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Abstract

This survey examines the state of the art of a variety of problems related to pseudo-Boolean
optimization, i.e. to the optimization of set functions represented by closed algebraic expressions.
The main parts of the survey examine general pseudo-Boolean optimization, the specially impor-
tant case of quadratic pseudo-Boolean optimization (to which every pseudo-Boolean optimization
can be reduced), several other important special classes, and approximation algorithms. ? 2002
Elsevier Science B.V. All rights reserved.

1. Introduction

Set functions, i.e. mappings from the family of subsets of a /nite ground set to
the set of reals, have been present in the mathematical literature for more than a
century, with a substantial development of this area starting in the early 1950s. The
importance of set functions in game theory and optimization brought them to the full
focus of attention of applied mathematicians, especially of those working in opera-
tions research. This increased interest in set functions is motivated by their presence
in the mathematical models of a wide spectrum of problems occurring in a variety of
applications.

Set functions are frequently considered as being de/ned by an oracle, or more
speci/cally, by an algorithm capable of delivering their values for any subset of
the given /nite ground set. Any graph parameter (e.g., chromatic number, stability
number, etc.) associated to the subgraphs induced by a subset of the vertices of a
given graph is an example for such a set function. However, in numerous exam-
ples a set function can be de/ned by a closed algebraic formula, an advantageous
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special case of an oracle. As a trivial example, we can think of the cardinality of
a subset S of the /nite ground set X = {1; 2; : : : ; n} being given by |S| = x1 + x2 +
· · · + xn, where (x1; x2; : : : ; xn) is the characteristic vector of the subset S. Several
other examples of set functions given by closed algebraic formulae will be given in
Section 3.

The explicit knowledge of closed algebraic representations of set functions makes
possible the application of a substantially larger set of mathematical techniques and re-
sults for their analysis and optimization. For instance, results of convex and nonconvex
analysis, and various other techniques of nonlinear programming can thus be directly
applied to problems, which are otherwise discrete in nature. It is important to remark
that every set function de/ned on a /nite ground set admits closed form algebraic rep-
resentations. However, the derivation of such a form can be computationally di3cult,
or even intractable in some cases.

In this paper we shall focus on those set functions which are de/ned on a /nite
ground set and are given by closed algebraic formulae, and shall pay special attention
to the case of multi-linear polynomial representations. Because of the analogy with
Boolean functions, these functions will be called pseudo-Boolean.

The natural connections between pseudo-Boolean functions and nonlinear binary op-
timization have motivated and strongly inFuenced some of the /rst studies in this area
(see e.g. [72,87,88,91]). Since then the study of pseudo-Boolean functions grew to a
major area of research with hundreds of related publications in the last 30 years (see
e.g. [94,95]).

Pseudo-Boolean functions appearing in polynomial (or other algebraic) representation
play a major role in optimization models in a variety of areas, including VLSI design
(via minimization [17,34]), statistical mechanics (spin glasses [17,50]), reliability the-
ory (fault location [137]), computer science (maximum satis/ability [114]), statistics
(clustering [145] and ranking [144]), economics [92], /nance [105,120,121], opera-
tions research (location [73,141,162]), management science (project selection [165]),
discrete mathematics (graphs, hypergraphs and networks [61,74,91,140,156]), manufac-
turing (production and scheduling [9,48,118]).

Beside optimization problems, pseudo-Boolean functions also appear in many other
models of current interest. They constitute for instance the main object of investiga-
tion in cooperative game theory, where they are viewed as characteristic functions of
games with side-payments [86,132,134,155]. They are used in various models of the-
oretical physics, where they describe the Hamiltonian energy function of spin glass
systems [115,126,167] and of neural networks [6,107,138]. They occur in combinato-
rial theory, as rank functions of matroids [44,164], or as functions associated with
certain graph-parameters, such as stability number, chromatic number, etc. [21,61,
133,156]).

In this paper we present a brief overview of the theory and algorithmic aspects
of pseudo-Boolean functions and their optimization. Due to the large volume of re-
lated research, our survey is far from complete. We focus on results and techniques
speci/c to this type of representation of set functions, with particular attention being
paid to special classes, including quadratic, sub- and supermodular, and hyperbolic
pseudo-Boolean functions.
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2. De�nitions and notations

Let us denote by R the set of reals, by Z the set of integers, and let B = {0; 1}
and U= [0; 1]. Further let n denote a positive integer, and let V = {1; 2; : : : ; n}. For a
subset S ⊆ V let us denote by 1S ∈Bn its characteristic vector, i.e.

