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This paper deals with the mathematical modelling of large strain magneto-viscoelastic deformations.
Energy dissipation is assumed to occur both due to the mechanical viscoelastic effects as well as the resis-
tance offered by the material to magnetisation. Existence of internal damping mechanisms in the body is
considered by decomposing the deformation gradient and the magnetic induction into ‘elastic’ and ‘vis-
cous’ parts. Constitutive laws for material behaviour and evolution equations for the non-equilibrium
fields are derived that agree with the laws of thermodynamics. To illustrate the theory the problems
of stress relaxation, magnetic field relaxation, time dependent magnetic induction and strain are formu-
lated and solved for a specific form of the constitutive law. The results, that show the effect of several
modelling parameters on the deformation and magnetisation process, are illustrated graphically.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetorheological elastomers (MREs) are materials that
change their mechanical behaviour in response to the application
of an external magnetic field. These elastomers have received con-
siderable attention in recent years due to their potential uses as
variable stiffness actuators for mechanical systems with electronic
controls. MREs are particularly useful for their tuneable elastic
modulus and a rapid response to the magnetic field, cf. Böse
et al. (2012). A common preparation method is mixing magneti-
cally permeable particles into liquid monomer and letting the mix-
ture to polymerise. Curing, when done in the absence of magnetic
field, results in an isotropic material while curing in the presence of
a magnetic field causes the particles to align in a particular direc-
tion and results in a material with a directional anisotropy. The fer-
romagnetic particles are usually between 1–5 lm in size and kept
between 0–30% by volume of the entire mixture. Such elastomers
have been reported to be prepared and analysed by Jolly et al.
(1996), Ginder et al. (2002), Varga et al. (2006), Boczkowska and
Awietjan (2009) and Böse and Röder (2009).

Mathematical modelling of the coupling of electromagnetic
fields in deformable materials has been an area of active research
in the past, see, for example, the works of Pao (1978) and Eringen
and Maugin (1990). Recently, a new constitutive formulation based
on a ‘total’ energy density function has been developed by Dorf-
mann and Ogden (2003, 2004), wherein the solutions of some
boundary value problems were obtained using different energy
densities. It has been shown that any one of the magnetic induc-
tion vector, magnetic field vector, or the magnetisation vector
can be used as an independent variable of the problem and the
other two obtained through the constitutive relations. The relevant
equations used by them are based on the classic work of Pao (1978)
in which the equations of motion for an isotropic non-polar contin-
uum in an electromagnetic field are described by Maxwell’s equa-
tions and the mechanical and thermodynamical balance laws. This
formulation has been particularly useful in recent years in dealing
with problems related to magnetoelasticity and using this, further
boundary value problems on nonlinear deformation and wave
propagation have been studied by Bustamante et al. (2007), Otté-
nio et al. (2008) and Saxena and Ogden (2011).

The response to an applied magnetic induction is, however, not
exactly instantaneous for all materials. On the application of a sud-
den external magnetic induction, the magnetic field (or equiva-
lently the magnetisation) developed inside the material is not
constant. Starting with some initial non-equilibrium value, it grad-
ually approaches equilibrium in some finite time (say t1) depend-
ing on the existing deformation and various material parameters.
The synthetically developed magnetoelastic materials are usually
polymer based, hence also viscoelastic in nature. Thus there is
development of a viscous overstress on deformation or on the
application of a body force that vanishes after a time t2 which is
usually different from t1 above. This time-delay in response is a
very important factor to consider while designing electromechan-
ical actuators from magnetorheological elastomers. Thus, these
two forms of dissiption – due to mechanical and due to magnetic
effects need to be modelled appropriately. In order to consider
the magnetic and mechanical dissipation effects, the previously
stated theory of magnetoelasticity by Dorfmann and Ogden
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(2004) is generalised by combining with the existing theory of
mechanical viscoelasticity.

Viscoelastic material modelling can generally be classified into
two main classes, i.e. purely phenomenologically-motivated and
micromechanical based network models. In some literature, the
viscoelastic modelling approach is also divided, on the one hand,
due to the nature of the time-dependent part of the stress, on
the other hand, due to the nature of the evolution equation. The
phenomenological modelling approach can also be distinguished
based on the type of internal variables, i.e. stress type internal vari-
ables in the form of convolution integrals, cf., Simo (1987), Holzap-
fel and Simo (1996), Lion (1997) and Kaliske and Rothert (1997);
and strain-type internal variables that originate from a multiplica-
tive decomposition of the deformation gradient, cf., Reese and Gov-
indjee (1998) and Huber and Tsakmakis (2000). The latter group
decomposes the deformation gradient into elastic and inelastic
parts where the inelastic part is determined from a differential
type flow rule. In both the cases, the total stress is decomposed
into a viscosity induced overstress and an equilibrium stress that
corresponds to stress response at an infinitely slow rate of defor-
mation or the stress response when the time-dependent viscous
effects are completely diminished. Within the setting of the multi-
plicative decomposition of the deformation gradient, Reese and
Govindjee (1998) proposed an evolution law which, when linear-
ized around the thermodynamical equilibrium, yields the finite lin-
ear viscoelasatic model of Lubliner (1985). Koprowski-Theiss et al.
(2011) proposed a nonlinear evolution law, which after being
proved to be thermodynamically consistent, has been used in this
paper. For the modelling based on stress-type internal variables,
the time-dependent overstress part is expressed as an integral over
the deformation history, cf., Simo (1987) and Amin et al. (2006).

