 

where A(t) = A + tE, 0 2 t I 1. Remark that the quantity maxa<t<r (IA(t)-’ 112 is 
not convenient to calculate. In this note we apply fixed-point theory and elementary 
calculus to consider real rectangular matrices. The upper bounds of ]]Q - Q]]r 
obtained in this note are computable. 

We shall use I(“) to denote the identity matrix of order n, and 0 the null matrix. 
PA = AA+ denotes the orthogonal projection onto the column space of A. The 
symbol X( ) denotes the set of the eigenvalues of a matrix or an operator. Unxn 
is the set of real n x n upper triangular matrices, and Urxn, fTr”“, Vmxn are sets 
defined by 

,;xn = {A=(aii)ERmX”:aij=O~i~j}, 

L TX, = {A=(a,)ERmX”:aij=OViLj}, 

zFX” = {A=(aii)ERmX”:aij=OVi#j}. 

Obviously, an X E Rmx” can be split uniquely as 

x=x,-t-x0+x,, XL E cyxn, x, E vmxn, X” E lqxn. (1.1) 

The matrices XL, Xn, XV of (1.1) will be denoted by 

XL = low(X), Xp = diag(X), xv = up(X). (1.2) 
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The relation (1.2) gives the definitions of the operators low( ), diag( ), and up( ) 
defined on Rmx” (Reference [4]). 

In Section 2 we derive perturbation equations. In Section 3 we discuss some 
basic properties of the operator L [defined below by (2.8)] and the function Z(R) 
[defined below by (3.8)], which are important for studying perturbation bounds 
for the orthogonal factor in the QR factorization. In Sections 4 and 5 we apply 
fixed-point theory and elementary calculus to derive perturbation bounds of the 
orthogonal factor, respectively, and in Section 6 we give a numerical example. 

2. PERTURBATION EQUATIONS 

Let A E RmX” with rank A = n, and let 2 = A + E, where E E Rmxn satisfies 

~2 = IIA+ll;! lIElIz < 1. (2.1) 

Then obviously rank2 = n. Let A = QR,z = @ be the QR factorizations of 
A, A, respectively, and let 

E=&A, W=&Q, F=ir-R. (2.2) 

Then it is easy to verify that the perturbation matrices W, F satisfy the equation 

E= WR+GF. (2.3) 

Take a matrix p E RmxCm-“) such that G = (2, F) is an orthogonal matrix, 
and let 

E = i?=E, x=ETw= XC’) E R”X” (2.4) 

Then from (2.3) 
F 

XR+ o =E. 
0 

(2.5) 

Moreover, from the relations QTQ = Z and 

--Xc fiTQ 

we get 
$1) + xWT = _yTx. (2.6) 
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LetXbeasolution totheequations (2.5)-(2.6). DefinethematricesXL, XD, XU 
by (1.1)-(1.2). Then from (2.5) and low(XR) = low(XLR) it follows that 

low(XLR) = low@). 

Define the operator L : ,Crx" --) ,rx" by 

LX, = low(XLR), XL E Icy. 

Then the equation (2.7) can be rewritten as 

LXr. = low@). 

Moreover, from (2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where $2’ = low(X(‘)). 
In Section 4 we shall prove that there is a unique solution X to the equations 

(2.9~(2.10) in the case of small ((El1 r, and derive upper bounds of l/Xllr for the 
solution X. 

3. THE OPERATOR L AND FUNCTION 1(R) 

Before we go on to derive perturbation bounds of IjX11r from the equations 
(2.9)-(2. lo), it will be necessary to discuss the basic properties of the operator L 
defined by (2.8). 

We first consider the relation 

Y =XR, 

whereX, Y E Rmxn, R = (I-U) E U”‘“. Let 

X=(x1, -*.,nn)=(&j), Y=(Yr, 

x=(x;, ...,x;)T, Y = (YT, 

The relation (3.1) can be rewritten as 

y = (RT @ I(‘+, 

. . . 