1Sj =

{
1 if j∈ S;

0 otherwise:

We shall consider functions in n binary variables, denoted by x1, x2; : : : ; xn, and
shall use x= (x1; : : : ; xn)∈Bn to denote a binary vector, as well as the vector of these
variables. In many situations the binary values 0 and 1 are used to encode unordered
bivalent attributes, and play a perfectly symmetric role. It is natural to work both

with the variables xi and with their complements Kxi
def= 1− xi, for i∈V, called together

literals. Let L= {x1; Kx1; : : : ; xn; Kxn} denote the set of literals.
Mappings f :Bn �→ R are called pseudo-Boolean functions. Since there is a one-to-

one correspondence between the subsets of V and the set of binary vectors Bn, these
functions are in fact set functions, i.e. mappings which associate a real value to every
subset of a /nite set. In this survey we shall refer to f as a set function, whenever
we want to emphasize that the values of f are given in some implicit way (e.g. via
an oracle), and we shall call it a pseudo-Boolean function if it is given explicitly by
an algebraic expression.

The simplest, and perhaps least e3cient, way of representing a pseudo-Boolean func-
tion is by a table listing the real values f(x) corresponding to every binary vector
x∈Bn.

As we shall see later, all pseudo-Boolean functions can be uniquely represented as
multi-linear polynomials, of the form

f(x1; : : : ; xn) =
∑
S⊆V

cS
∏
j∈S

xj: (1)

By convention, we shall always assume that
∏

j∈∅ xj = 1.
The size of the largest subset S ⊆ V for which cS 
= 0 is called the degree of f, and

is denoted by deg(f). We shall call a pseudo-Boolean function f linear (quadratic,
cubic, etc.) if deg(f)6 1 (6 2; 3, etc.)

The size of an expression (1) is the total number of variable occurrences in it, i.e.

size(f) def=
∑

S:cS �=0

|S|: (2)

Let us associate to a pseudo-Boolean function f its ith derivative,

�i(x) def=
@f
@xi

(x)

= f(x1; : : : ; xi−1; 1; xi+1; : : : ; xn)− f(x1; : : : ; xi−1; 0; xi+1; : : : ; xn) (3)
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and its ith residual

�i(x) def= f(x)− xi�i(x) (4)

for all indices i∈V. Let us notice that the functions �i and �i are themselves pseudo-
Boolean functions, which depend on all the variables, but xi.

Frequently, pseudo-Boolean functions are also represented as posiforms, i.e. polyno-
mial expressions in terms of all the literals, having the form

�(x1; : : : ; xn) =
∑
T⊆L

aT

∏
u∈T

u; (5)

where aT ¿ 0 whenever T 
= ∅. It is also customary to assume that aT =0 if {u; Ku} ⊆ T
for some u∈L, since otherwise the product

∏
u∈T u is identically zero over Bn.

Similarly to the case of polynomial expressions, let us call the size of the largest
subset T of literals for which aT 
= 0 the degree of the posiform �, and denote it by
deg(�); let us call a posiform � linear (quadratic, cubic, etc.) if deg(�)6 1 (6 2; 3,
etc.) Furthermore, let us measure the size of a posiform as the total number of literal
occurrences in it, i.e.

size(�) def=
∑

T :aT �=0

|T |: (6)

For the purpose of analyzing algorithms, the sum of the coe3cients

A(�) def=
∑
T �=∅

aT (7)

will also be frequently needed.
It is obvious that a posiform (5) determines uniquely a pseudo-Boolean function.

However, the reverse is not true: a pseudo-Boolean function can have many diMerent
posiforms representing it. Let us also add that while it is computationally easy to gen-
erate a posiform from a polynomial expression (1), it might be computationally di3cult
to generate the unique polynomial expression corresponding to a given posiform.

In the sequel, we shall use the letters x, y, and z to refer to variables, u, v, and w to
refer to literals., and bold face letters x, y, p, etc., to denote vectors. The letters f, g
and h will usually denote pseudo-Boolean functions as well as their unique multi-linear
polynomial expressions, while the greek letters � and  will denote posiforms.

In this survey we shall consider minimization and maximization problems; when-
ever it is not necessary to specify which one is considered, we shall simply speak of
optimization (or simply opt) to refer to any one of them.

3. Examples

There are a large number of combinatorial optimization models, which arise naturally
or can be formulated easily as pseudo-Boolean optimization problems. In this section
we recall some of these (mostly well-known) formulations.
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One of the simplest problems of this type is well-known in algorithmic graph theory.
Given a graph G = (V; E) with vertex set V and edges set E, a subset S ⊆ V is called
independent, if no edge of G has both its endpoints in S. In the maximum independent
set problem we need to /nd the largest cardinality independent set, the cardinality of
which we shall denote by �(G). It is easy to show that

�(G) = max
x∈BV


∑

i∈V

xi −
∑

(i; j)∈E

xixj


 ;

holds for every graph, furthermore that if x∗ = 1S is a maximizing binary vector of
the above quadratic function, then a maximum cardinality independent set S∗ of G (in
fact with S∗ ⊆ S) can be obtained in O(n) time.

