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Interaction of cytochrome cwith mitochondrial cardiolipin converting this electron transfer protein into perox-
idase is accepted to play an essential role in apoptosis. Cytochrome c/cardiolipin peroxidase activity was found
here to cause leakage of carboxyfluorescein, sulforhodamine B and 3-kDa (but not 10-kDa) fluorescent dextran
from liposomes. Amarked decrease in the amplitude of the autocorrelation functionwas detectedwith a fluores-
cence correlation spectroscopy setup upon incubation of dye-loaded cardiolipin-containing liposomeswith cyto-
chrome c and H2O2, thereby showing release of fluorescent markers from liposomes. The cytochrome c/H2O2-
induced liposome leakagewas suppressed upon increasing the ionic strength, in contrast to the leakage provoked
by Fe/ascorbate, suggesting that the binding of cyt c to negatively-chargedmembranes was required for the per-
meabilization process. The cyt c/H2O2-induced liposome leakage was abolished by cyanide presumably compet-
ing with H2O2 for coordination with the central iron atom of the heme in cyt c. The cytochrome c/H2O2

permeabilization activitywas substantially diminishedby antioxidants (trolox, butylhydroxytoluene andquerce-
tin) and was precluded if fully saturated tetramyristoyl-cardiolipin was substituted for bovine heart cardiolipin.
These data favor the involvement of oxidized cardiolipin molecules in membrane permeabilization resulting
from cytochrome c/cardiolipin peroxidase activity. In agreementwith previous observations, high concentrations
of cyt c induced liposome leakage in the absence of H2O2, however this process was not sensitive to antioxidants
and cyanide suggesting direct membrane poration by the protein without the involvement of lipid peroxidation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Peroxidation of membrane lipids [1–3] has long been considered as
one of the harmful consequences of oxidative stress in living cells, man-
ifesting itself, in particular, in perturbing the barrier function of cell
membranes. In support of this common idea, experiments with model
lipid membranes – planar bilayers and liposomes – have shown that
lipid peroxidation results in augmented membrane permeability
[4–17]. On the other hand, mechanistic studies of apoptosis have point-
ed to a key role of cardiolipin peroxidation in the process of cytochrome
c (cyt c) release from mitochondria into cytosol [18–21]. Intriguingly,
cardiolipin peroxidation has appeared to be catalyzed by cyt c [19,
22–24], the peroxidase activity of which [25–32] is dramatically
enhanced upon binding to cardiolipin [19,33–35], partial proteolysis
rescein;SRB,sulforhodamineB;
iolipin; TMCL, tetramyristoyl-
HT, butylated hydroxytoluene;
correlation spectroscopy; G(τ),
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[26,36], denaturation [31], dimerization [37], tyrosine nitration [38],
methionine (met80) oxidation [39,40] and residues 26 or 41 mutation
[41–43]. Induction of lipid peroxidation by cyt c has also been reported
for other unsaturated lipids [44–49].

In view of the above relationship between lipid peroxidation and
membrane permeability, peroxidase activity of cyt c/cardiolipin
complex may imply its propensity to permeabilize lipid membrane in
the presence of hydrogen peroxide. Of note, cyt c by itself is also able
to induce ion permeability of liposomal [50] and planar bilayer [51]
membranes and even leakage of fluorescent dextran and carboxyfluo-
rescein from liposomes, the latter being more pronounced with
cardiolipin-containing vesicles [52]. Of relevance to the issue are the
data on the cyt c-induced formation of non-bilayer structures [53] and
morphological transitions [54] in cardiolipin-containing model mem-
branes, as well as permeation of apocytochrome c across lipid bilayers
[55] along with its ability to induce dye leakage from liposomes [56].
Previously, induction of electrical current across planar bilayer lipid
membrane formed from the mixture of soybean phosphatidylcholine
and tetraoleoyl-cardiolipinwas reported upon the addition of hydrogen
peroxide in the presence of cyt c [57,58]. To study in detail the
membrane-permeabilizing activity of cyt c promoted by H2O2, we ap-
plied here a fluorescence dequenching assay and a fluorescence
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correlation spectroscopy (FCS) approach using dye-loaded large
unilamellar vesicles of different lipid compositions. A combination of
cyt c with hydrogen peroxide was found to induce dye release from li-
posomes, provided that both cardiolipin and bulk phosphatidylcholine
components of liposomal membranes contained unsaturated acyl tails.
Together with sensitivity to antioxidants, these results allowed to relate
the cyt c/H2O2-induced dye leakage to formation ofmembrane structur-
al defects involving oxidized cardiolipin molecules.