The second class of viscoelastic material modelling is based on
micromechanical theories derived using the underlying molecular
structures, see, for example, the works of Bird et al. (1987), Doi and
Edwards (1988), Bergström and Boyce (1998) and Miehe and Gök-
tepe (2005). These have been developed over the years to describe
the viscous behaviour of molten polymers and physically cross-
linked rubber-like materials. The bead-spring model of Bird et al.
(1987), the reptation-type tube models of de Gennes (1971) and
Doi and Edwards (1988), and the transient network models of
Green and Tobolsky (1946) can be mentioned as examples in this
area. The theory for transient network models explains the stress
relaxation phenomena as a consequence of breakage and reformu-
lation of the polymer cross-links constantly, cf., Green and Tobol-
sky (1946) and Reese (2003). Reptation-type tube models are
developed for the definition of the motion of a single chain in a
polymer gel. The constraints on the free motion of a single chain
are qualitatively modelled as a tube-like constraint and the motion
of the chain is described as a combination of Brownian motion
within and reptational motion along the tube. Recently, a growing
interest can be observed to combine these approaches which yield
the so-called micromechanically motivated models, see, for exam-
ple, Linder et al. (2011).

As a first step in the magneto-viscoelastic modelling, we model
an isotropic material and take a phenomenological approach based
on the multiplicative decomposition of the deformation gradient in
line with Lubliner (1985). An additive decomposition of the mag-
netic induction vector into equilibrium and non-equilibrium parts
is proposed to model magnetic dissipation phenomena. The equi-
librium part of the energy is taken to be a generalisation of the
Mooney–Rivlin elastic model to include magnetic effects, while
the non-equilibrium part is a slightly simplified version that looks
like a neo-Hookean type magnetoelastic model. Using a Clausius–
Duhem form of the second law of thermodynamics, we obtain evo-
lution equations for these physical quantities to be able to perform
numerical calculations.
This paper is organised as follows. In Section 2, the theory of
nonlinear magneto-viscoelasticity is presented taking into account
the case of finite deformation. Starting with the governing Max-
well’s equations and the laws of momentum balance, we show
the existence of a total stress tensor of Dorfmann and Ogden
(2003). The deformation gradient and the magnetic induction are
decomposed into equilibrium and non-equilibrium parts. Using
the laws of thermodynamics and a form of the Helmholtz free en-
ergy function, constitutive equations are derived along with the
conditions to be satisfied by the evolution equations of the non-
equilibrium quantities.

In Section 3, for the purpose of obtaining numerical solutions
the energy density function and the evolution equations for the
non-equilibrium quantities are specialised to specific forms. Sev-
eral material parameters to model magneto-viscoelastic coupling
are introduced in this step. In Section 4, we consider four different
types of deformation and magnetisation processes to study the ef-
fects of the underlying magnetic induction, deformation, strain
rate and magnetic induction rate on the total Cauchy stress and
the magnetic field relaxation process. It is observed that changing
the newly defined magneto-viscoelastic coupling parameters can
affect the magnitude of the overstress, the excess magnetic field
and their decay times. Initial deformation can affect the decay time
and magnitude of the induced magnetic field. Effects of the defor-
mation, applied magnetic induction and the material parameters
on the computed physical quantities (such as stress and magnetic
field) are illustrated graphically. Section 5 contains some brief con-
cluding remarks.
2. Theory of nonlinear magneto-viscoelasticity

We consider an incompressible magnetoelastic material which,
when undeformed and unstressed and in the absence of magnetic
fields, occupies the material configuration B0 with boundary @B0.
It is then subjected to a static deformation due to the combined ac-
tion of a magnetic field and mechanical surface and body forces.
The spatial configuration at time t is denoted by Bt with a bound-
ary @Bt . The two configurations are related by a deformation func-
tion v which maps every point X 2 B0 to a point x ¼ vðX; tÞ 2 Bt.
The deformation gradient is defined as F ¼ Gradv, where Grad is
the gradient operator with respect to X. Its determinant is given
by J ¼ det F � 1 for the present case of incompressibility.

To take into account mechanical viscous effects, we assume the
existence of an intermediate configuration Bi that is related to Bt

by a purely elastic deformation and is related to B0 by a pure vis-
cous motion. The intermediate configuration Bi is postulated only
to model the dissipation effects. This is in parallel to the energy-
conserving magnetoelastic deformation from B0 to Bt . Following
Lubliner (1985) and Reese and Govindjee (1998), this motivates
the decomposition of the deformation gradient into an elastic
and a viscous part as

F ¼ FeFv : ð1Þ

For future use we define the right and the left Cauchy–Green strain
tensors as C ¼ FtF and b ¼ FFt , respectively. Similar quantities cor-
responding to Fv and Fe are defined in B0;Bi and Bt as shown in
Fig. 1.

It is further assumed that the material is electrically non-con-
ducting and there are no electric fields. Let r be the ‘mechanical’
Cauchy stress tensor and s the total Cauchy stress tensor (see, for
example, Dorfmann and Ogden (2004) for its definition), q the
mass density, fm the mechanical body force per unit mass, a the
acceleration of a point, f the electromagnetic body force per unit
volume, h the magnetic field vector, b the magnetic induction vec-



Fig. 1. The material, intermediate, and spatial configurations with the correspond-
ing magnetic vectors and deformation tensors.
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tor, and m the magnetisation vector. The following balance laws
need to be satisfied

divrþ fþ qfm ¼ qa; divsþ qfm ¼ qa; st ¼ s; ð2Þ

curlh ¼ 0; divb ¼ 0: ð3Þ

In Eq. (2), the first two equations are equivalent forms of the bal-
ance of linear momentum and the third is the angular momentum
balance equation. Eq. (3)1 is the specialisation of Ampère’s law
appropriate to the present situation and Eq. (3)2 is the statement
of impossibility of the existence of magnetic monopoles. Here and
henceforth, grad, div, curl denote the standard differential operators
in Bt while Grad, Div, Curl denote the corresponding operators in
B0. The three magnetic vectors are connected through the standard
relation

b ¼ l0 hþm½ �; ð4Þ

l0 being the magnetic permeability of vacuum. The connection be-
tween r and s is

s ¼ rþ l�1
0 b� b� 1

2
b � b½ �i

� �
þ m � b½ �i� b�m; ð5Þ

where i is the second order identity tensor in Bt and we have used
the expression for the magnetic body force as f ¼ gradb½ �tm; see, for
example, Pao (1978).