The complement V \ S of an independent set S of G is called a vertex cover of the
graph. Denoting by �(G) = |V | − �(G) the size of a smallest vertex cover of G, it is
easy to show that

�(G) = min
x∈BV


∑

i∈V

xi +
∑

(i; j)∈E

Kxi Kxj


 :

The above formulations can be extended analogously to the weighted variants of
these problems, as well as to hypergraphs. For instance, given a hypergraph H ⊆ 2V ,
a subset S of its vertices is called a vertex cover of H (known also as a hitting set) if
S ∩H 
= ∅ for all hyperedges H ∈H. Denoting by �(H) the size of a smallest vertex
cover, it can be shown that

�(H) = min
x∈BV

(∑
i∈V

xi +
∑
H∈H

∏
i∈H

Kxi

)
:

This optimization problem can also be viewed as a pseudo-Boolean formulation of the
equivalent set covering problem (over the transposed hypergraph.)

For a subset S of vertices of a graph G = (V; E), let us denote by  (S) the number
of edges with exactly one endpoint in S. The maximum cut problem is to /nd a subset
S which maximizes  (S). Using the characteristic vector x = 1S to represent a subset
S, we can easily see that

max
S⊆V

 (S) = max
x∈BV


 ∑

(i; j)∈E

(xi Kxj + Kxixj)


 :

A graph G = (V; E) is called signed if the edge set is partitioned E = E+ ∪ E−

into two (disjoint) subsets, called positive, and negative edges, respectively. A signed
graph is called balanced if every cycle of it involves an even number of nega-
tive edges. The signed graph balancing problem consists in /nding a minimum car-
dinality subset F of edges in a signed graph G, the removal of which makes G
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balanced. Denoting by "(G) the size of such a minimum edge set, we can immediately
see that

"(G) = min
x∈BV


 ∑

(i; j)∈E+

(xi Kxj + Kxixj) +
∑

(i; j)∈E−
(xixj + Kxi Kxj)


 :

The maximum satis9ability problem, one of the most frequently studied problems
in the recent applied mathematics=theoretical computer science literature, has also a
natural pseudo-Boolean formulation. In this problem the input consists of a family C
of subsets C ⊆ L of literals, called clauses. We say that a binary assignment x∈BV

is satisfying such a clause C ⊆ L, if the (Boolean) disjunction of the literals in C
takes value 1 (true) for this assignment. The maximum satis/ability problem consists
in /nding a binary assignment satisfying the maximum number of clauses of C. It
is easy to see that x∈BV satis/es a clause C iM

∏
u∈C Ku = 0. Thus, the problem is

equivalent with the pseudo-Boolean maximization problem

max
x∈BV

(∑
C∈C

(
1−

∏
u∈C

u

))
:

In the weighted version of the problem there is also a nonnegative weight aC associated
to every clause C ∈C, and the objective is to maximize the total weight of satis/ed
clauses

max
x∈BV

(∑
C∈C

aC

(
1−

∏
u∈C

u

))
:

4. General pseudo-Boolean functions

4.1. Representations of pseudo-Boolean functions

In this section we review a few basic properties of multi-linear polynomial and
posiform representations of a pseudo-Boolean function, starting with the non-uniqueness
of posiform representations.

Example 4.1. Let us show /rst on a small example that pseudo-Boolean functions
can have diMerent posiform representations. Consider for this the following two
posiforms:

 1 = 5x1 + 4 Kx1 Kx2x3 + 7x1x2x4 + 9x3 Kx4; (8)

and

 2 = x1 + 4x1x2 + 4x1 Kx2 Kx3 + 7x1x2x4 + 4 Kx2x3 + 9x3 Kx4: (9)
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It is easy to verify that in fact both posiforms de/ne the same pseudo-Boolean function
g : B4 �→ R given by the table

x g(x)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 13
0 0 1 1 4
0 1 0 0 0
0 1 0 1 0
0 1 1 0 9
0 1 1 1 0
1 0 0 0 5
1 0 0 1 5
1 0 1 0 14
1 0 1 1 5
1 1 0 0 5
1 1 0 1 12
1 1 1 0 14
1 1 1 1 12

