

NORTH-HOLLAND

On Perturbation Bounds for the QR Factorization

Ji-guang Sun*
Institute of Information Processing
University of Umeå
S-901 87 Umeå, Sweden

Submitted by Hans Schneider

Abstract

Certain new perturbation bounds of the orthogonal factor in the $Q R$ factorization of a real matrix are derived. The bounds of this note improve the known bounds in the literature.

1. INTRODUCTION

Let A be a real $m \times n$ matrix $\left(A \in \mathcal{R}^{m \times n}\right)$ with rank $A=n$. The $Q R$ factorization of A is a decomposition of the form $A=Q R$, in which $R \in \mathcal{R}^{n \times n}$ is an upper triangular matrix with positive diagonal elements, and the matrix $Q \in \mathcal{R}^{m \times n}$ satisfies $Q^{\mathrm{T}} Q=I$, the identity matrix. Here Q^{T} is the transpose of Q. The matrix Q is referred to as the orthogonal factor, and R the triangular factor in the $Q R$ factorization of A. It is well known that the $Q R$ factorization of a full-columnrank matrix is unique, and the $Q R$ factorization is one of the most important decompositions of a matrix (see [3]).

Let $E \in \mathcal{R}^{m \times n}$ with $\operatorname{rank}(A+E)=n$, and let $A+E=(Q+W)(R+F)$ be the $Q R$ factorization of $A+E$. A number of upper bounds on $\|F\| /\|R\|$ and $\|W\|$ in terms of $\|E\|$ for a certain norm $\|\|$ have been derived by Stewart [6] and Sun [8]. Recently, Stewart [7] gave asymptotic perturbation bounds on $\|F\| /\|R\|$ and $\|W\|$, and Bhatia and Mukherjea [2] presented a new bound on $\|W\|$. Besides, Sun [9] gives componentwise perturbation bounds of $|F|$ and $|W|$, where the matrix $|F|$ is defined by $|F|=\left(\left|f_{i j}\right|\right)$ for $F=\left(f_{i j}\right)$. It is worthwhile to point out that the bounds of $\|W\|$ (or $|W|$) given by [6-9] are derived from certain known bounds of $\|F\|$

[^0](or $|F|$) and the relation
$$
W=[E-(Q+W) F] R^{-1}
$$

In this note we derive several new bounds of $\|W\|$ directly. Roughly speaking, the new bounds of [2] and this note improve the results of [7] and [8] by a factor $1+1 / \sqrt{2}$:

$$
\begin{aligned}
& \|W\|_{\mathrm{F}} \lesssim(1+\sqrt{2})\left\|A^{\dagger}\right\|_{2}\|E\|_{\mathrm{F}} \quad \text { (by the results of }[7,8] \text {), } \\
& \|W\|_{\mathrm{F}} \lesssim \sqrt{2}\left\|A^{\dagger}\right\|_{2}\|E\|_{\mathrm{F}} \quad \text { (by the new bounds) }
\end{aligned}
$$

where A^{\dagger} denotes the Moore-Penrose inverse of A, and $\left\|\|_{2}\right.$ and $\| \|_{F}$ stand for the spectral norm and the Frobenius norm, respectively.

Note that the methods and results of this note are different from those of [2]. Bhatia and Mukherjea [2] apply calculus on manifold and matrix Lie groups to consider complex square matrices. The following inequality was proved in [2]:

$$
\|\widetilde{Q}-Q\|_{\mathrm{F}} \leq \max _{0 \leq t \leq 1}\left\|A(t)^{-1}\right\|_{2}\|E\|_{\mathrm{F}}
$$

where $A(t)=A+t E, 0 \leq t \leq 1$. Remark that the quantity $\max _{0 \leq t \leq 1}\left\|A(t)^{-1}\right\|_{2}$ is not convenient to calculate. In this note we apply fixed-point theory and elementary calculus to consider real rectangular matrices. The upper bounds of $\|\widetilde{Q}-Q\|_{\mathrm{F}}$ obtained in this note are computable.

We shall use $I^{(n)}$ to denote the identity matrix of order n, and 0 the null matrix. $P_{A}=A A^{\dagger}$ denotes the orthogonal projection onto the column space of A. The symbol λ () denotes the set of the eigenvalues of a matrix or an operator. $\mathcal{U}^{n \times n}$ is the set of real $n \times n$ upper triangular matrices, and $\mathcal{U}_{\mathrm{s}}^{m \times n}, \mathcal{L}_{\mathrm{s}}^{m \times n}, \mathcal{D}^{m \times n}$ are sets defined by

$$
\begin{aligned}
\mathcal{U}_{\mathrm{s}}^{m \times n} & =\left\{A=\left(\alpha_{i j}\right) \in \mathcal{R}^{m \times n}: \alpha_{i j}=0 \forall i \geq j\right\} \\
\mathcal{L}_{\mathrm{s}}^{m \times n} & =\left\{A=\left(\alpha_{i j}\right) \in \mathcal{R}^{m \times n}: \alpha_{i j}=0 \forall i \leq j\right\} \\
\mathcal{D}^{m \times n} & =\left\{A=\left(\alpha_{i j}\right) \in \mathcal{R}^{m \times n}: \alpha_{i j}=0 \forall i \neq j\right\}
\end{aligned}
$$

Obviously, an $X \in \mathcal{R}^{m \times n}$ can be split uniquely as

$$
\begin{equation*}
X=X_{L}+X_{D}+X_{U}, \quad X_{L} \in \mathcal{L}_{\mathrm{s}}^{m \times n}, \quad X_{D} \in \mathcal{D}^{m \times n}, \quad X_{U} \in \mathcal{U}_{\mathrm{s}}^{m \times n} \tag{1.1}
\end{equation*}
$$

The matrices X_{L}, X_{D}, X_{U} of (1.1) will be denoted by

$$
\begin{equation*}
X_{L}=\operatorname{low}(X), \quad X_{D}=\operatorname{diag}(X), \quad X_{U}=\operatorname{up}(X) \tag{1.2}
\end{equation*}
$$

The relation (1.2) gives the definitions of the operators low(), diag(), and up() defined on $\mathcal{R}^{m \times n}$ (Reference [4]).

In Section 2 we derive perturbation equations. In Section 3 we discuss some basic properties of the operator L [defined below by (2.8)] and the function $l(R)$ [defined below by (3.8)], which are important for studying perturbation bounds for the orthogonal factor in the $Q R$ factorization. In Sections 4 and 5 we apply fixed-point theory and elementary calculus to derive perturbation bounds of the orthogonal factor, respectively, and in Section 6 we give a numerical example.