The total Piola–Kirchhoff stress and the Lagrangian forms of
h;m, and b for an incompressible material (J ¼ 1) are defined by

S ¼ F�1sF�t

¼ F�1rF�t þ l�1
0 B� B� 1

2
CB½ � � B½ �C�1

� �
þ M � B½ �C�1

� B�M½ �C�1; ð6Þ

H ¼ Ft
h; M ¼ Ft

m; B ¼ F�1
b: ð7Þ

We use the above relations to rewrite the governing Eqs. (2) and (3)
in terms of the Lagrangian variables as

Div SFt� �
þ qfm ¼ qa; St ¼ S; CurlH ¼ 0; DivB ¼ 0; ð8Þ

while the relation (4) becomes

CB ¼ l0 HþM½ �: ð9Þ

In magnetorheological elastomers, in addition to the mechanical
viscoelastic effects, we propose that energy dissipation also occurs
due to the resistance offered to magnetisation of the material. On
the sudden application of a constant magnetic induction, the mag-
netic field generated inside the material starts from an initial non-
equilibrium value and then evolves to approach an equilibrium va-
lue. To model these effects, we assume the existence of a dissipation
mechanism by including magnetic induction like ‘elastic’ and ‘vis-
cous’ internal variables be and bv , respectively. Their Lagrangian
counterparts are given by Be and Bv such that

b ¼ be þ bv ; B ¼ Be þ Bv : ð10Þ

The above additive decomposition of the magnetic induction is
motivated by a similar decoupling into elastic and viscous parts of
the deformation in viscoelasticity theory. Since magnetic induction
is a vector, an additive decomposition is applied here as opposed to
the multiplicative decomposition of the deformation gradient in Eq.
(1). The behaviour of the internal variables defined in the above is
assumed such that if a constant magnetic induction B is applied
at time t ¼ 0, then at that instant Be ¼ B and Bv ¼ 0. As time pro-
gress, the magnetic induction is gradually and entirely transferred
to Bv . Thus,

Be ¼ B; Bv ¼ 0 at t ¼ 0;
Be ! 0; Bv ! B as t !1: ð11Þ
2.1. Thermodynamics and constitutive modelling

In this section, starting with the laws of thermodynamics, we
use the balance Eqs. (2) and (3) to obtain constitutive laws that de-
fine the material behaviour. Necessary conditions of energy dissi-
pation associated with the viscous and the magnetic dissipation
processes are obtained that need to be satisfied by any magneto-
elastic deformation to be thermodynamically admissible.

Balance of energy is written in the local form as (cf., Pao, 1978;
Dorfmann and Ogden, 2003)

q
d
dt

U þ 1
2
jvj2

� �
þ divQ ¼ div rvð Þ þ qfm þ f½ � � v þ qRþwe;

ð12Þ

where U and R denote the internal energy and radiant heating per
unit mass, Q is the heat flux, r is the purely mechanical Cauchy
stress, fm is the mechanical body force (assumed to be zero in the
analysis later), and we is the electromagnetic power given for the
present case as we ¼ �m � db=dt.

Let S be the specific entropy and # be the temperature. On intro-
ducing a specific Helmholtz free energy W through

W ¼ U � #S ð13Þ

and using the Clausius–Duhem form of the second law of
Thermodynamics

q
dS
dt
þ div

Q
#

� �
� q

R
#

P 0; ð14Þ

we arrive at the following inequality

�q
dW
dt
þ F�1r :

dF
dt
�m � db

dt
P 0: ð15Þ

The symbol : denotes a double contraction operation between two
second order tensors. In the calculations above use has been made
of Eq. (2)1 and the temperature is assumed to be constant.

We now introduce a total energy function similar to the one
used by Dorfmann and Ogden (2004)

XðF;Cv ;B;BvÞ ¼ qWðC;Cv ;FB;FBvÞ þ
1

2l0
B � CB½ �: ð16Þ

This considers the magnetic induction vector B as an independent
quantity and leaves the magnetic field H to be determined using
a constitutive law. The magnetisation M, if required, can be ob-
tained using the relation (9).
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The above equation, on differentiation with respect to time
gives

�q
dW
dt
¼ � dX

dt
þ 1

2l0
B � dC

dt
B

� �
þ 1

l0
CB½ � � dB

dt
; ð17Þ

while using (7), we obtain

�m � db

dt
¼ �M � F�1 dF

dt
B

� �
�M � dB

dt
: ð18Þ

Note that the constraint of incompressibility can be expressed as

dJ2

dt
¼ C�1 :

dC
dt
¼ 0: ð19Þ

For an incompressible material, dC=dt is not arbitrary, but the
inequality (15) must be satisfied for every dC=dt governed by the
above constraint. Consequently adding a scalar multiple of this zero
term and substituting Eqs. (17) and (18) to the inequality (15), a
form of the second law of thermodynamics is obtained in terms of
the ‘total’ Piola–Kirchhoff stress tensor and the physical quantities
defined in their Lagrangian description as

� dX
dt
þ 1

2
Sþ pC�1
h i

:
dC
dt
þH � dB

dt
P 0; ð20Þ

p being a Lagrange multiplier associated with the constraint. It is
noted here that one can equivalently use a nominal stress tensor
T ¼ F�1s instead of S and take F as an independent variable instead
of C and substitute in (15). This would result in an inequality that
yields the constitutive relations used by Dorfmann and Ogden
(2004).