(3.1) 

, Yn) = (77ij), 

.YT)'. 



Jl3aylXX aM ‘(E’E) qJ!M (L’s) %kI!U~C$lIO~ ‘Ul ‘ ’ ’ ’ ‘2 + [ ‘1 + [ 

suUIn~o3 pue zu ‘ . . . ‘2 + f ‘1 + j SMOI JO Bu~~s~suo3 “7 JO xgmuqns aw salouap 

w L... ‘z+.r‘r +/ 
uI ‘... ‘z+.“T +.I > 

1!7 

(L’E) 

put? ‘&‘E) dq pauyap S’ Iu qD!qM u! 
‘IU L... ‘2 ‘1 =[‘r 

~‘““z+.r‘r +.r 
uI ‘... ‘z+1 ‘I +.I ‘($7) = (7jl 

alaqrn 

(9%) ‘dm7 = (7)X 

66 SaNfl08 NOI.LVSCLUI~d 
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where ni is defined by (3.5). Since (3.6) is equivalent to (3.4), we have the 
following 

THEOREM 3.1. Let R = (ru) E LPxn, and let L be the operator defined by 
(2.8). Then the eigenvalues ofL are 

rll, . . . , rll, r22, . . . , 122,. . . , rnn, . . . , rnn. 
-- - 

m-l m-2 m--n 

Let L be the operator defined by (2.8). Now we define the function l(R) by 

l(R) = inf IIL&IIF. 
XLELrXn 
IlXLllF=l 

It is easy to verify that 

l(R) = 

where [IL-’ 11 is the subordinate operator norm defined by 

llL-‘ll = yL=xn IIL-‘YLllF. 
I 

Il~LllF=l 

(3.8) 

(3.9) 

(3.10) 

Therefore, from Theorem 3.1 we get the following 

COROLLARY 3.2. Let l(R) be thefinctiondefined by (3.8). IfR is nonsingular, 
then 

0 < l(R) L lz$n, hl, -- 
where nl is de$ned by (3.5). 

The following result gives a relation between l(R) and l/IIAt 112. 

THEOREM 3 3 . . Let A E Rmx” with rank A = n, A = QR be the QR factor- 
ization of A, and let L, l(R) be dejned by (2.8), (3.8), respectively. Then 

l(R) 2 - llA:112- 
(3.11) 

PROOF. By (3.9) and jlAtjl2 = (IR-’ 112, the inequality (3.11) is equivalent to 

IF-‘II I IIR-‘112. (3.12) 
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Now we are going to prove (3.12). 
Let X = (xl, x2, . . . , x,,) E 7Pxn, where 

where nl is defined by (3.5), and xi’) = x,, if m = n. By (1.1~( 1.2) X, = 
(x~), . . . , xI”)) E 7ZmX”, where 

xfJ’ - 0 
I - ( ) x!~) , i= 1, . ...4, x(O) = 0 n if m = n. 

I 

Let x = (XT, . . . , ,x:)~, and let 

Moreover, we use the vectors y E %P’, yCL) E ‘Rmn1--n1(n1+‘)/2, yc”) E Rn(n+*)/2 
to correspond to Y E Rmx”. Then the relations 

Y =XR, YL = LX, te low (XLR) 

are equivalent to 
y = Lx, y(L) = @,),(U, (3.13) 

respectively, when L and LCL) are expressed by (3.2)-(3.3) and (3.7). From the first 
relation of (3.13) 

k <_A 

aYk 
?g= 

7 k =A 

k>j. 

Thus, we have %r)/i3xj”’ = 0 Vk, j, and 
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This means that there is a permutation matrix P such that 

i.e., 

(3.14) 

Observe that from the second relation of (3.13) xc’) = L(L)-‘y(L); hence by the 
definition (3.10) and (3.14) we have 

[IL-’ 11 = I/L'L'-' (I2 5 I((RT @3 I’“‘)-’ I(* = IIR-’ 112. 