2. Materials and methods

2.1. Materials

Most chemicals including equine heart cytochrome c, bovine heart
cardiolipin (CL), sulforhodamine B (SRB), 5(6)-carboxyfluorescein
(CF), butylated hydroxytoluene (BHT), trolox and quercetin were from
Sigma; 1,2-Diphytanoyl-sn-Glycero-3-Phosphocholine (DPhPC) and
tetramyristoyl-cardiolipin (TMCL) were from Avanti Polar Lipids
(Alabaster, AL).

2.2. Preparation of liposomes

Dye-loaded liposomeswere prepared by evaporation under a stream
of nitrogen of a 2% solution of a mixture of lipids in chloroform followed
by hydration with a buffer solution containing appropriate fluorescent
marker. Four different lipid mixtures were used: 1) PC, 5 mg soybean
phosphatidylcholine (Sigma, Type II-S), 2) PC/CL, 4 mg soybean phos-
phatidylcholine and 1 mg bovine heart cardiolipin, 3) PC/TMCL, 4 mg
soybean phosphatidylcholine and 1 mg tetramyristoyl-cardiolipin,
4) DPhPC/CL, 4 mg diphytanoylphosphatidylcholine and 1 mg bovine
heart cardiolipin. Four different marker solutions (0.5 ml each) were
used: 1) 100 mM CF adjusted to pH about 8 by Tris, 2) 1 mM SRB in
100 mM KCl, 10 mM Tris, 10 mM MES, pH 7.4, 3) 3 mg/ml rhodamine-
labeled 3-kDa dextran in the same buffer, and 4) 10 mg/ml
rhodamine-labeled 10-kDa dextran in the same buffer. The mixture
was vortexed, passed through several cycles of freezing and thawing,
and extruded through 0.1-μm pore size Nucleopore polycarbonate
membranes using an Avanti Mini-Extruder. The unbound marker was
then removed by passage through a Sephadex G-50 coarse column
(for SRB) or through a Sephadex G-150 coarse column with a buffer so-
lution containing 100 mM KCl, 10 mM Tris, 10 mM MES, and pH 7.4.

2.3. Fluorescence dequenching assay

Fluorescence of liposomes loadedwith 100mMCFwasmonitored at
520 nm (excitation at 490 nm) with a Panorama Fluorat 02 spectroflu-
orimeter (Lumex, Russia). The extent of CF efflux was calculated as (Ft
− F0) / (F100− F0), where F0 and Ft represent the initial fluorescence in-
tensity and the fluorescence intensity at the time t, and F100 is the fluo-
rescence intensity after complete disruption of liposomes by addition of
the detergent Triton-X100 (final concentration, 0.1% w/w).

2.4. Fluorescence correlation spectroscopy

The home-made setup was described previously [59]. Briefly, fluo-
rescence excitation and detection utilized a Nd:YAG solid state laser
with a 532-nm beam attached to an Olympus IMT-2 epifluorescent
inverted microscope equipped with a 40×, NA 1.2 water immersion ob-
jective (Carl Zeiss, Jena, Germany). The fluorescence light passed
through an appropriate dichroic beam splitter and a long-pass filter
and was imaged onto a 50-μm core fiber coupled to an avalanche pho-
todiode (SPCM-AQR-13-FC, PerkinElmer Optoelectronics, Vaudreuil,
Quebec, Canada). The signal from an output was sent to a PC using a
fast interface card (Flex02-01D/C, Correlator.com, Bridgewater, NJ).
The data acquisition time was 30 s. The fluorescence was recorded
from the confocal volume located at about 50 μm above the coverslip
surface with 50 μl of the buffer solution added. Most of the data were
collected under the conditions of stirring a suspension by a paddle-
shaped 3-mm plastic bar rotated at 600 rpm. To calibrate the setup,
we recorded the fluorescence autocorrelation function of Rhodamine
6G solution. Assuming the diffusion coefficient of the dye to be 2.5
× 10−6 cm2/s, the value of the confocal radiusω=0.42 μmwas obtain-
ed. The correlated fluorescence emission signals were fitted to the
three-dimensional autocorrelation function [60,61]:

G τð Þ ¼ 1
N

1
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with τD being the characteristic correlation time during which a mole-
cule resides in the observation volume of radius ω and length z0, given
by τD=ω2/4D, where D is the diffusion coefficient, N is themean num-
ber of fluorescent particles in the confocal volume. The amplitude of the
autocorrelation function is inversely proportional to the number offluo-
rescent particles (N = 1/G(τ → 0)), but is independent of the fluores-
cence intensity of a single particle (in a system of identical particles)
and therefore does not depend on the number of fluorophores per ves-
icle. Particles can be anyfluorescent “point objects” in comparison to the
dimension of the observation volume (i.e. about 1 μm). Therefore, parti-
cles can be singlemolecules of dye (i.e. SRB), as well as liposomes carry-
ing different numbers of dye molecules. Initially (before the leakage
induction) the system has a limited number of particles per observation
volume comprising predominantly several liposomes loaded with the
dye. After the leakage, the number of particles increases tremendously,
because every liposomal particle produces thousands of particles of free
dye leading to a significant decrease in the parameter G(τ → 0).

3. Results and discussion

3.1. Cyt c/H2O2-induced leakage of carboxyfluorescein from liposomes

Fig. 1A illustrates liposome leakage induced by cyt c and H2O2, as
monitored by release of thefluorophore carboxyfluorescein encapsulat-
ed in liposomes at a self-quenching concentration [62], whichmanifest-
ed itself in an increase of CF fluorescence. It is seen that 100 nM cyt c in
combination with 1.5 mM H2O2 caused leakage of CF entrapped in
cardiolipin-containing liposomes at low (curve 2), but not at high
(100 mM KCl) ionic strength (curve 6). Of note, the H2O2-induced
change in CF fluorescence depended non-monotonically on cyt c con-
centration (Fig. 1B): the increase in fluorescence became smaller at
1 μMcyt c (curve 5),whereas at higher cyt c concentrations the addition
of H2O2 elicited even a decrease in CF fluorescence (curve 6). Earlier the
cyt c-dependent quenching of fluorescence and the corresponding ab-
sorbance loss associated with oxidative damage were observed with
the cyanine dye diS-c3-(5) [63]. Therefore, the cyt c/H2O2-induced re-
duction of CF fluorescence was most likely due to destruction of CF
caused by cyt c-mediated lipid peroxidation. This assumption is sup-
ported by the fact that CF itself has been shown to serve as a substrate
of a peroxidase [64]. Oxidative instability of CFwas also observed previ-
ously upon photodynamically induced leakage from liposomes [16].

Thus, we found significant stimulation of cyt c-induced carboxyfluo-
rescein leakage from liposomes by hydrogen peroxide. However, a quan-
titative study of cyt c/cardiolipin peroxidase effect on the fluorescence of
liposomes loadedwith CF is hampered by oxidative instability of this dye.