2. PERTURBATION EQUATIONS

Let $A \in \mathcal{R}^{m \times n}$ with rank $A=n$, and let $\widetilde{A}=A+E$, where $E \in \mathcal{R}^{m \times n}$ satisfies

$$
\begin{equation*}
\epsilon_{2} \equiv\left\|A^{\dagger}\right\|_{2}\|E\|_{2}<1 \tag{2.1}
\end{equation*}
$$

Then obviously $\operatorname{rank} \widetilde{A}=n$. Let $A=Q R, \widetilde{A}=\widetilde{Q} \widetilde{R}$ be the $Q R$ factorizations of A, \widetilde{A}, respectively, and let

$$
\begin{equation*}
E=\widetilde{A}-A, \quad W=\widetilde{Q}-Q, \quad F=\widetilde{R}-R \tag{2.2}
\end{equation*}
$$

Then it is easy to verify that the perturbation matrices W, F satisfy the equation

$$
\begin{equation*}
E=W R+\widetilde{Q} F \tag{2.3}
\end{equation*}
$$

Take a matrix $\widetilde{P} \in \mathcal{R}^{m \times(m-n)}$ such that $\widetilde{U}=(\widetilde{Q}, \widetilde{P})$ is an orthogonal matrix, and let

$$
\begin{equation*}
\widetilde{E}=\widetilde{U}^{\mathrm{T}} E, \quad X=\widetilde{U}^{\mathrm{T}} W=\binom{X^{(1)}}{X^{(2)}}, \quad X^{(1)} \in \mathcal{R}^{n \times n} \tag{2.4}
\end{equation*}
$$

Then from (2.3)

$$
\begin{equation*}
X R+\binom{F}{0}=\widetilde{E} \tag{2.5}
\end{equation*}
$$

Moreover, from the relations $Q^{T} Q=I$ and

$$
\binom{I}{0}-X=\widetilde{U}^{\mathrm{T}} Q
$$

we get

$$
\begin{equation*}
X^{(1)}+X^{(1)^{\mathrm{T}}}=X^{\mathrm{T}} \boldsymbol{X} \tag{2.6}
\end{equation*}
$$

Let X be a solution to the equations (2.5)-(2.6). Define the matrices X_{L}, X_{D}, X_{U} by (1.1)-(1.2). Then from (2.5) and $\operatorname{low}(X R)=\operatorname{low}\left(X_{L} R\right)$ it follows that

$$
\begin{equation*}
\operatorname{low}\left(X_{L} R\right)=\operatorname{low}(\widetilde{E}) \tag{2.7}
\end{equation*}
$$

Define the operator $\mathrm{L}: \mathcal{L}_{\mathrm{s}}^{m \times n} \rightarrow \mathcal{L}_{\mathrm{s}}^{m \times n}$ by

$$
\begin{equation*}
\mathbf{L} X_{L}=\operatorname{low}\left(X_{L} R\right), \quad X_{L} \in \mathcal{L}_{\mathrm{s}}^{m \times n} \tag{2.8}
\end{equation*}
$$

Then the equation (2.7) can be rewritten as

$$
\begin{equation*}
\mathbf{L} X_{L}=\operatorname{low}(\widetilde{E}) \tag{2.9}
\end{equation*}
$$

Moreover, from (2.6)

$$
\begin{equation*}
X_{D}=\binom{\frac{1}{2} \operatorname{diag}\left(X^{\mathrm{T}} X\right)}{0}, \quad X_{U}=\binom{\operatorname{up}\left(X^{\mathrm{T}} X\right)-X_{L}^{(1)^{\mathrm{T}}}}{0} \tag{2.10}
\end{equation*}
$$

where $X_{L}^{(1)}=\operatorname{low}\left(X^{(1)}\right)$.
In Section 4 we shall prove that there is a unique solution X to the equations (2.9)-(2.10) in the case of small $\|E\|_{\mathrm{F}}$, and derive upper bounds of $\|X\|_{\mathrm{F}}$ for the solution X.

3. THE OPERATOR L AND FUNCTION $l(R)$

Before we go on to derive perturbation bounds of $\|X\|_{\mathrm{F}}$ from the equations (2.9)-(2.10), it will be necessary to discuss the basic properties of the operator L defined by (2.8).

We first consider the relation

$$
\begin{equation*}
Y=X R, \tag{3.1}
\end{equation*}
$$

where $X, Y \in \mathcal{R}^{m \times n}, R=\left(r_{i j}\right) \in \mathcal{U}^{n \times n}$. Let

$$
\begin{array}{ll}
X=\left(x_{1}, \ldots, x_{n}\right)=\left(\xi_{i j}\right), & Y=\left(y_{1}, \ldots, y_{n}\right)=\left(\eta_{i j}\right), \\
x=\left(x_{1}^{\mathrm{T}}, \ldots, x_{n}^{\mathrm{T}}\right)^{\mathrm{T}}, & y=\left(y_{1}^{\mathrm{T}}, \ldots y_{n}^{\mathrm{T}}\right)^{\mathrm{T}} .
\end{array}
$$

The relation (3.1) can be rewritten as

$$
y=\left(R^{\mathrm{T}} \otimes I^{(m)}\right) x
$$

where $A \otimes B \equiv\left(\alpha_{i j} B\right)$ is a Kronecker product. Write

$$
\begin{equation*}
L \equiv R^{T} \otimes I^{(m)}=\left(L_{i j}\right), \quad L_{i j} \in \mathcal{R}^{m \times m}, \quad i, j=1, \ldots, n \tag{3.2}
\end{equation*}
$$

we have

$$
L_{i j}=\left\{\begin{array}{cc}
0, & i<j \tag{3.3}\\
r_{i i} I^{(m)}, & i=j \\
r_{j i} I^{(m)}, & i>j
\end{array}\right.
$$

Let

$$
\begin{equation*}
Y_{L}=\mathbf{L} X_{L} \equiv \operatorname{low}\left(X_{L} R\right) \tag{3.4}
\end{equation*}
$$