The inequality (3.12) is proved. W 

The following result shows that the function Z(R) is insensitive to perturbations 
ofR. 

THEOREM 3.4. Let R, M E Unxn. Then 

W - IIMllz I@ +W I WI + IIMII2. 

PROOF. By the definition (3.8), we have 

Z(R) = 
= 

and 

l(R +M) = 

I 

I 
5 

min { (Ilow (XLR) IJF :Xr. E fZyXn, IIXLIIF = l} 

(Ilow (X;R) llr, X; E G’““, j(X& = 1, 

min { (Ilow (XAR + M)) IIF :XL E LYx", IIXLIIF = 1) 

IllOW (X;(R + MI) IIF 

(I1ow (X:R) IiF + ibow (X:M) /F 

W + IIMll2. 

Similarly, we can prove the first inequality of (3.15). 

(3.15) 

Let 

with rankX = n, 
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where X(l) E 7Z”‘“. Define the operator Li : J?_:,* + Cfx” by 

> XF’ E LCnX” 
s 7 (3.16) 

and define the function 11 (R) by 

(3.17) 

Observe that Li is just L for the case m = n; hence the operator Li and the function 
Ii (R) have the same properties as L and I(R) stated by Theorem 3.1, Corollary 3.2, 
and Theorems 3.3-3.4. 

4. PERTURBATION THEOREMS (I) 

Now we are going to discuss the solution X to the equations (2.9)-(2.10) under 
the assumption that all the diagonal elements of R are positive. 

By the assumption and Theorem 3.1, the operators L and Li defined by (2.8) 
and (3.16) are nonsingular. Moreover, from (2.4)-(2.5) 

xf’ = L,’ [low@%)]. 

Thus, the equations (2.9)-(2.10) can be rewritten as a continuous mapping 
@ : ‘Rmx” + Rmx” expressed by 

x, = L-’ [low(E)], 

x 
D 

= idiag (X’X) 

( > 0 ’ 

xu = UP(XTX> - L;%MGTE)l 
0 > 

, 

or simply 

where 

X = 4(X> + G, (4.1) 

4(X> = 
$ diag(XTX) + up(XTX) 

0 > 
1 

G = L-‘[low@)] - 
(L,‘[loW(~rE)])r 

0 ). 
(4.2) 
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Let 

rl_ 7, y= J_, (4.3) 

where Z(R) and It(R) are the functions defined by (3.8) and (3.17), respectively. 
One can verify the following inequalities: 

(1) I\+(X)& I rlllXll;Y 
(2) \lcKX) - $(Y)l(, 5 2rl max { ]IxI]~, ]I yIIF> 11x - yiIF, 

(3) IIGIIF I Y. 
Hence, by Stewart [5, Theorem 3.11, if 47~ < 1, then the mapping Cp expressed 
by (4.1)-(4.2) has a unique fixed point X in the neighborhood 

s(o ; 27) = {X E Rmx” : (jxI[F < 2-,} 

of the origin Rmx”, and 

Let 

(4.4) 

Then the condition 4yr] < 1 can be rewritten as 

2J1oe/J, < 1. (4.5) 

Observe that from (2.4) and (2.2) 

llXllF = llW\lF = lliz - QllF. 

Hence, we get the following perturbation theorem. 

THEOREM 4.1. Let A E 7Px” with rankA = n, A = QR be the QR factor- 
ization of A, and A = A + E, and let Q ana’ q, 1, be defined by (2.1) and (4.4), 
respectively. If ~2 < 1 and q 1, satisfies the condition (4.5), then rank2 = n and 
the QR factorization x = @ satisfies 
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By Theorem 3.3 

Moreover, we have 

(4.7) 

2fiS 2~IIAtll~11EII~ 2 IIA+~~~IIE[~~ = c2. 