3.2. FCS study of cyt c/H2O2-induced liposome leakage

In recent publications [16,65–67], permeability of vesicle mem-
branes to fluorescent dyes has been studied by FCS, the approach
which does not require loading of liposomes with dyes at very high,
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Fig. 1.A. Effect of cytochrome c andH2O2 on carboxyfluorescein leakage (α denotes the ex-
tent of the CF leakage) from liposomes composed of PC/CL (curves 2, 4, 5, 6) or PC/TMCL
(curve 3). The concentration of cyt c was 100 nM, the concentration of H2O2 — 1.5 mM.
B. Changes in fluorescence of CF-loaded PC/CL liposomes induced by the addition of
H2O2 at different concentrations of cytochrome c. Curve 1, no additions; curve 2, 1.5 mM
H2O2; curve 3, cyt c 50 nM and 1.5 mM H2O2; curve 4, cyt c 100 nM and 1.5 mM H2O2;
curve 5, cyt c 1 μM and 1.5 mM H2O2; curve 6, cyt c 10 μM and 1.5 mM H2O2. The sucrose
buffer contained 200 mM sucrose, 10 mM Tris, 10 mM MES, pH 7.4. The KCl buffer
contained 100 mM KCl, 10 mM Tris, 10 mMMES, pH 7.4. Lipid concentration, 10 μg/ml.
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contained 100 mM KCl, 10 mM Tris, 10 mM MES, pH 7.4. Lipid concentration, 2 μg/ml.
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self-quenching concentrations. Herewe studied the effect of a combina-
tion of H2O2 and cyt c on the fluorescence intensity autocorrelation
function (G(τ)) of the water-soluble dye sulforhodamine B encapsulat-
ed in cardiolipin-containing liposomes (Fig. 2A). Importantly, this fluo-
rescent dye has been shown to be resistant to oxidative damage [16].
According to [60,61], the amplitude of G(τ) in the limit τ → 0 is deter-
mined by the reciprocal of a mean number (N) of fluorescent particles
in the observation volume. In dye-leakage experiments, N comprises
dye-loaded liposomes and free dye molecules released from liposomes.
To measure G(τ → 0) more precisely, we performed FCS experiments
under stirring conditions [59]. As seen from Fig. 2A, theG(τ→ 0) ampli-
tude of SRB-loaded cardiolipin-containing liposomesmeasured after in-
cubation with H2O2 alone (curve 2) did not differ from the control level
(curve 1). Incubation of SRB-loaded liposomes in the presence of cyt c led
to a decrease in theG(τ→0) amplitude (curve 3),whichwasmuchmore
pronounced if cyt cwas combined with H2O2 (curve 4). Disruption of li-
posomes by the addition of TritonX-100 resulted in a drop of G(τ→ 0) to
nearly zero (curve 5). The reduction of theG(τ→ 0) amplitude apparent-
ly reflected an increase in the number of fluorescent particles due to SRB
release from liposomes. Of note, the contribution of different fluorescent
species (here dye-loaded liposomes and free dye molecules released
from liposomes) to G(τ→ 0) is proportional to the square of their bright-
ness [65,66]. With cardiolipin-lacking liposomes, no sizeable changes in
the G(τ → 0) amplitude was detected upon incubation with cyt c and
H2O2 (Fig. 2A, curve 6).

Fig. 2B displays cyt c concentration dependences of the extent of li-
posome leakage α after 30-min incubation of liposomes with cyt c cal-
culated from the Eq. (2) (see Appendix A):

α tð Þ ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt τ→0ð Þ
G0 τ→0ð Þ

s
ð2Þ

where G0(τ→ 0) and Gt(τ→ 0) represent G(τ) in the limit τ→ 0 at the
moment of cyt c addition (zero time) and t min after the addition, re-
spectively. It is seen that H2O2markedly enhanced the dye-releasing ef-
fect of cyt c.

The non-linear profiles of the concentration dependence in Fig. 2B
suggest the involvement of the interaction of cyt c molecules with
each other in the permeabilization process. It is relevant that cyt c olig-
omerization has recently been shown to promote its binding to
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negatively charged lipid membranes [68] and facilitate the induction of
its peroxidase activity [37].

3.3. Comparison of cyt c/H2O2-induced and Fe/ascorbate-induced liposome
leakage

To test specificity of the cyt c/H2O2 permeabilizing activity, we com-
pared its sensitivity to cyanide (known to bind the cytochrome heme
group), a ferrous chelator and ionic strength (Fig. 3A) with that of the
Fe/ascorbate-induced membrane permeabilization (Fig. 3B). Similar to
the effect of KCNon cyt c-dependent lipid peroxidation described earlier
[28,46,47,69], the cyt c/H2O2-induced SRB release from liposomes was
prevented by cyanide (Fig. 3A), whereas the Fe/ascorbate-provoked
SRB release was completely insensitive to it (Fig. 3B). The free iron che-
lator EDTA had no effect on the cyt c/H2O2-induced liposome leakage
(Fig. 3A), but inhibited the Fe/ascorbate-induced leakage (Fig. 3B). In
line with the data on the ionic strength effect on cyt c binding to
cardiolipin-containing lipid bilayers and monolayers [33,34,51,70–76],
supplementing the medium with 100 mM KCl suppressed the effect of
cyt c and H2O2 on G(τ → 0) (Fig. 3A), which indicated that the mem-
brane binding of cyt c is a key step in the cyt c/H2O2 permeabilizing
activity. By contrast, a drop in the G(τ → 0) amplitude caused by the
Fe/ascorbate addition did not change upon increasing the ionic strength
(Fig. 3B). These data excluded the possibility that the cyt c/H2O2-
induced SRB release from liposomes was a result of heme decomposi-
tion by H2O2.