Define $x_{j}^{(L)}, y_{j}^{(L)}, x^{(L)}, y^{(L)}$ by

$$
\begin{aligned}
x_{j}^{(L)} & =\left(\begin{array}{c}
\xi_{j+1, j} \\
\vdots \\
\xi_{m j}
\end{array}\right), \quad y_{j}^{(L)}=\left(\begin{array}{c}
\eta_{j+1, j} \\
\vdots \\
\eta_{m j}
\end{array}\right), \quad j=1,2, \ldots, n_{1} \\
x^{(L)} & =\left(x_{1}^{(L)^{\mathrm{T}}}, \ldots, x_{n_{1}}^{(L)^{\mathrm{T}}}\right)^{\mathrm{T}}, y^{(L)}=\left(y_{1}^{(L)^{\mathrm{T}}}, \ldots, y_{n_{1}}^{(L)^{\mathrm{T}}}\right)^{\mathrm{T}},
\end{aligned}
$$

where

$$
n_{1}=\left\{\begin{array}{lll}
n & \text { if } & m>n \tag{3.5}\\
n-1 & \text { if } & m=n
\end{array}\right.
$$

The relation (3.4) can be rewritten as

$$
\begin{equation*}
y^{(L)}=L^{(L)} x^{(L)} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
L^{(L)}=\left(L_{i j}^{(L)}\right), \quad L_{i j}^{(L)}=L_{i j}\binom{i+1, i+2, \ldots, m}{j+1, j+2, \ldots, m} \tag{3.7}\\
i, j=1,2, \ldots, n_{1}
\end{gather*}
$$

in which n_{1} is defined by (3.5), and

$$
L_{i j}\binom{i+1, i+2, \ldots, m}{j+1, j+2, \ldots, m}
$$

denotes the submatrix of $L_{i j}$ consisting of rows $i+1, i+2, \ldots, m$ and columns $j+1, j+2, \ldots, m$. Combining (3.7) with (3.3), we see that

$$
\lambda\left(L^{(L)}\right)=\bigcup_{j=1}^{n_{1}} \lambda\left(L_{j j}^{(L)}\right)=\bigcup_{j=1}^{n_{1}} \underbrace{\left\{r_{i j}, \ldots, r_{j j}\right\}}_{m-j}
$$

where n_{1} is defined by (3.5). Since (3.6) is equivalent to (3.4), we have the following

ThEOREM 3.1. Let $R=\left(r_{i j}\right) \in \mathcal{U}^{n \times n}$, and let L be the operator defined by (2.8). Then the eigenvalues of L are

$$
\underbrace{r_{11}, \ldots, r_{11}}_{m-1}, \underbrace{r_{22}, \ldots, r_{22}}_{m-2}, \ldots, \underbrace{r_{n n}, \ldots, r_{n n}}_{m-n}
$$

Let \mathbf{L} be the operator defined by (2.8). Now we define the function $l(R)$ by

$$
\begin{equation*}
l(R)=\inf _{\substack{X_{L} \in \mathcal{L}_{s}^{m \times n} \\\left\|X_{L}\right\|_{\mathrm{F}}=1}}\left\|\mathbf{L} X_{L}\right\|_{\mathrm{F}} \tag{3.8}
\end{equation*}
$$

It is easy to verify that

$$
l(R)= \begin{cases}\left\|\mathbf{L}^{-1}\right\|^{-1}, & 0 \notin \lambda(\mathbf{L}) \tag{3.9}\\ 0, & 0 \in \lambda(\mathbf{L})\end{cases}
$$

where $\left\|\mathbf{L}^{-1}\right\|$ is the subordinate operator norm defined by

$$
\begin{equation*}
\left\|\mathbf{L}^{-1}\right\|=\max _{\substack{Y_{L} \in \mathcal{L}_{s}^{m \times n} \\\left\|Y_{L}\right\|_{\mathrm{F}}=1}}\left\|\mathbf{L}^{-1} Y_{L}\right\|_{\mathrm{F}} \tag{3.10}
\end{equation*}
$$

Therefore, from Theorem 3.1 we get the following
COROLLARY 3.2. Let $l(R)$ be the function defined by (3.8). If R is nonsingular, then

$$
0<l(R) \leq \min _{1 \leq i \leq n_{1}}\left|r_{i i}\right|
$$

where n_{1} is defined by (3.5).
The following result gives a relation between $l(R)$ and $1 /\left\|A^{\dagger}\right\|_{2}$.
Theorem 3.3. Let $A \in \mathcal{R}^{m \times n}$ with $\operatorname{rank} A=n, A=Q R$ be the $Q R$ factorization of A, and let $L, l(R)$ be defined by (2.8), (3.8), respectively. Then

$$
\begin{equation*}
l(R) \geq \frac{1}{\left\|A^{\dagger}\right\|_{2}} \tag{3.11}
\end{equation*}
$$

Proof. By (3.9) and $\left\|A^{\dagger}\right\|_{2}=\left\|R^{-1}\right\|_{2}$, the inequality (3.11) is equivalent to

$$
\begin{equation*}
\left\|\mathbf{L}^{-1}\right\| \leq\left\|R^{-1}\right\|_{2} \tag{3.12}
\end{equation*}
$$

Now we are going to prove (3.12).
Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{R}^{m \times n}$, where

$$
x_{j}=\binom{x_{j}^{(U)}}{x_{j}^{(L)}}, \quad x_{j}^{(U)}=\left(\begin{array}{c}
\xi_{1 j} \\
\vdots \\
\xi_{j j}
\end{array}\right), \quad x_{j}^{(L)}=\left(\begin{array}{c}
\xi_{j+1, j} \\
\vdots \\
\xi_{m j}
\end{array}\right), \quad, \quad, \quad, \quad, \quad, \quad,
$$

where n_{1} is defined by (3.5), and $x_{n}^{(U)}=x_{n}$ if $m=n$. By (1.1)-(1.2) $X_{L}=$ $\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right) \in \mathcal{R}^{m \times n}$, where

$$
x_{j}^{(0)}=\binom{0}{x_{j}^{(L)}}, \quad j=1, \ldots, n_{1}, \quad x_{n}^{(0)}=0 \quad \text { if } m=n .
$$

Let $x=\left(x_{1}^{\mathrm{T}}, \ldots, x_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$, and let

$$
x^{(L)}=\left(x_{1}^{(L)^{\mathrm{T}}}, \ldots, x_{n}^{(L)^{\mathrm{T}}}\right)^{\mathrm{T}}, \quad x^{(U)}=\left(x_{1}^{(U)^{\mathrm{T}}}, \ldots, x_{n}^{(U)^{\mathrm{T}}}\right)^{\mathbf{T}}
$$