Taking partial derivatives of X with respect to its arguments
and substituting in the inequality above, we get

1
2

S� 2
@X
@C
þ pC�1

� �
:

dC
dt
þ H� @X

@B

� �
� dB

dt

� @X
@Cv

:
dCv

dt
� @X
@Bv
� dBv

dt
P 0; ð21Þ

From the arguments of Coleman and Noll (1963), the following con-
stitutive equations are obtained

S ¼ 2
@X
@C
� pC�1; H ¼ @X

@B
; ð22Þ

along with the dissipation condition

@X
@Cv

:
dCv

dt
þ @X
@Bv
� dBv

dt
6 0: ð23Þ

For the sake of simplicity in the computations later, we further as-
sume that the non-equilibrium magnetic induction Bv and the non-
equilibrium strain tensor Cv are independent from each other. This
reduces the above inequality to the following separate conditions

@X
@Cv

:
dCv

dt
6 0;

@X
@Bv
� dBv

dt
6 0; ð24Þ

which should be satisfied by any magnetoelastic deformation pro-
cess to be thermodynamically admissible.

The total energy stored in the body can be split into an equilib-
rium part associated with the direct deformation from B0 to Bt ,
and a viscous part due to the internal variable Be and the elastic
deformation from Bi to Bt . This is a slightly general form of the
purely mechanical energy decomposition by Reese and Govindjee
(1998)

X C;Cv ;B;Bvð Þ ¼ XeðC;BÞ þXv C;Cv ;B;Bvð Þ: ð25Þ

Here, the viscous part of the energy depends on the viscous parts of
the deformation and the magnetic induction. Thus the arguments of
Xv can be equivalently changed as either one of
Xv C;Cv ;Beð Þ;Xv Ce;B;Bvð Þ or Xv Ce;Beð Þ.

Substituting this form of X into the inequalities (24) we obtain
the dissipation conditions that should be necessarily met in order
to satisfy the second law of thermodynamics

@Xv

@Cv
:

dCv

dt
6 0; ð26Þ

@Xv

@Bv
� dBv

dt
6 0: ð27Þ

It is noted here that the above theory can easily be generalised to
include multiple dissipation mechanisms in the body. In the case
of M mechanical and N magnetic mechanisms, we may define
F1

e ; . . . ;FM
e ; F1

v ; . . . ;FM
v ; B1

e ; . . . ;BN
e ; B1

v ; . . . ;BN
v such that

F ¼ Fi
eFi

v ; 8i ¼ 1; . . . ;M; ð28Þ
B ¼ Bj

e þ Bj
v ; 8j ¼ 1; . . . ;N: ð29Þ

The dissipation condition to be satisfied in this general case is

XM

i¼1

@X

@Ci
v

:
dCi

v
dt
þ
XN

j¼1

@X

@Bj
v
� dBj

v
dt
6 0: ð30Þ
3. Specialised constitutive laws

With a motivation of obtaining numerical solutions to some
magneto-viscoelastic deformation problems, we specialise the en-
ergy in (25) to specific forms in this section. Evolution equations
for Cv and Bv are also derived that satisfy the thermodynamic con-
straints (26) and (27).

3.1. Energy functions

The material is assumed to be isotropic following which the
equilibrium part of the energy density function is considered to
be a generalisation of the classical Mooney–Rivlin function to mag-
netoelasticity of the form

Xe ¼
le

4
1þ ae tanh

I4

me

� �� �
1þ n½ � I1 � 3½ � þ 1� n½ � I2 � 3½ �½ �

þ qI4 þ rI6; ð31Þ

where I1; I2; I4 and I6 are the standard scalar invariants in magneto-
elasticity (see, for example, Dorfmann and Ogden (2004)) defined as

I1 ¼ C : I; I2 ¼
1
2

I2
1 � C2 : I

h i
; I4 ¼ ½B� B� : I; I6

¼ CB½ � � CB½ �½ � : I; ð32Þ

I being the second order identity tensor in B0.
This is a slight generalisation of a Mooney–Rivlin type magneto-

elastic energy function proposed by Otténio et al. (2008). Here le is
the shear modulus of the material in the absence of a magnetic
field and n is a dimensionless parameter restricted to the range
�1 6 n 6 1, as for the classical Mooney–Rivlin model. The term
1þ ae tanh I4=með Þ½ � corresponds to an increase in the stiffness

due to magnetisation and the phenomenon of magnetic saturation
after a critical value of magnetisation. The parameter me is re-
quired for the purpose of non-dimensionalisation while ae is a
dimensionless positive parameter for scaling. The magnetoelastic
coupling parameters q and r have the dimensions of l�1

0 . For
ae ¼ q ¼ r ¼ 0, this simplifies to the classical Mooney–Rivlin elastic
energy density function widely used to model elastomers.

Let the natural basis vectors in B0 be identified with a set of
covariant basis vectors fGag and its dual basis with a set of contra-
variant basis vectors fGag; a 2 f1;2;3g. Similarly defining fgag
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and fgag for Bt and f�gag and f�gag for Bi, we obtain the following
forms for the deformation gradient and the right Cauchy–Green
strain tensors

F ¼ ga � Ga; C ¼ ga � gb

� 	
Ga � Gb; Cv ¼ �ga � �gb

� 	
Ga � Gb: ð33Þ

If a vector B is written in the natural covariant basis as B ¼ BaGa,
then CB ¼ Bb ga � gb

� 	
Ga. Thus the identity tensor used for double

contraction in (32)1,4 needs to have a covariant set of basis vectors
while that used in (32)3 requires a contravariant basis.

To obtain the non-equilibrium part of the energy density func-
tion, we consider a simplification of the Mooney–Rivlin type en-
ergy in (31) by taking ae ¼ 0 and n ¼ 1. Since the non-
equilibrium part of energy should depend only on the elastic parts
of the deformation gradient and the magnetic induction as as-
sumed earlier, we require I1 in (32)1 to obtain the value Ce : I. This
is equivalent to the expression C : C�1

v on using Eq. (1). Hence to ob-
tain the non-equilibrium energy, instead of a double contraction
with the identity tensor to obtain the invariants in (32), we do so
by the contravariant tensor Cv and the covariant tensor C�1

v as
appropriate and replace the Lagrangian vector B by Be. The energy
function thus obtained is similar to a generalisation of a neo-Hook-
ean type energy to include magnetic effects

XvðC;Cv ;B;BvÞ ¼
lv
2

C : C�1
v � 3

h i
þ qv B� Bv½ � � B� Bv½ �½ � : Cv

þ rv C B� Bv½ �½ � � C B� Bv½ �½ �½ � : C�1
v : ð34Þ

The magneto-viscoelastic coupling parameters qv and rv here are
similar to q and r used in the definition of Xe and we have used
the relation Be ¼ B� Bv .