Fig. 4 shows the dependence of the cyt c/H2O2-induced SRB
release from liposomes on the concentration of NaCN. The measure-
ments were carried out after 30-min incubation in the presence of cyt
c/H2O2. The inhibiting effect of cyanide could be related to CN binding
to the heme group of cyt c. Following [69], we believe that cyt c with
the CN coordinated to the central Fe atom of the heme is unable to per-
form peroxidative activity, presumably because of the involvement of
the Fe atom of the heme in the binding of H2O2 to cyt c. The pattern of
the dependence of the cyt c/H2O2-induced SRB release on the cyanide
concentration could be associated with the protein heterogeneity re-
garding the depth of heme insertion into the lipid bilayer, which results
in variation of heme accessibility to cyanide.

3.4. Dependence of cyt c/H2O2-induced liposome leakage on lipid
composition

Time courses of SRB leakage induced by cyt c and H2O2 were mea-
sured for liposomes of different lipid compositions (Fig. 5). It appeared
that either substitution of fully saturated tetramyristoyl cardiolipin
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(curve 2) for bovine heart cardiolipin (predominantly containing
tetralinoleyl-cardiolipin) (curve 1) or substitution of fully saturated
diphytanoyl phosphatidylcholine (curve 3) for soybean phosphatidyl-
choline (curve 1) led to dramatic suppression of the cyt c-induced leak-
age, becoming close to that in the absence of cyt c and H2O2 (curve 4).
Similar dependence on lipid composition was also found with CF-
loaded liposomes (Fig. 1A). These effects of changing lipid composition
on membrane permeabilization could not be associated with phase
transitions, because diphytanoyl phosphatidylcholine, although
fully saturated, is known to be in the fluid state at room temperature
[77] and the addition of 20% of fully saturated TMCL to highly unsaturat-
ed egg PC could also hardly alter its fluid state. Thus, the requirement
of the presence of unsaturated fatty-acid tails in both cardiolipin
and diacyl phosphatidylcholine for cyt c/cardiolipin membrane-
permeabilizing activity was most likely due to the involvement of lipid
peroxidation in this activity.
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3.5. Cyt c/H2O2-induced leakage of fluorescent dextrans from liposomes

To estimate the size of conductive defects in membranes formed in
the presence of cyt c andH2O2, wemeasured leakage of fluorescently la-
beled dextrans from cardiolipin-containing soybean phosphatidylcho-
line liposomes. Initially the leakage of 3-kDa dextran induced by the
combination of cyt c and H2O2 was noticeably slower than that of SRB,
although at longer time the extent of leakage for 3-kDa dextran
became close to that for SRB (Fig. 5, curve 5). This observation could
be related to lateral expansion of pores described for amphipathic anti-
microbial peptides [78]. The leakage of 10-kDa dextran (2.4-nm Stokes
radius [79]) was markedly suppressed (curve 6), suggesting the size of
cyt c-induced membrane defects being approx. 5 nm.