Moreover, we use the vectors $y \in \mathcal{R}^{m n}, y^{(L)} \in \mathcal{R}^{m n_{1}-n_{1}\left(n_{1}+1\right) / 2}, y^{(U)} \in \mathcal{R}^{n(n+1) / 2}$ to correspond to $Y \in \mathcal{R}^{m \times n}$. Then the relations

$$
Y=X R, \quad Y_{L}=\mathbf{L} X_{L} \equiv \operatorname{low}\left(X_{L} R\right)
$$

are equivalent to

$$
\begin{equation*}
y=L x, \quad y^{(L)}=L^{(L)} x^{(L)} \tag{3.13}
\end{equation*}
$$

respectively, when L and $L^{(L)}$ are expressed by (3.2)-(3.3) and (3.7). From the first relation of (3.13)

$$
\frac{\partial y_{k}}{\partial x_{j}}= \begin{cases}0, & k<j \\
\left(\begin{array}{cc}
r_{j j} I^{(j)} & 0 \\
0 & r_{i j} I^{(m-j)}
\end{array}\right), & k=j \\
\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right), & k>j\end{cases}
$$

Thus, we have $\partial y_{k}^{(L)} / \partial x_{j}^{(U)}=0 \forall k, j$, and

$$
\binom{y^{(L)}}{y^{(U)}}=\left(\begin{array}{cc}
L^{(L)} & 0 \\
* & *
\end{array}\right)\binom{x^{(L)}}{x^{(U)}} .
$$

This means that there is a permutation matrix P such that

$$
P\left(R^{\mathrm{T}} \otimes I^{(m)}\right) P^{\mathrm{T}}=\left(\begin{array}{cc}
L^{(L)} & 0 \\
* & *
\end{array}\right)
$$

i.e.,

$$
P\left(R^{\mathrm{T}} \otimes I^{(m)}\right)^{-1} P^{\mathrm{T}}=\left(\begin{array}{cc}
L^{(L)^{-1}} & 0 \tag{3.14}\\
* & *
\end{array}\right)
$$

Observe that from the second relation of (3.13) $x^{(L)}=L^{(L)^{-1}} y^{(L)}$; hence by the definition (3.10) and (3.14) we have

$$
\left\|\mathbf{L}^{-1}\right\|=\left\|L^{(L)^{-1}}\right\|_{2} \leq\left\|\left(R^{\mathrm{T}} \otimes I^{(m)}\right)^{-1}\right\|_{2}=\left\|R^{-1}\right\|_{2}
$$

The inequality (3.12) is proved.
The following result shows that the function $l(R)$ is insensitive to perturbations of R.

ThEOREM 3.4. Let $R, M \in \mathcal{U}^{n \times n}$. Then

$$
\begin{equation*}
l(R)-\|M\|_{2} \leq l(R+M) \leq l(R)+\|M\|_{2} . \tag{3.15}
\end{equation*}
$$

Proof. By the definition (3.8), we have

$$
\begin{aligned}
l(R) & =\min \left\{\left\|\operatorname{low}\left(X_{L} R\right)\right\|_{\mathrm{F}}: X_{L} \in \mathcal{L}_{\mathrm{s}}^{m \times n},\left\|X_{L}\right\|_{\mathrm{F}}=1\right\} \\
& =\left\|\operatorname{low}\left(X_{L}^{*} R\right)\right\|_{\mathrm{F}}, \quad X_{L}^{*} \in \mathcal{L}_{\mathrm{s}}^{m \times n}, \quad\left\|X_{L}^{*}\right\|_{\mathrm{F}}=1
\end{aligned}
$$

and

$$
\begin{aligned}
l(R+M) & =\min \left\{\left\|\operatorname{low}\left(X_{L}(R+M)\right)\right\|_{\mathrm{F}}: X_{L} \in \mathcal{L}_{\mathrm{s}}^{m \times n},\left\|X_{L}\right\|_{\mathrm{F}}=1\right\} \\
& \leq\left\|\operatorname{low}\left(X_{L}^{*}(R+M)\right)\right\|_{\mathrm{F}} \\
& \leq\left\|\operatorname{low}\left(X_{L}^{*} R\right)\right\|_{\mathrm{F}}+\left\|\operatorname{low}\left(X_{L}^{*} M\right)\right\|_{\mathrm{F}} \\
& \leq l(R)+\|M\|_{2}
\end{aligned}
$$

Similarly, we can prove the first inequality of (3.15).
Let

$$
X=\binom{X^{(1)}}{X^{(2)}} \in \mathcal{R}^{m \times n} \quad \text { with } \quad \operatorname{rank} X=n
$$

where $X^{(1)} \in \mathcal{R}^{n \times n}$. Define the operator $\mathbf{L}_{1}: \mathcal{L}_{\mathrm{s}}^{n \times n} \rightarrow \mathcal{L}_{\mathrm{s}}^{n \times n}$ by

$$
\begin{equation*}
\mathbf{L}_{1} X_{L}^{(1)}=\operatorname{low}\left(X_{L}^{(1)} R\right), \quad X_{L}^{(1)} \in \mathcal{L}_{\mathrm{s}}^{n \times n} \tag{3.16}
\end{equation*}
$$

and define the function $l_{1}(R)$ by

$$
\begin{equation*}
l_{1}(R)=\inf _{\substack{X_{L}^{(1)} \in \mathcal{L}_{\mathrm{s}}^{n \times n} \\\left\|X_{L}^{(1)}\right\|_{\mathrm{F}}=1}}\left\|\mathbf{L}_{1} X_{L}^{(1)}\right\|_{\mathrm{F}} . \tag{3.17}
\end{equation*}
$$

Observe that \mathbf{L}_{1} is just \mathbf{L} for the case $m=n$; hence the operator \mathbf{L}_{1} and the function $l_{1}(R)$ have the same properties as \mathbf{L} and $l(R)$ stated by Theorem 3.1, Corollary 3.2, and Theorems 3.3-3.4.

4. PERTURBATION THEOREMS (I)

Now we are going to discuss the solution X to the equations (2.9)-(2.10) under the assumption that all the diagonal elements of R are positive.