A strong coupling between the mechanical viscous measure Cv

and the magnetic non-equilibrium quantity Bv is noted here. For
the sake of simplicity of our calculations and in the absence of
any experimental data, we simplify the above expression by
assuming that the magnetic non-equilibrium effects are coupled
only with the total deformation C and not with its viscous compo-
nent Cv . This assumption was also used earlier to arrive at the dis-
sipation conditions (24). Thus, by replacing Cv with I in (34), a
simpler form of the non-equilibrium energy is obtained as

XvðC;Cv ;B;BvÞ ¼
lv
2

C�1
v : C� 3

h i
þ qv B� Bv½ � � B� Bv½ �½ � : I

þ rv C B� Bv½ �½ � � C B� Bv½ �½ �½ � : I: ð35Þ
3.2. Evolution equations

In order to completely define the magneto-viscoelastic behav-
iour of a solid material, along with the balance laws and the energy
density functions defined in the previous sub-section, we also re-
quire evolution laws for the ‘viscous’ quantities Bv and Cv . These
are postulated such that the laws of thermodynamics are satisfied
at every instant and Bv and Cv stop evolving when the system
reaches an equilibrium state.

For the non-equilibrium part of the magnetic induction we con-
sider the following evolution equation such that the left side of
inequality (27) becomes a negative semi-definite quadratic form,
automatically satisfying the thermodynamic constraint. Thus,

dBv

dt
¼ � l0

Tm

@Xv

@Bv
¼ 2l0

Tm
qv Iþ rvC2
h i

B� Bv½ �: ð36Þ

For the mechanical viscous strain tensor, we use the evolution
equation as proposed by Koprowski-Theiss et al. (2011)

dCv

dt
¼ 1

Tv
C� 1

3
C : C�1

v

h i
Cv

� �
: ð37Þ
In the equations above, Tv is the specific relaxation time for the vis-
coelastic component of the dissipation mechanism while Tm is the
specific relaxation time for its magnetic component. Typically Tv

is of the order of some minutes or even up to a few hours while
Tm is of the order of a few seconds or some milliseconds.

It now remains to prove that the evolution Eq. (37) is thermody-
namically consistent with the energy density function (35), i.e.,
they satisfy the constraint (26).

Consider a fourth order projection tensor defined as

Idev
Cv
¼ I� 1

3
Cv � C�1

v ; ð38Þ

where I is the fourth order symmetric identity tensor given in com-
ponent form as

I½ �ijkl ¼
1
2

dikdjl þ dildjk

� �
; ð39Þ

dij being the Kronecker-Delta. On a double contraction of this tensor
Idev

Cv
with C, a multiple of the right side of the evolution law (37) is

obtained. Thus,

1
Tv

Idev
Cv

: C ¼ dCv

dt
: ð40Þ

From Eq. (35), we obtain

@Xv

@Cv
¼ �lv

2
C�1

v CC�1
v ¼

lv
2

C : IC�1
v
; ð41Þ

where we have used the negative-definite fourth order projection
tensor IC�1

v
which when expanded in component form, gives

IC�1
v

h i
ijkl
¼ �1

2
C�1

v

h i
ik

C�1
v

h i
jl
þ C�1

v

h i
il

C�1
v

h i
jk

� �
: ð42Þ

Consider the following operation

@Xv

@Cv
:

dCv

dt
¼ lv

2Tv
C : IC�1

v

h i
: Idev

Cv
: C

h i
: ð43Þ

Since the tensor Idev
Cv

is idempotent, the above expression can be
rewritten as

@Xv

@Cv
:

dCv

dt
¼ lv

2Tv
C : IC�1

v

h i
: Idev

Cv
: Idev

Cv
: C

h i
; ð44Þ

¼ lv
2Tv

Idev
Cv

: C
h i

: IC�1
v

: Idev
Cv

: C
h i

6 0: ð45Þ

The above inequality holds since IC�1
v

is negative definite. This is the
statement of the dissipation condition (26), hence the evolution Eq.
(37) is thermodynamically consistent with the energy density func-
tion (35).

3.3. Stress and magnetic field calculations

For the energy functions defined in Eqs. (31) and (35), the Piola–
Kirchhoff stress is given as

S ¼ 2
@Xe

@C
þ 2

@Xv

@C
� pC�1 ¼ Se þ Sv � pC�1; ð46Þ

where

Se ¼
le

2
1þ ae tanh

I4

me

� �� �
1þ n½ �Iþ 1� n½ � I1I� C½ �½ �

þ 2rB� CB½ � þ 2r CB½ � � B ð47Þ

and

Sv ¼ lvC�1
v þ 2rvBe � CBe½ � þ 2rv CBe½ � � Be: ð48Þ

The Lagrangian magnetic field H is given as
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H ¼ @Xe

@B
þ @Xv

@B
¼ He þHv ; ð49Þ

where

He ¼
le

2me
1� ae tanh2 I4

me

� �� �
1þ n½ � I1 � 3½ � þ 1� n½ � I2 � 3½ �½ �B

þ 2qBþ 2rC2
B

ð50Þ

and

Hv ¼ 2qvBe þ 2rvCBe: ð51Þ

The ‘viscous’ or non-equilibrium magnetic field defined above tends
to zero at equilibrium when Be ! 0. Eulerian expressions for the
equilibrium values of the total Cauchy stress s and the magnetic
field h can be written using Eqs. (47) and (50) as

se ¼
le

2
1þ ae tanh

I4

me

� �� �
1þ n½ �bþ 1� n½ � I1b� b2

h ih i

þ 2r b� bb½ � þ 2r bb½ � � b; ð52Þ

he ¼
le

2me
1� ae tanh2 I4

me

� �� �
1þ n½ � I1 � 3½ � þ 1� n½ � I2 � 3½ �½ �b�1

b

þ 2qb�1
bþ 2rbb:

ð53Þ

In the case of no deformation (b ¼ i), if r ¼ 0, then the total equilib-
rium stress in Eq. (52) is unaffected by the magnetic induction and
if q ¼ r ¼ 0 then the equilibrium magnetic field in Eq. (53) is unaf-
fected by the underlying deformation. The coupling caused by the
parameters q and r between deformation and magnetic field is in-
verse to each other. The former causes a directly proportional rela-
tion of b�1 to he while the latter links b to he. Similarly qv and rv are
required for including these two-way coupling effects for the non-
equilibrium quantities.

For the case of no deformation of an isotropic material, the mag-
netic field should be in the direction of the applied magnetic induc-
tion and be directly proportional to the latter. From Eq. (53), this
imposes the constraint

qþ r > 0: ð54Þ

If r > 0, the material stiffens in the direction of the applied magnetic
induction while if ae > 0, the total stiffness of the material increases
isotropically. Both these effects have been observed to be the case in
many MREs, see, for example, the results of Jolly et al. (1996) and
Varga et al. (2006). However, this need not necessarily be true in
general for all magnetoelastic materials and r can have negative val-
ues. In this situation and the case of a material with weak magneto-
elastic coupling, i.e. very small values of r; we require q > 0 to
satisfy the constraint (54).

4. Numerical examples

In this section, we model four different types of experiments
and obtain the corresponding solutions numerically. The following
numerical values of the material parameters are used unless other-
wise stated to have a different value for individual computations

l0 ¼ 4p� 10�7 N=A2
; le ¼ 2:6� 105 N=m2;

lv ¼ 5� 105 N=m2;ae ¼ 0:3; me ¼ 1T2; n ¼ 0:3;
q ¼ r ¼ rv ¼ 1=l0; qv ¼ 5=l0: ð55Þ

The value of le is taken to be the value of shear modulus at zero
magnetic field for an elastomer filled with 10% by volume of iron
particles, cf., Jolly et al. (1996). Values of n; q and r are what have
been used by Otténio et al. (2008) and Saxena and Ogden (2011).
Values of lv ;ae; qv ; rv are within reasonable physical assumptions
and we analyse the dependence of our solutions on the values of
these parameters.

For computations in the following subsections, the equations
derived earlier are specialised to a uniaxial deformation and mag-
netisation in cartesian coordinates. The time-integration is per-
formed using a standard solver ode45 from Matlab that employs
an explicit Runge–Kutta scheme, cf., Shampine and Reichelt (1997).

4.1. Magnetic induction with no deformation

With a motivation to isolate and understand the effects of the
applied magnetic induction on the magneto-viscoelastic deforma-
tion process, we consider no deformation in this first case. Consider
an experiment with the sample held fixed at zero deformation
(k1 ¼ k2 ¼ k3 ¼ 1) and a sudden but constant magnetic induction
applied at time t ¼ 0. This results in the generation of a viscous
overstress and a temporary increment in the magnetic field, both
of which settle down to equilibrium values with time. Variations
of the total magnetic field h1 (component of h in the x1 direction)
and the total Cauchy stress s11 with time are plotted in Figs. 2–4
for the following values of the magnetic induction.

B2 ¼ B3 ¼ 0; B1 ¼
0; for t < 0;
0:1T; for t P 0:



ð56Þ

We study the dependence of the magneto-viscoelastic coupling
parameters qv and rv , and the applied magnetic induction B1 on
the relaxation of magnetic field and total Cauchy stress.

It is seen from Fig. 2a that a large value of qv causes a high initial
magnetic field but the decay to equilibrium value is also faster
when qv is high. In the case of the total Cauchy stress, as seen from
Fig. 2(b), qv has no effect on the initial viscous overstress but a
large qv also causes the stress to decay faster and reach the equilib-
rium value. This is expected since the expression for Sv in Eq. (48)
does not contain qv explicitly but the dependence comes through
the evolution Eq. (36). The parameter rv has a similar effect on
the magnetic field as does qv but different in the case of the total
Cauchy stress. As observed from Fig. 3, a large value of rv causes
a higher initial stress and a faster decay of the same to equilibrium.
The dependence of the relaxation processes on the applied mag-
netic induction is shown in Fig. 4. It is seen that the equilibrium
values for all curves are different in this case since they depend
on the value of applied magnetic induction. As expected from
Eqs. (52) and (53) a higher magnetic induction causes a larger mag-
netic field and a larger stress. It is also observed that the higher the
magnetic induction, the longer it takes for both the magnetic field
and the stress to relax and reach equilibrium.

4.2. Magnetic induction with a uniaxial deformation

In this case, we specify a deformation and a magnetic induction
in the x1 direction while allowing the material to move freely in x2

and x3 directions. The stretch k1 and the magnetic induction B1 are
applied at time t ¼ 0 and then the material is allowed to relax and
reach an equilibrium state. Variation of the magnetic field and the
total Cauchy stress with time are plotted in Figs. 5 and 6 for the
values

Tv ¼ 100 s; B1 ¼ 0:1 T; k1 ¼ 1:5; ð57Þ

unless otherwise stated to be different for individual problems.
It is observed from Fig. 5 that two different relaxations over dif-

ferent time scales occur in the total Cauchy stress s11 – one corre-
sponding to the evolution of Bv and other corresponding to that of
Cv . The decay for small time scale (up to 0.5 s) to reach an equilib-



Fig. 2. Variation of (a) the total magnetic field h1 (A/m) and (b) the principal total Cauchy stress s11 (N/m2) with time t (s) for no deformation in the presence of a step
magnetic induction B1 ¼ 0:1 T. Four curves correspond to different values of qv (i) qv ¼ 1=l0, (ii) qv ¼ 2=l0, (iii) qv ¼ 4=l0, (iv) qv ¼ 7=l0.