Hence, Theorem 4.1 gives the following 

COROLLARY 4.2. Let A, Q, 2, E be as in Theorem 4.1, and let? be dejned 
by (4.7). Zf 

2l/i&< 1, 

then rankx = n, and the QR factorization 2 = @ satis$es 

IIS - QIIF < 
2Jzz 

1+d_ 
= b(F) 

= I/%+ dz2 + 5d5z3 + 0 (F”) . (4.8) 

5. PERTURBATION THEOREMS (II) 

LetA E Rmx” wifhrank(A) = n, A = QR be the QRfactorizationofA, A(t) = 
A + tE, 0 I t I 1, A = A(l), and let t2 be defined by (2.1). It is known that if 
~2 < 1, then rankA = n, and A(t) has the unique QR factorization 

for each t E [0, 11. where R(t) E Wx” is a upper triangular matrix with positive 
diagonal elements, and Q(t) E 7ZmX” satisfy 

QMTQ(O = 1. (5.2) 

In this section we shall apply elementary calculus [ 1,8] to derive perturbation 
bounds of the orthogonal factor in the QR factorization of A. Differentiating (5.1) 
and (5.2), we get 

and 

Edt = dQ(t) R(t) + Q(t) dR(t) (5.3) 

dQWT QW + QWT dQW = 0. (5.4) 
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Take P(t) E Rmx(m-n) so that U(t) = (Q(t), P(t)) is orthogonal, and let 

6A(t) = U(t)TEdt, 6x(t) = Vt)T dQ(t) = 

Then (5.3) and (5.4) can be rewritten as 

6X(t) = SA(t)R(t)-’ - (dR(t);(‘)-‘) (5.6) 

and 
GX(‘)(t)T + 6x(‘)(t) = 0. (5.7) 

By (1 .l)-( 1.2), the matrix 6X(t) can be split uniquely as 

6X(t) = 6X(t), + 6X(t), + 6X(t),. 

Thus, the relation (5.7) implies bX(t)o = 0. Moreover, from (5.5)-(5.7) we get 

6X(t), = low(SA(t)R(t)-‘) 

and 

6x(t), = 

-[low(Q(t)TER(t)-l)]T dt = (5.8) 

Hence, 

IldC?(t)l(F = Il~x(t>llF = j/kjx(t)d; + Il~x<t>di; 

I hIIEIIFjIR<t>-’ 112 dt = d%IIFIIA(t)+lb dt. (5.9) 

Consequently, 

I hl,EllF /’ IINO+ II2 dt = fill’% I’ -$j> (5.10) 
0 ” 
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where a,(t) is the smallest singular value of the matrix A(t). Let a, be the smallest 
singular value of A. Combining (5.10) with the well-known relation a,,(t) 2 
cn - IlEll2h we get 

lliz - Qlt~ 5 fillEllF 1’ o _d;El12t 
X@llF ’ 1 

= - In1 - IIA+ll211~112 llEll2 

= &(E2)Ef, 

where ~2 is defined by (2. I), and 

4 = llAt II~IPIIF~ 
1 

U(E) = 1 In - 
1-e’ 

O<E<l. (5.11) 
E 

Hence, we have proved the following result. 

THEOREM 5.1. Let A, Q,& E be as in Theorem 4.1, and let ~2, cf, and w(e) 
be deBned by (2.1) and (5.1 l), respectively. If ~2 < 1, then rankA = n, and the - _- 
QR factorization A = QR satis$es 

= d&f + l&f + a;, + o($) . (5.12) 

We note that the perturbation bound (5.12) can be improved by observing that 
from (5.8) 

f = Aft2 II (1 II dQ(r) + Q 

I IIA(t)+j12 llEll2 1’ ll@(T)llF -t IlprdF) dt. 
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Combining it with 

s 
’ lldQ(dtb 5 

s 
’ tt%!(dttF 5 ti&2kf [see (5.10~(5.12)], 

0 0 

we get 
b=(kiiF 5 (IA(r)+112[JZIIE112~(~*)~~ + (jhE(IF]dt. 