By the assumption and Theorem 3.1, the operators \mathbf{L} and $\mathbf{L}_{\mathbf{1}}$ defined by (2.8) and (3.16) are nonsingular. Moreover, from (2.4)-(2.5)

$$
X_{L}^{(1)}=\mathbf{L}_{1}^{-1}\left[\operatorname{low}\left(\tilde{Q}^{T} E\right)\right] .
$$

Thus, the equations (2.9)-(2.10) can be rewritten as a continuous mapping $\Phi: \mathcal{R}^{m \times n} \rightarrow \mathcal{R}^{m \times n}$ expressed by

$$
\begin{aligned}
& X_{L}=\mathbf{L}^{-1}[\operatorname{low}(\widetilde{E})] \\
& X_{D}=\binom{\frac{1}{2} \operatorname{diag}\left(X^{\mathrm{T}} X\right)}{0}, \\
& X_{U}=\binom{\operatorname{up}\left(X^{\mathrm{T}} X\right)-\mathbf{L}_{1}^{-1}\left[\operatorname{low}\left(\widetilde{Q}^{\mathrm{T}} E\right)\right]}{0},
\end{aligned}
$$

or simply

$$
\begin{equation*}
X=\phi(X)+G, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
\phi(X) & =\binom{\frac{1}{2} \operatorname{diag}\left(X^{\mathrm{T}} X\right)+\operatorname{up}\left(X^{\mathrm{T}} X\right)}{0}, \\
G & =\mathbf{L}^{-1}[\operatorname{low}(\widetilde{E})]-\binom{\left(\mathbf{L}_{1}^{-1}\left[\operatorname{low}\left(\widetilde{Q}^{\mathrm{T}} E\right)\right]\right)^{\mathrm{T}}}{0} . \tag{4.2}
\end{align*}
$$

Let

$$
\begin{equation*}
\eta=\frac{\sqrt{5}}{2}, \quad \gamma=\sqrt{\left(\frac{\|E\|_{\mathrm{F}}}{l(R)}\right)^{2}+\left(\frac{\left\|P_{\widetilde{A}} E\right\|_{\mathrm{F}}}{l_{1}(R)}\right)^{2}} \tag{4.3}
\end{equation*}
$$

where $l(R)$ and $l_{1}(R)$ are the functions defined by (3.8) and (3.17), respectively. One can verify the following inequalities:
(1) $\|\phi(X)\|_{\mathrm{F}} \leq \eta\|X\|_{\mathrm{F}}^{2}$,
(2) $\|\phi(X)-\phi(Y)\|_{F} \leq 2 \eta \max \left\{\|X\|_{F},\|Y\|_{F}\right\}\|X-Y\|_{F}$,
(3) $\|G\|_{F} \leq \gamma$.

Hence, by Stewart [5, Theorem 3.1], if $4 \gamma \eta<1$, then the mapping Φ expressed by (4.1)-(4.2) has a unique fixed point X in the neighborhood

$$
\mathcal{S}(0 ; 2 \gamma) \equiv\left\{X \in \mathcal{R}^{m \times n}:\|X\|_{\mathrm{F}}<2 \gamma\right\}
$$

of the origin $\mathcal{R}^{m \times n}$, and

$$
\|X\|_{\mathrm{F}} \leq \frac{2 \gamma}{1+\sqrt{1-4 \gamma \eta}}
$$

Let

$$
\begin{equation*}
\epsilon_{l, l_{1}} \equiv \frac{\gamma}{\sqrt{2}}=\sqrt{\frac{1}{2}\left[\left(\frac{\|E\|_{\mathrm{F}}}{l(R)}\right)^{2}+\left(\frac{\left\|P_{\widetilde{A}} E\right\|_{\mathrm{F}}}{l_{1}(R)}\right)^{2}\right]} \tag{4.4}
\end{equation*}
$$

Then the condition $4 \gamma \eta<1$ can be rewritten as

$$
\begin{equation*}
2 \sqrt{10} \epsilon_{l, l_{1}}<1 \tag{4.5}
\end{equation*}
$$

Observe that from (2.4) and (2.2)

$$
\|X\|_{\mathrm{F}}=\|W\|_{\mathrm{F}}=\|\widetilde{Q}-Q\|_{\mathrm{F}}
$$

Hence, we get the following perturbation theorem.
Theorem 4.1. Let $A \in \mathcal{R}^{m \times n}$ with $\operatorname{rank} A=n, A=Q R$ be the $Q R$ factorization of A, and $A=A+E$, and let ϵ_{2} and $\epsilon_{l, l_{1}}$ be defined by (2.1) and (4.4), respectively. If $\epsilon_{2}<\underset{\sim}{1}$ and $\epsilon_{l, l_{1}}$ satisfies the condition (4.5), then $\operatorname{rank} \widetilde{A}=n$ and the $Q R$ factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$ satisfies

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & \leq \frac{2 \sqrt{2} \epsilon_{l, l_{1}}}{1+\sqrt{1-2 \sqrt{10} \epsilon_{l, l_{1}}}} \equiv b\left(\epsilon_{l, l_{1}}\right) \\
& =\sqrt{2} \epsilon_{l, l_{1}}+\sqrt{5} \epsilon_{l, l_{1}}^{3}+5 \sqrt{2} \epsilon_{l, l_{1}}^{3}+O\left(\epsilon_{l, l_{1}}^{4}\right) \tag{4.6}
\end{align*}
$$

By Theorem 3.3

$$
\begin{equation*}
\epsilon_{l, l_{1}} \leq\left\|A^{\dagger}\right\|_{2} \sqrt{\frac{\|E\|_{\mathrm{F}}^{2}+\left\|P_{\widetilde{A}} E\right\|_{\mathrm{F}}^{2}}{2}} \equiv \tilde{\epsilon} \tag{4.7}
\end{equation*}
$$

Moreover, we have

$$
2 \sqrt{10} \widetilde{\epsilon} \geq 2 \sqrt{5}\left\|A^{\dagger}\right\|_{2}\|E\|_{\mathrm{F}} \geq\left\|A^{\dagger}\right\|_{2}\|E\|_{2}=\epsilon_{2}
$$

Hence, Theorem 4.1 gives the following
Corollary 4.2. Let A, Q, \tilde{A}, E be as in Theorem 4.1, and let $\widetilde{\epsilon}$ be defined by (4.7). If

$$
2 \sqrt{10} \widetilde{\epsilon}<1
$$

then $\operatorname{rank} \widetilde{A}=n$, and the $Q R$ factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$ satisfies

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & \leq \frac{2 \sqrt{2} \widetilde{\epsilon}}{1+\sqrt{1-2 \sqrt{10} \widetilde{\epsilon}}} \equiv b(\widetilde{\epsilon}) \\
& =\sqrt{2} \widetilde{\epsilon}+\sqrt{5} \widetilde{\epsilon}^{2}+5 \sqrt{2} \widetilde{\epsilon}^{3}+O\left(\widetilde{\epsilon}^{4}\right) \tag{4.8}
\end{align*}
$$