Fig. 3. Variation of (a) the total magnetic field h1 (A/m) and (b) the principal total Cauchy stress s11 (N/m2) with time t (s) for no deformation in the presence of a step
magnetic induction B1 ¼ 0:1 T. Four curves correspond to different values of rv (i) rv ¼ 1=l0, (ii) rv ¼ 2=l0, (iii) rv ¼ 4=l0, (iv) rv ¼ 7=l0.

Fig. 4. Variation of (a) the total magnetic field h1 (A/m) and (b) the principal total Cauchy stress s11 (N/m2) with time t (s) for different values of the magnetic induction B1 (i)
B1 ¼ 0:05 T, (ii) B1 ¼ 0:1 T, (iii) B1 ¼ 0:2 T, (iv) B1 ¼ 0:3 T.
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rium value is shown in Fig. 5(a) while that for a longer time scale
(up to 1000 s) is shown in Fig. 5(b). The four curves correspond
to four different values of the initial stretch. It should be noted that
the end point of a curve in Fig. 5(a) is the same as the starting point
of the corresponding curve in Fig. 5(b). A higher stretch causes an
increase in the equilibrium value of the magnetic field in Fig. 6(a)
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Fig. 6. Uniaxial stretch in x1 direction, B1 ¼ 0:1 T. Variation of (a) total magnetic field h1 (A/m) vs time t (s) for different values of the stretch k1. (i) k1 ¼ 1:5, (ii) k1 ¼ 2, (iii)
k1 ¼ 3, (iv) k1 ¼ 4; (b) principal total Cauchy stress s11 (N/m2) vs time t (s) for different values of parameter Tv (i) Tv ¼ 50 s, (ii) Tv ¼ 100 s, (iii) Tv ¼ 200 s, (iv) Tv ¼ 300 s.
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and also causes a faster relaxation to equilibrium value. As ex-
pected from the existing results of pure mechanical viscoelasticity,
cf., Hossain et al. (2012), a higher stretch leads to a larger value of
stress in Fig. 5 and a smaller value of Tv causes stress to relax faster
in Fig. 6(b).

4.3. Time dependent deformation

We now study the effects of the magneto-viscoelastic coupling
on a dynamic deformation of the material. In this case, calculations
are performed corresponding to an experiment where a magnetic
induction is applied at time t ¼ 0 and the material is stretched with
a constant rate in the x1 direction. On reaching k1 ¼ 3, stretch is re-
duced at the same rate until a condition of zero stress or zero
deformation (whichever earlier) is reached. Effects on the total
Cauchy stress and the total magnetic field of the applied magnetic
induction, the rate of stretch, and the parameters qv and rv is ana-
lysed in Figs. 7–9. The following values of the magnetic induction
and the stretch rate are used

B1 ¼ 0:2 T; _k1 ¼ �0:01 s�1; ð58Þ

unless otherwise stated to be different for individual calculations.
It is seen from Fig. 7(a) that the starting points of all four curves

are different corresponding to the stress induced due to the applied
magnetic induction. The stress first increases with time (due to an
increasing k1) and then falls with a decreasing k1 following a differ-
ent path than earlier. A higher magnetic induction leads to larger
value of the peak stress reached during the process. Similar curves
for different values of the stretch rates are shown in Fig. 7(b). A lar-
ger value of stretch rate causes a larger peak value of stress since
the material gets less time to relax as observed for the purely
mechanical viscoelastic case by Lion (1997) and Amin et al. (2006).

Similar variation of the magnetic field h1 with the stretch k1 can
be observed for large values of stretch rates since Tm is much smal-
ler than Tv . The results for these calculations are shown in Figs. 8
and 9 for k1 ¼ 2 as the value of the maximum obtained stretch.
As observed from Fig. 8, starting at t ¼ 0, the magnetic field first
falls and then rises due to an increase in k1. As k1 reduces, h1 comes
down approaching a steady equilibrium value. High values of qv
and rv cause a high initial magnetic field and a faster approach to-
wards the equilibrium.

Dependence of this process on the applied magnetic induction
and the stretch rate is shown in Fig. 9. The different start and
end points of the curves in Fig. 9(a) correspond to the values of
magnetic field caused by different magnetic inductions. A higher
magnetic induction causes a larger magnetic field while for a lower
value of stretch rate, as observed from Fig. 9(b), the magnetic field
approaches the steady equilibrium value earlier in the cycle.



Fig. 7. Principal total Cauchy stress s11 (N/m2) vs stretch k1. (a) Different values of the underlying magnetic induction (i) B1 ¼ 0, (ii) B1 ¼ 0:1 T, (iii) B1 ¼ 0:3 T, (iv) B1 ¼ 0:5 T.
(b) Different values of the stretch rate (i) _k1 ¼ �0:005 s�1, (ii) _k1 ¼ �0:02 s�1, (iii) _k1 ¼ �0:04 s�1, (iv) _k1 ¼ �0:08 s�1.

Fig. 8. Total magnetic field h1 (A/m) vs stretch k1 at a stretch rate _k1 ¼ �3 s�1. (a) Different values of the parameter qv (i) qv ¼ 1=l0, (ii) qv ¼ 3=l0, (iii) qv ¼ 5=l0, (iv)
qv ¼ 10=l0; (b) Different values of the parameter rv (i) rv ¼ 1=l0, (ii) rv ¼ 3=l0, (iii) rv ¼ 5=l0, (iv) rv ¼ 10=l0.