Let us observe next that if a pseudo-Boolean function f :Bn �→ R is represented by
a posiform � (5), then

a∅6 min
x∈Bn

f(x): (10)

This trivial observation will serve us handily, when looking for lower bounds to a
minimization problem. Let us show next that in fact

Proposition 1. Every pseudo-Boolean function f :Bn �→ R can be represented by a
posiform � for which

a∅ = min
x∈Bn

f(x):

Proof. Let us start by de/ning a∅ = minx∈Bn f(x); as in the statement. Let us further
de/ne for every binary vector y∈Bn a corresponding set of literals L(y) ⊆ L by setting

L(y) def= {xi|yi = 1; i∈V} ∪ { Kxi|yi = 0; i∈V}; and let aL(y) = f(y)− a∅ for all y∈Bn.
We claim that with this notation

&f(x) = a∅ +
∑
y∈Bn

aL(y)

∏
u∈L(y)

u (11)

is indeed a posiform representing f. To verify this claim we can notice that aL(y)¿ 0
for all y∈Bn by the above de/nitions; that the term (

∏
u∈L(y) u)(x) =0 for all binary
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vectors x 
= y; and that this term takes the value 1 if x = y. Hence; in every x∈Bn

&f(x) = a∅ + aL(x) = f(x).

Let us remark that posiform (11) is in fact uniquely de/ned for every pseudo Boolean
function f. We shall call this unique posiform &f the min-term representation of f.

Let us prove next that every pseudo-Boolean function has a unique multi-linear
polynomial representation.

Proposition 2 (Hammer et al. [87], Hammer and Rudeanu [91]). Every pseudo-Boolean
function f :Bn �→ R has a unique multi-linear polynomial representation of form (1).

Proof. We need to show that the values of f over Bn determine uniquely the coe3-
cients cS ; S ⊆ V in (1). Let us show this by induction on the size of these subsets.
Clearly; f(0; 0; : : : ; 0) = c∅; and hence c∅ is uniquely determined by the value f(1∅).

Let us assume next that the coe3cients cT are already shown to be unique for all
subsets T of size less than k, and let S ⊆ V be a subset of size k. By observing that

f(1S) =
∑
T⊆S

cT ;

we obtain

cS = f(1S)−
∑
T⊂S

cT : (12)

Since all terms on the right-hand side have unique values, in view of (12) the same
holds for cS , thus completing the proof.

Example 4.2. The function g in Example 4.1 has

g(x1; x2; x3; x4) = 5x1 + 13x3 − 4x1x3 − 4x2x3 − 9x3x4 + 4x1x2x3 + 7x1x2x4

as its unique multi-linear polynomial form.

It will be useful later to express the derivatives and the residuals of a pseudo-Boolean
function in terms of the coe3cients of its multi-linear polynomial expression.

Proposition 3. Given a pseudo-Boolean function f by its multi-linear polynomial ex-
pression (1); we have the following equalities for its derivatives (3) and residuals (4)
for all indices i∈V:

�i(x) =
∑

S⊆V\{i}
cS∪{i}

∏
j∈S

xj and �i(x) =
∑

S⊆V\{i}
cS
∏
j∈S

xj: (13)

Proof. Immediate from (1) by elementary calculations.

Example 4.3. For illustration; if f(x1; x2)=−1+3x1 +4x2−2x1x2; then �1(x)=3−2x2;
and �1(x) =−1 + 4x2; etc.
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4.2. Rounding procedures and derandomization

Let us note that (1) can also be viewed as a real valued expression, which can be
evaluated for any real vector r∈Rn.

Proposition 4 (Boros and PrOekopa [37], Rosenberg [148]). Let us consider a pseudo-
Boolean function f given by (1); and let r∈Un. Then there exist binary vectors
x; y∈Bn for which

f(x)6f(r)6f(y); (14)

furthermore; such vectors can be generated in O(size(f)) time.

Proof. We shall give a constructive proof only for the existence of x; since an analo-
gous procedure will work for the existence of y.

ROUNDDOWN (f; r)
Initialize: Set t = 0 and q0 = r.
Loop: While there exists an index j∈V for which 0¡qj ¡ 1:

Set t = t + 1 and de/ne

qt
i =




qt−1
i if i 
= j;

0 if i = j and �j(qt−1)¿ 0;

1 otherwise:
Output: Set x = qt .

Let us note /rst that in every iteration of the above procedure one of the fractional
components is changed to an integral one, and hence ROUNDDOWN terminates in at most
n iterations by outputting a binary vector x.