5. PERTURBATION THEOREMS (II)

Let $A \in \mathcal{R}^{m \times n}$ with $\operatorname{rank}(A)=n, A=Q R$ be the $Q R$ factorization of $A, A(t)=$ $A+t E, 0 \leq t \leq 1, \widetilde{A}=A(1)$, and let ϵ_{2} be defined by (2.1). It is known that if $\epsilon_{2}<1$, then $\operatorname{rank} A(t)=n$, and $A(t)$ has the unique $Q R$ factorization

$$
\begin{equation*}
A(t)=Q(t) R(t) \tag{5.1}
\end{equation*}
$$

for each $t \in[0,1]$, where $R(t) \in \mathcal{R}^{n \times n}$ is a upper triangular matrix with positive diagonal elements, and $Q(t) \in \mathcal{R}^{m \times n}$ satisfy

$$
\begin{equation*}
Q(t)^{\mathrm{T}} Q(t)=I \tag{5.2}
\end{equation*}
$$

In this section we shall apply elementary calculus $[1,8]$ to derive perturbation bounds of the orthogonal factor in the $Q R$ factorization of A. Differentiating (5.1) and (5.2), we get

$$
\begin{equation*}
E \mathrm{dt}=\mathrm{d} Q(t) R(t)+Q(t) \mathrm{d} R(t) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} Q(t)^{\mathrm{T}} Q(t)+Q(t)^{\mathrm{T}} \mathrm{~d} Q(t)=0 \tag{5.4}
\end{equation*}
$$

Take $P(t) \in \mathcal{R}^{m \times(m-n)}$ so that $U(t)=(Q(t), P(t))$ is orthogonal, and let

$$
\begin{array}{r}
\delta A(t)=U(t)^{\mathrm{T}} E \mathrm{dt}, \quad \delta X(t)=U(t)^{\mathrm{T}} \mathrm{~d} Q(t)=\binom{\delta X^{(1)}(t)}{\delta X^{(2)}(t)}, \\
\delta X^{(1)}(t) \in \mathcal{R}^{n \times n} \tag{5.5}
\end{array}
$$

Then (5.3) and (5.4) can be rewritten as

$$
\begin{equation*}
\delta X(t)=\delta A(t) R(t)^{-1}-\binom{\mathrm{d} R(t) R(t)^{-1}}{0} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta X^{(1)}(t)^{\mathrm{T}}+\delta X^{(1)}(t)=0 \tag{5.7}
\end{equation*}
$$

By (1.1)-(1.2), the matrix $\delta X(t)$ can be split uniquely as

$$
\delta X(t)=\delta X(t)_{L}+\delta X(t)_{D}+\delta X(t)_{U}
$$

Thus, the relation (5.7) implies $\delta X(t)_{D}=0$. Moreover, from (5.5)-(5.7) we get

$$
\delta X(t)_{L}=\operatorname{low}\left(\delta A(t) R(t)^{-1}\right)
$$

and

$$
\begin{align*}
\delta X(t)_{U} & =\binom{\delta X^{(1)}(t)_{U}}{0}=\binom{-\left[\delta X^{(1)}(t)_{L}\right]^{\mathrm{T}}}{0} \\
& =\binom{-\left[\operatorname{low}\left(Q(t)^{\mathrm{T}} E R(t)^{-1}\right)\right]^{\mathrm{T}} \mathrm{~d} t}{0} \tag{5.8}
\end{align*}
$$

Hence,

$$
\begin{align*}
\|\mathrm{d} Q(t)\|_{\mathrm{F}} & =\|\delta X(t)\|_{\mathrm{F}}=\sqrt{\left\|\delta X(t)_{L}\right\|_{\mathrm{F}}^{2}+\left\|\delta X(t)_{U}\right\|_{\mathrm{F}}^{2}} \\
& \leq \sqrt{2}\|E\|_{\mathrm{F}}\left\|R(t)^{-1}\right\|_{2} \mathrm{~d} t=\sqrt{2}\|E\|_{\mathrm{F}}\left\|A(t)^{\dagger}\right\|_{2} \mathrm{~d} t . \tag{5.9}
\end{align*}
$$

Consequently,

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & =\left\|\int_{0}^{1} \mathrm{~d} Q(t)\right\|_{\mathrm{F}} \leq \int_{0}^{1}\|\mathrm{~d} Q(t)\|_{\mathrm{F}} \\
& \leq \sqrt{2}\|E\|_{\mathrm{F}} \int_{0}^{1}\left\|A(t)^{\dagger}\right\|_{2} \mathrm{~d} t=\sqrt{2}\|E\|_{\mathrm{F}} \int_{0}^{1} \frac{\mathrm{~d} t}{\sigma_{n}(t)} \tag{5.10}
\end{align*}
$$

where $\sigma_{n}(t)$ is the smallest singular value of the matrix $A(t)$. Let σ_{n} be the smallest singular value of A. Combining (5.10) with the well-known relation $\sigma_{n}(t) \geq$ $\sigma_{n}-\|E\|_{2} t$, we get

$$
\begin{aligned}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & \leq \sqrt{2}\|E\|_{\mathrm{F}} \int_{0}^{1} \frac{\mathrm{~d} t}{\sigma_{n}-\|E\|_{2} t} \\
& =\frac{\sqrt{2}\|E\|_{\mathrm{F}}}{\|E\|_{2}} \ln \frac{1}{1-\left\|A^{\dagger}\right\|_{2}\|E\|_{2}} \\
& =\sqrt{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}
\end{aligned}
$$

where ϵ_{2} is defined by (2.1), and

$$
\begin{equation*}
\epsilon_{f}=\left\|A^{\dagger}\right\|_{2}\|E\|_{\mathrm{F}}, \quad \omega(\epsilon)=\frac{1}{\epsilon} \ln \frac{1}{1-\epsilon}, \quad 0<\epsilon<1 \tag{5.11}
\end{equation*}
$$

Hence, we have proved the following result.
Theorem 5.1. Let A, Q, \tilde{A}, E be as in Theorem 4.1, and let $\epsilon_{2}, \epsilon_{f}$, and $\omega(\epsilon)$ be defined by (2.1) and (5.11), respectively. If $\epsilon_{2}<1$, then $\operatorname{rank} A=n$, and the $Q R$ factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$ satisfies

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & \leq \sqrt{2} \omega\left(\epsilon_{2}\right) \epsilon_{f} \equiv b_{1}\left(\epsilon_{2}, \epsilon_{f}\right) \\
& =\sqrt{2} \epsilon_{f}+\frac{\sqrt{2}}{2} \epsilon_{2} \epsilon_{f}+\frac{\sqrt{2}}{3} \epsilon_{2}^{2} \epsilon_{f}+O\left(\epsilon_{f}^{4}\right) \\
& \leq \frac{\sqrt{2} \epsilon_{f}}{\sqrt{1-\epsilon_{2}}} \equiv b_{2}\left(\epsilon, \epsilon_{f}\right) \\
& =\sqrt{2} \epsilon_{f}+\sqrt{2} \epsilon_{2} \epsilon_{f}+\sqrt{2} \epsilon_{2}^{2} \epsilon_{f}+O\left(\epsilon_{f}^{4}\right) \tag{5.12}
\end{align*}
$$