3.6. Effect of antioxidants on cyt c/H2O2-induced liposome leakage

To test the relation of the cyt c/cardiolipin permeabilizing activity
to lipid peroxidation, we studied the effect of various antioxidants on
cyt c/H2O2-induced SRB leakage from liposomes. As follows from
Fig. 6A, the addition of trolox, butylated hydroxytoluene (BHT) or quer-
cetin significantly suppressed the SRB leakage. These free radical-
scavengers were earlier found to inhibit cyt c/cardiolipin peroxidase
A, 100 nM cytochrome c   + 1.5 mM H 2O 2
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Fig. 6. A. Effect of antioxidants on the cytochrome c-induced SRB leakage from PC/CL lipo-
somes in the presence of H2O2. Lipid, 2 μg/ml; cyt c, 100 nM;H2O2, 1.5mM, trolox, 100 μM;
BHT, 1mM; quercetin, 20 μM. The solutionwas 200mM sucrose, 10mMTris, 10mMMES,
pH 7.4. B. Effect of Trolox (100 μM) and KCN (1 mM) on the cytochrome c-induced SRB
leakage from PC/CL liposomes without H2O2. Cyt c was 1 μM. Other conditions as in
panel A.
activity [35]. Panel B of Fig. 6 shows the effect of trolox and sodium cy-
anide on the SRB leakage induced by a high concentration of cyt c (1 μM)
without H2O2. Both compounds did not affect the extent of the leakage
under these conditions, thereby indicating thatmechanisms of the leak-
age differed in the two cases.
3.7. Mechanism of cyt c/H2O2-induced liposome leakage: toroidal protein–
lipid pore requiring oxidized cardiolipin versus pure lipidic pores

There has been an enormous body of evidence revealing changes in
cyt c tertiary structure associated with extensive unfolding of the pro-
tein upon binding to lipid vesicles [80,81], especially those containing
cardiolipin (see [82] and refs. therein). Furthermore, insertion or partial
penetration of cyt c into membranes have been proposed [52,83–90]. It
is the membrane-penetrating capacity of cyt c that presumably results
in its ability to permeabilize lipid membranes in the absence of hydro-
gen peroxide [51,52]. Electrophysiological measurements revealed the
cyt c-induced fast current flickering at low protein concentrations and
stable giant pores at micromolar cyt c concentrations suggesting differ-
ent mechanisms of the membrane permeabilization [51]. According to
our data, this cyt c-induced leakage proved to be insensitive to antioxi-
dants and cyanide (Fig. 6B). Therefore, it was not associatedwith perox-
idase activity of cyt c and induction of lipid peroxidation.

Based on the obligatory presence of unsaturated alkyl chains in
cardiolipin as a prerequisite to observe cyt c/H2O2-induced perme-
abilization (Fig. 5) and its sensitivity to antioxidants and cyanide
(Figs. 3, 4, 6), it seems reasonable to suggest the involvement of oxi-
dized cardiolipinmolecules in the formation of membrane defects asso-
ciated with cyt c/H2O2-induced perturbation of bilayer structure.
According to electrophysiological data reported in [58], the combination
of cyt c and H2O2 induced low-amplitude ion channels with a lifetime
in a timescale of seconds, which differed substantially from those
found with cyt c only [51]. Our experiments revealed the significant
permeability of the liposomal membranes to 3-kDa dextran caused by
cyt c/H2O2, which could be tentatively ascribed to evolution of structural
defects into hydrophylic pores, presumably of the toroidal protein–lipid
nature, with pore walls formed by protein helices intercalated by lipid
head-groups [91–97,52] (see Fig. 7 depicting insertion of cyt c α-
helices into a membrane driven by cyt c/cardiolipin peroxidase activity
which results in toroidal pore formation). Favoring this model, lipid
oxidation was shown to dramatically stimulate membrane pore forma-
tion induced by the water-soluble protein colicin E1 [98]. Alternatively,
cyt c/H2O2-caused permeabilization may be ascribed to formation of
pure lipidic pores involving oxidized lipids [16,99–101] or trivial
membrane rupture resulting from lipid peroxidation. However, our FCS
experiments with rhodamine-labeled liposomes showed that the cyt c-
promoted dye leakage could proceed during a long time without mem-
brane disruption (data not shown), and no stable pores were observed
upon lipid peroxidation [102], which makes the pure oxidized lipid
pore model of cyt c/H2O2-induced permeabilization less probable than
the toroidal one involving protein helices. The striking differences in
the sensitivity of cyt c/H2O2-induced and Fe/ascorbate-induced liposome
leakage to cyanide (forming the cyanide–ferricytochrome c complex)
and a ferrous chelator (Fig. 3) support direct participation of the protein
in cyt c/H2O2-caused permeabilization. The preventing effect of cyanide
on the cyt c/H2O2-induced permeabilization of liposomes could be attrib-
uted to the competitive binding of hydrogen peroxide and cyanide to the
sixth ligand position of the heme iron in cyt с, as described in [69].