Substituting it into (5.9), we obtain 

b%?(~>~lF 5 

I 

= 

(5.13) 

where 

Hence, 

IliZ - QIIF I j. IldQ@>llF 

Thus, we have proved the following 

THEOREM 5.2. Let A, Q,& E be as in Theorem 4.1, and let e2, cf, W(E), E 
be defined by_(2.1), (5.11), (5.13). If ~2 < 1, then rank2 = n, and the QR __ 
factorization A = QR satisfies 

IliZ - Q/IF I dL (~2) [e + 4~2)~2~~] s bo(E, ~2, of) 

Jz Jz 
= v% + yE2(E + 29) + -+E + 39) + 0 (Ef”) . (5.14) 

6. AN EXAMPLE 

The following result has been proved in [8): Let A, Q, R, 2, E be as in Theorem 
4.1, and let ~2, ef be defined by (2. l), (5.11). Zf 62 < 1, then there is a unique QR 
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_ __ 
factorization A = QR, and 

< (l+ a 3 #82(E2 Ef) - 
1 - E2 7 . 

109 

(6.1) 

It is easy to verify that there are the following relations between the upper 
bounds b(c~~,),bG), bi(c2, q), and Pi(c2, q): 

b @[,I,) 5 b(‘% bi (6219) 5 PI (~2, q) . 

Moreover, the bound bg(e, ~2, q) expressed by (5.14) is better than bl(q, ef) for 
very small perturbations ofA, and by the author’s numerical tests the bound b(q, I,) 
is better than all the others. 

Now we give a numerical example. 

EXAMPLE 6.1. Let 

1-21 2 3 

0 24 l-5 

A= 
R 

0 0 ’ 
0 00 4 1 

0 00 0 5 

andletA=A+E, E=rEOwithr>O,and 

E. = 

0.2 -0.5 0.3 0.1 0.4 

-0.1 0.4 0.1 -0.3 0.2 

0.5 0.7 -0.2 0.1 0.6 

0.3 -0.6 0.1 -0.1 0.2 

0.2 0.1 0.7 0.3 -0.4 

0.4 0.8 -0.2 0.1 0.3 

0.6 -0.1 -0.5 0.1 -0.2 

0.1 -0.3 0.2 0.6 0.7 
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TABLE 1. 

7 1 .oooOOOe-01 1 .OOOOOOe-02 1 .OoOOOOe-05 1 .OOOOOOe-08 

IlEllF 2.431049e-01 2.431049e-02 2.431049e-05 2.431049e-08 

Iii? - Qlb 3.355805e-01 3.162668e-02 3.138194e-05 3.138170e-08 

b&J,) 9.834899e-02 8.76559Oe-05 8.764743e-08 
b(e) l.O37806e-01 9.189167e-05 9.188238e-08 

Me, ~2, of) 2.104630e+OO 9.913509e-02 9,188933e-05 9.188238e-08 

bl(ar y) 1.397628e+OO l.O65221e-01 l.O40365e-04 l.O40340e-07 

bz(e2, Ef) 1.939075e+OO l.O90902e-01 l.O40389e-04 l.O40341e-07 

P1Ce2, Ef) 2.385901e+OO 1.818447e-01 1.776013e-04 1.775972e-07 

Pz(% y) 3.310208e+OO 1.862287e-01 1.776055e-04 1.775972e-07 

Obviously, A has the QR factorization A = QR with 

Q= ; ER’~~. 0 
By MATLAB we get the QR factorization x = @ of 2 for small 7. Some 
numerical results by using MATLAB are listed in Table 1, where the scalars 
62, EIJ, ,Z, q, e are defined by (2.1), (4.4), (4.7), (5.11), (5.13), and the bounds 
Wql,), bO, bi(e2, ef) (i = 1,2), bo(e, ~2, q), Pi(E2, qXi = 1,2) me defined by 

(4.6), (4.8), (5.12), (5.14), (6.1), respectively. 

I am gratefil to the referee for helpful comments and suggestions. 
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