We note that the perturbation bound (5.12) can be improved by observing that from (5.8)

$$
\begin{aligned}
\left\|\delta X(t)_{U}\right\|_{\mathrm{F}} & \leq\left\|Q(t)^{\mathrm{T}} E R(t)^{-1} \mathrm{~d} t\right\|_{\mathrm{F}} \leq\left\|R(t)^{-1}\right\|_{2}\left\|Q(t)^{\mathrm{T}} E\right\|_{\mathrm{F}} \mathrm{~d} t \\
& =\left\|A(t)^{\dagger}\right\|_{2}\left\|\left(\int_{0}^{t} \mathrm{~d} Q(\tau)+Q\right)^{\mathrm{T}} E\right\|_{\mathrm{F}} \mathrm{~d} t \\
& \leq\left\|A(t)^{\dagger}\right\|_{2}\left(\|E\|_{2} \int_{0}^{t}\|\mathrm{~d} Q(\tau)\|_{\mathrm{F}}+\left\|P_{A} E\right\|_{\mathrm{F}}\right) \mathrm{d} t .
\end{aligned}
$$

Combining it with

$$
\int_{0}^{t}\|\mathrm{~d} Q(\tau)\|_{\mathrm{F}} \leq \int_{0}^{1}\|\mathrm{~d} Q(\tau)\|_{\mathrm{F}} \leq \sqrt{2} \omega\left(\epsilon_{2}\right) \epsilon_{f} \quad[\sec (5.10)-(5.12)]
$$

we get

$$
\left\|\delta X(t)_{U}\right\|_{\mathrm{F}} \leq\left\|A(t)^{\dagger}\right\|_{2}\left[\sqrt{2}\|E\|_{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}+\left\|P_{A} E\right\|_{\mathrm{F}}\right] \mathrm{d} t
$$

Substituting it into (5.9), we obtain

$$
\begin{aligned}
\|\mathrm{d} Q(t)\|_{\mathrm{F}} & \leq\left\|A(t)^{\dagger}\right\|_{2} \sqrt{\|E\|_{\mathrm{F}}^{2}+\left(\sqrt{2}\|E\|_{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}+\left\|P_{\mathrm{A}} E\right\|_{\mathrm{F}}\right)^{2}} \mathrm{~d} t \\
& \leq\left\|A(t)^{\dagger}\right\|_{2}\left(\sqrt{\|E\|_{\mathrm{F}}^{2}+\left\|P_{A} E\right\|_{\mathrm{F}}^{2}}+\sqrt{2}\|E\|_{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}\right) \mathrm{d} t \\
& =\sqrt{2}\left\|A(t)^{\dagger}\right\|_{2}\left[\left\|A^{\dagger}\right\|_{2}^{-1} \epsilon+\|E\|_{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}\right] \mathrm{d} t
\end{aligned}
$$

where

$$
\begin{equation*}
\epsilon \equiv\left\|A^{\dagger}\right\|_{2} \frac{\sqrt{\|E\|_{F}^{2}+\left\|P_{A} E\right\|_{F}^{2}}}{2} \tag{5.13}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\|\check{Q}-Q\|_{\mathrm{F}} & \leq \int_{0}^{1}\|\mathrm{~d} Q(t)\|_{\mathrm{F}} \\
& \leq \sqrt{2}\left[\left\|A^{\dagger}\right\|_{2}^{-1} \epsilon+\|E\|_{2} \omega\left(\epsilon_{2}\right) \epsilon_{f}\right] \int_{0}^{1}\left\|A(t)^{\dagger}\right\|_{2} \mathrm{~d} t \\
& \leq \sqrt{2} \omega\left(\epsilon_{2}\right)\left[\epsilon+\omega\left(\epsilon_{2}\right) \epsilon_{2} \epsilon_{f}\right]
\end{aligned}
$$

Thus, we have proved the following
Theorem 5.2. Let A, Q, \tilde{A}, E be as in Theorem 4.1, and let $\epsilon_{2}, \epsilon_{f}, \omega(\epsilon), \epsilon$ be defined by (2.1), (5.11), (5.13). If $\epsilon_{2}<1$, then $\operatorname{rank} \widetilde{A}=n$, and the $Q R$ factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$ satisfies

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{\mathrm{F}} & \leq \sqrt{2} \omega\left(\epsilon_{2}\right)\left[\epsilon+\omega\left(\epsilon_{2}\right) \epsilon_{2} \epsilon_{f}\right] \equiv b_{0}\left(\epsilon, \epsilon_{2}, \epsilon_{f}\right) \\
& =\sqrt{2} \epsilon+\frac{\sqrt{2}}{2} \epsilon_{2}\left(\epsilon+2 \epsilon_{f}\right)+\frac{\sqrt{2}}{3} \epsilon_{2}^{2}\left(\epsilon+3 \epsilon_{f}\right)+O\left(\epsilon_{f}^{4}\right) \tag{5.14}
\end{align*}
$$

6. AN EXAMPLE

The following result has been proved in [8]: Let $A, Q, R, \widetilde{A}, E$ be as in Theorem 4.1 , and let $\epsilon_{2}, \epsilon_{f}$ be defined by (2.1), (5.11). If $\epsilon_{2}<1$, then there is a unique $Q R$
factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$, and

$$
\begin{align*}
\|\widetilde{Q}-Q\|_{F} & \leq(1+\sqrt{2}) \omega\left(\epsilon_{2}\right) \epsilon_{f} \equiv \beta_{1}\left(\epsilon_{2}, \epsilon_{f}\right) \\
& \leq \frac{(1+\sqrt{2}) \epsilon_{f}}{1-\epsilon_{2}} \equiv \beta_{2}\left(\epsilon_{2}, \epsilon_{f}\right) . \tag{6.1}
\end{align*}
$$

It is easy to verify that there are the following relations between the upper bounds $b\left(\epsilon_{l, l_{1}}\right), b(\widetilde{\epsilon}), b_{1}\left(\epsilon_{2}, \epsilon_{f}\right)$, and $\beta_{1}\left(\epsilon_{2}, \epsilon_{f}\right)$:

$$
b\left(\epsilon_{l, l_{1}}\right) \leq b(\tilde{\epsilon}), \quad b_{1}\left(\epsilon_{2}, \epsilon_{f}\right) \leq \beta_{1}\left(\epsilon_{2}, \epsilon_{f}\right) .
$$

Moreover, the bound $b_{0}\left(\epsilon, \epsilon_{2}, \epsilon_{f}\right)$ expressed by (5.14) is better than $b_{1}\left(\epsilon_{2}, \epsilon_{f}\right)$ for very small perturbations of A, and by the author's numerical tests the bound $b\left(\epsilon_{l, l_{1}}\right)$ is better than all the others.