The importance of studying here the liposome leakage induced by
Fe/ascorbate was associated with the possibility that H2O2 could pro-
voke considerable damage to cyt с which might include iron release
from the heme. Actually, this process was described in [103]. Of note,
it was known from early studies that Fe/ascorbate could bring about
an increase in membrane permeability resulting in dextran leakage
from liposomes [7]. Our experiments with Fe/ascorbate and the applied
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Fig. 7. Scheme of cardiolipin-dependent lipid membrane permeabilization by cytochrome
c andH2O2. Electrostatic binding of cyt c to cardiolipin-containingmembranes followed by
conformational changes of the protein leading to the induction of peroxidase activity, lipid
oxidation and formation of a protein–lipid pore permeable for SRB.
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inhibitory analysis proved that the possible release of iron was not in-
volved in the liposome permeabilization process induced by cyt c/H2O2.

In summary, cyt c/cardiolipin peroxidase activity is shown to result
in leakage of fluorescent markers from liposomes, inhibitable by cya-
nide and antioxidants. Requirement of unsaturated cardiolipin for the
leakage points to the involvement of oxidized cardiolipin in the forma-
tion of cyt c/H2O2-induced membrane defects.
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Appendix A

According to [66], G(τ) of a system of a dye in and out of
vesicles (V) can be described by the following equation (Eq. (4) of the
reference):

G τð Þ ¼
Ndye

D E
Ndye

D E
þ eB Nvh i

� �2 1þ τ
τdye

" #−1

1þ r0
z0

� �2 τ
τdye

" #−1
2

þ
eB2

Nvh i 1þ eB−1
� �

Ndye

D E
þ eB Nvh i

� �2 1þ τ
τv

� �−1
1þ r0

z0

� �2 τ
τv

� �−1
2

WhereNdye andNV are the number of dye and vesicle particles in the ob-
servation volume with dimensions r0 and z0, τdye and τV are diffusion

times of the dye and the vesicles, eB is themean number of dyes per ves-
icle at a given time. In the limit {τ → 0} we have

G τ→0ð Þ ¼
Ndye

D E
Ndye

D E
þ eB NVh i

� �2 þ eB2
NVh i 1þ eB−1

� �
Ndye

D E
þ eB NVh i

� �2
¼

Ndye

D E
þ eB2

NVh i 1þ eB−1
� �

Ndye

D E
þ eB NVh i

� �2 :

Parameters Ndye and NV are not independent. At the beginning of

leakage experiments Ndye = 0 and eB = B0, afterwards

Ndye

D E
¼ B0−eB� �

NVh i

because the appearance of the dye molecules in the solution is a conse-
quence of their efflux from the vesicles. Therefore:

G τ→0ð Þ ¼
B0−eB� �

NVh i þ eB2
NVh i 1þ eB−1

� �
B0−eB� �

NVh i þ eB NVh i
� �2 ¼ 1

NVh i
B0 þ eB2

eB0
2

¼ 1
NVh i

1
B0

þ
eB
B0

 !2 !
:

Since Gt¼0 τ→0ð Þ ¼ 1
NVh i,

Gt τ→0ð Þ ¼ Gt¼0 τ→0ð Þ 1
B0

þ
eB
B0

 !2 !
and

eB
B0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt τ→0ð Þ
Gt¼0 τ→0ð Þ−

1
B0

s
:

The estimated value of B0 (number of dye molecules per vesicle) in
our experiments was about 103. This estimation corresponds to the
ratio of the initial value of G(τ → 0) and the value after the addition
of Triton X-100. This means that at low and intermediate leakage ex-
tents one can use the approximation

eB
B0

≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt τ→0ð Þ
Gt¼0 τ→0ð Þ

s
:

The conventional definition of the leakage extent α is a percentage
of dye outside of vesicles, i.e.

α ¼ 1−
eB
B0

¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt τ→0ð Þ
Gt¼0 τ→0ð Þ

s
:

This equation gives a simple relationship between the decrease in

G(τ → 0) and the dye leakage. The assumption 1/B0 ≪ eB/B0 makes
the deviation from the equation less than 1% in the region of α b 50%
keeping in mind that B0 N 100.
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