Fig. 9. Total magnetic field h1 (A/m) vs stretch k1. (a) Different values of the magnetic induction B1 at a stretch rate _k1 ¼ �3 s�1 (i) B1 ¼ 0:1 T, (ii) B1 ¼ 0:2 T, (iii) B1 ¼ 0:3 T,
(iv) B1 ¼ 0:4 T; (b) Different values of the stretch rate _k1 (i) _k1 ¼ 1 s�1, (ii) _k1 ¼ 2 s�1, (iii) _k1 ¼ 3 s�1, (iv) _k1 ¼ 4 s�1.
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4.4. Time dependent magnetic induction

In this case we study the effect of a time-varying magnetic
induction on the induced stress and magnetic field in an unde-
formed material. The sample is assumed to be fixed at zero
deformation and a magnetic induction is applied at time t ¼ 0
in the x1 direction with a constant rate until a value of
B1 ¼ 0:8 T is obtained. The induction is then reduced with the



Fig. 10. Time dependent magnetic induction, variation with the rate of magnetic induction (a) Total magnetic field h1 (A/m) vs magnetic induction B1 (T) (i) _B1 ¼ 1 T/s, (ii)
_B1 ¼ 2 T/s, (iii) _B1 ¼ 3 T/s, (iv) _B1 ¼ 4 T/s; (b) Principal total cauchy stress s11 (N/m2) vs magnetic induction B1 (T). (i) _B1 ¼ 1 T/s, (ii) _B1 ¼ 4 T/s.

Fig. 11. Time dependent magnetic induction, variation with the parameter qv (a) Total magnetic field h1 (A/m) vs magnetic induction B1 (T) (i) qv ¼ 0:1=l0, (ii) qv ¼ 1=l0, (iii)
qv ¼ 5=l0; (b) Principal total cauchy stress s11 (N/m2) vs magnetic induction B1 (T). (i) qv ¼ 0:1=l0, (ii) qv ¼ 5=l0.

Fig. 12. Time dependent magnetic induction, variation with the specific relaxation time Tm (a) Total magnetic field h1 (A/m) vs magnetic induction B1 (T) (i) Tm ¼ 1 s, (ii)
Tm ¼ 2 s, (iii) Tm ¼ 3 s; (b) Principal total cauchy stress s11 (N/m2) vs magnetic induction B1 (T). (i) Tm ¼ 1 s, (ii) Tm ¼ 3 s.
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same rate until it reaches zero. Numerical results for this case
are shown in Figs. 10–13. A value of _B1 ¼ 2 T/s is used to plot
the curves in Figs. 11–13.

It is observed from Fig. 10(a) that for a particular value of induc-
tion rate, the magnetic field increases with an increasing magnetic
induction and in the return cycle, it reduces to eventually obtain a
negative value. In the entire cycle, the material develops a magnet-
isation in the x1 direction due to the existing magnetic induction.
As the induction reduces to zero, the material has to develop a
magnetic field in the negative x1 direction to erase the magnetisa-
tion in x1 direction. Also, it can be seen by Eq. (4) that if b ¼ 0, then
h and m obtain opposite signs.

A higher rate of magnetic induction causes the magnetic field to
reach a high peak value and it also causes the magnetic field to
reach the maximum negative value when B vanishes completely.
Stress in this case has a rather interesting variation as observed
from Fig. 10(b). Starting from zero, the stress increases with an
increasing B1 and then falls as B1 is reduced to zero. However,
for a high induction rate of _B1 ¼ 4 T/s, in the return cycle the stress
approaches a minimum and then rises again.

A larger value of qv causes a higher value of peak magnetic field
and a larger negative value at the end of cycle as B1 ! 0. Moreover,
it also clearly causes larger energy dissipation during the cycle as
the area inside the curve (iii) of Fig. 11(a) is much larger than that
in curve (i). The stress in Fig. 11(b) has a higher peak value for a
smaller value of qv while a larger value of qv causes a higher stress
at the end of the cycle. A smaller value of the parameter Tm helps
the material to relax in lesser amount of time, hence the peak val-
ues of the magnetic field and stress reached in Fig. 12 in this case
are lower. A higher stretch in Fig. 13 causes a larger peak value of
the magnetic field.
5. Concluding remarks

We have presented a theory to model nonlinear magneto-visco-
elastic deformations in this paper. The deformation gradient is
multiplicatively decomposed and the magnetic induction is addi-
tively decomposed to ‘elastic’ and ‘viscous’ parts to take into ac-
count dissipation mechanisms. A Mooney–Rivlin type
magnetoelastic energy density function is used for the equilibrium
part, which is simplified to a neo-Hookean type energy density
function for the non-equilibrium part of the free energy. These,
along with thermodynamically consistent evolution laws, are used
to obtain numerical solutions corresonding to several different
magneto-viscoelastic deformations.

The magneto-viscoelastic parameters qv and rv can have strong
effects on the non-equilibrium magnetic field and the non-equilib-
rium total Cauchy stress by changing their peak values and the de-
cay times. Strong couplings are also shown to exist between the
magnetic induction and the non-equilibrium stress, and the under-
lying deformation and the non-equilibrium magnetic field, as is
evident from Figs. 4(b) and 6(a). We observe that a stretch rate
and a magnetic induction rate can have a considerable influence
on the total Cauchy stress and the magnetic field. The developed
model seems to capture the magneto-viscoelastic phenomena
quite nicely and on isolating mechanical viscoelastic effects, our re-
sults are qualitatively the same as those obtained earlier by Amin
et al. (2006) and Hossain et al. (2012).

It should be noted that the numerical results presented here are
representative solutions considering only one dissipation mecha-
nism in the body. The theory can be easily generalised to include
multiple mechanisms to match the experimental data. We have
considered a specific type of phenomenologically motivated con-
stitutive law for an isotropic material in this paper. The theory
for an anistropic material and possibility of existence of other con-
stitutive laws (such as those derived from micromechanics of the
material) will be discussed in forthcoming contributions.
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