Now we give a numerical example.

EXAMPLE 6.1. Let

$$
A=\binom{R}{0}, \quad R=\left(\begin{array}{ccccc}
1 & -2 & 1 & 2 & 3 \\
0 & 2 & 4 & 1 & -5 \\
0 & 0 & 3 & -1 & 2 \\
0 & 0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

and let $\tilde{A}=A+E, E=\tau E_{0}$ with $\tau>0$, and

$$
E_{0}=\left(\begin{array}{rrrrr}
0.2 & -0.5 & 0.3 & 0.1 & 0.4 \\
-0.1 & 0.4 & 0.1 & -0.3 & 0.2 \\
0.5 & 0.7 & -0.2 & 0.1 & 0.6 \\
0.3 & -0.6 & 0.1 & -0.1 & 0.2 \\
0.2 & 0.1 & 0.7 & 0.3 & -0.4 \\
0.4 & 0.8 & -0.2 & 0.1 & 0.3 \\
0.6 & -0.1 & -0.5 & 0.1 & -0.2 \\
0.1 & -0.3 & 0.2 & 0.6 & 0.7
\end{array}\right) .
$$

TABLE 1.

τ	$1.000000 \mathrm{e}-01$	$1.000000 \mathrm{e}-02$	$1.000000 \mathrm{e}-05$	$1.000000 \mathrm{e}-08$		
$\\|E\\|_{\mathrm{F}}$	$2.431049 \mathrm{e}-01$	$2.431049 \mathrm{e}-02$	$2.431049 \mathrm{e}-05$	$2.431049 \mathrm{e}-08$		
$\\|\widetilde{Q}-Q\\|_{\mathrm{F}}$	$3.355805 \mathrm{e}-01$	$3.162668 \mathrm{e}-02$	$3.138194 \mathrm{e}-05$	$3.138170 \mathrm{e}-08$		
$b\left(\epsilon_{l_{l, l}}\right)$		$9.834899 \mathrm{e}-02$	$8.765590 \mathrm{e}-05$	$8.764743 \mathrm{e}-08$		
$b(\widetilde{\epsilon})$		$1.037806 \mathrm{e}-01$	$9.189167 \mathrm{e}-05$	$9.188238 \mathrm{e}-08$		
$b_{0}\left(\epsilon, \epsilon_{2}, \epsilon_{f}\right)$	$2.104630 \mathrm{e}+00$	$9.913509 \mathrm{e}-02$	$9.188933 \mathrm{e}-05$	$9.188238 \mathrm{e}-08$		
$b_{1}\left(\epsilon_{2}, \epsilon_{f}\right)$	$1.397628 \mathrm{e}+00$	$1.065221 \mathrm{e}-01$	$1.040365 \mathrm{e}-04$	$1.040340 \mathrm{e}-07$		
$b_{2}\left(\epsilon_{2}, \epsilon_{f}\right)$	$1.939075 \mathrm{e}+00$	$1.090902 \mathrm{e}-01$	$1.040389 \mathrm{e}-04$	$1.040341 \mathrm{e}-07$		
$\beta_{1}\left(\epsilon_{2}, \epsilon_{f}\right)$	$2.385901 \mathrm{e}+00$	$1.818447 \mathrm{e}-01$	$1.776013 \mathrm{e}-04$	$1.775972 \mathrm{e}-07$		
$\beta_{2}\left(\epsilon_{2}, \epsilon_{f}\right)$	$3.310208 \mathrm{e}+00$	$1.862287 \mathrm{e}-01$	$1.776055 \mathrm{e}-04$	$1.775972 \mathrm{e}-07$		

Obviously, A has the $Q R$ factorization $A=Q R$ with

$$
Q=\binom{I}{0} \in \mathcal{R}^{8 \times 5}
$$

By MATLAB we get the $Q R$ factorization $\widetilde{A}=\widetilde{Q} \widetilde{R}$ of \widetilde{A} for small τ. Some numerical results by using MATLAB are listed in Table 1, where the scalars $\epsilon_{2}, \epsilon_{l, l_{1}}, \widetilde{\epsilon}, \epsilon_{f}, \epsilon$ are defined by (2.1), (4.4), (4.7), (5.11), (5.13), and the bounds $b\left(\epsilon_{l, l_{1}}\right), b(\widetilde{\epsilon}), b_{i}\left(\epsilon_{2}, \epsilon_{f}\right)(i=1,2), b_{0}\left(\epsilon, \epsilon_{2}, \epsilon_{f}\right), \beta_{i}\left(\epsilon_{2}, \epsilon_{f}\right)(i=1,2)$ are defined by (4.6), (4.8), (5.12), (5.14), (6.1), respectively.

I am grateful to the referee for helpful comments and suggestions.

REFERENCES

1 A. Barrlund, How Integrals Can Be Used to Derive Matrix Perturbation Bounds, Report UMINF-92.11, ISSN-0348-0542, Univ. of Umeå, 1992.
2 R. Bhatia and Kalyan Mukherjea, Variation of the unitary part of a matrix, in SIMAX, to appear.
3 G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins U.P., Baltimore, 1989.
4 M. M. Konstantinov, P. Hr. Petkov, and N. D. Christov, Non-local perturbation analysis of the Schur system of a matrix, SIAM J. Matrix Anal. Appl., submitted for publication.
5 G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15:727-764 (1973).
6 G. W. Stewart, Perturbation bounds for the $Q R$ factorization of a matrix, SIAM J. Numer, Anal. 14:509-518 (1977).

7 G. W. Stewart, On the Perturbation of $L U$, Cholesky, and $Q R$ Factorizations, Technical Report TR-92-24, TR-2848, Dept. of Computer Science, Univ of Maryland, College Park, 1992.
8 J.-G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT 31:341352 (1991).
9 J.-G. Sun, Componentwise perturbation bounds for some matrix decompositions, $B I T$ 32:702-714 (1992).

Received 26 October 1992; final manuscript accepted 1 April 1993

[^0]: *This subject was supported by the Swedish Natural Science Research Council under Contract F-FU 6952-300 and the Institute of Information Processing, University of Umea.