Let us also observe that if j is the index chosen in the tth iteration then we have
�j(qt)=�j(qt−1) and �j(qt)=�j(qt−1), since these functions depend only on the vari-
ables xi for i 
= j, and since the vectors qt and qt−1 diMer only in their jth components.
Thus the inequality

f(qt−1)− f(qt) = (qt−1
j − qtj)�j(qt−1)¿ 0

holds by the update rule in the core of the Loop, and hence we have

f(x) = f(qt)6f(qt−1)6 · · ·6f(q1)6f(q0) = f(r):

To see the claimed complexity, we need to organize these computations carefully.
First of all we can preselect the fractional components of r in O(n) steps, and build
a variable-term data structure, and pre-compute the values of the terms of (1) in
O(size(f)) steps. After this, each selection in the Loop can be executed in constant
time, and both the evaluation of �j and the update of the values of the terms (of
those which depend on the jth component) can be executed in time proportional to
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the number of occurrences of xj in (1). Hence the total time of the algorithm after the
pre-computations is O(size(f)), thus proving our claim.

Let us remark that by changing the inequality in the core of the Loop of the above
procedure, we obtain an increasing sequence of function values, and produce a binary
vector y. We shall refer to that version of the above procedure as ROUNDUP(f; r).

The above simple properties have a number of consequences. To state them, we
need a few more de/nitions.

Let us introduce the notation ArgoptD(f) for the subset consisting of the points of
D which are optimal solutions of the optimization problem optx∈Df(x). Let us further
introduce the generic notations rmin ; rmax; xmin and xmax to denote an arbitrary optimiz-
ing vector for the respective optimization problems, i.e. rmin ∈ArgminUn(f); rmax ∈
ArgmaxUn(f); xmin ∈ArgminBn(f), and xmax ∈ArgmaxBn(f).

Example 4.4. Returning to the pseudo-Boolean function g in Example 4.1; we can see
that

ArgminB4 (g) = {(0; 0; 0; 0); (0; 1; 0; 0); (0; 0; 0; 1); (0; 1; 0; 1); (0; 1; 1; 1)};
ArgmaxB4 (g) = {(1; 0; 1; 0); (1; 1; 1; 0)};
ArgminU4 (g) = {(0; a; 0; b); (0; 1; c; 1)|06 a; b; c6 1};

and

ArgmaxU4 (g) = {(1; a; 1; 0)|06 a6 1}:

The /rst consequence we can draw easily from the above properties is that both the
maximization and the minimization of a pseudo-Boolean function over Bn can in fact
be viewed as continuous nonlinear optimization problems over Un.

Corollary 1. For any pseudo-Boolean function f

opt
x∈Bn

f(x) = opt
r∈Un

f(r):

Proof. On the one hand; Un ⊃ Bn implies that

min
q∈Un

f(q)6 min
x∈Bn

f(x)6max
x∈Bn

f(x)6max
q∈Un

f(q): (15)

On the other hand, applying ROUNDDOWN(f; rmin), we can obtain by Proposition 4 a
binary vector x∈Bn for which f(x)6f(rmin), and hence minx∈Bnf(x)6f(rmin) =
minq∈Unf(q) follows, implying minq∈Unf(q)¿minx∈Bnf(x). This, together with (15)
implies that

min
x∈Bn

f(x) = min
q∈Un

f(q):
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Similarly, applying ROUNDUP(f; rmax), we can verify that

max
x∈Bn

f(x) = max
q∈Un

f(q):

Another, algorithmic consequence of Proposition 4 is the existence of linear time
“rounding” procedures, which can be viewed as e3cient ways of “derandomization”.

Proposition 5. Let us assume that the binary variables xi; i∈V are independent ran-
dom variables with Prob(xi = 1) = pi and Prob(xi = 0) = qi

def= 1− pi for i∈V; where
p=(p1; : : : ; pn)∈Un is a given vector of the probabilities de9ning the distribution. Let
further f : Bn �→ R be a pseudo-Boolean function given by (1). Then the expected
value of f is

Exp[f] = f(p):

Proof. Since the sum of the expectations of random variables is the same as the
expectation of their sum; it is enough to show that

Exp


cS∏

j∈S

xj


= cS

∏
j∈S

pj

for an arbitrary term of (1). This latter equality follows readily by the independence
of the variables; since that implies

Exp


cS∏

j∈S

xj


= cS

∏
j∈S

Exp[xj] = cS
∏
j∈S

pj:

Let us note that only multi-linearity was needed for the above proof, hence the same
property will also hold for any posiform.

In view of the above result, we can regard ROUNDDOWN and ROUNDUP as e3cient
derandomizations, since e.g. for a fractional vector p∈Un a simple probabilistic argu-
ment guarantees the existence of a binary vector x∈Bn with f(x)6Exp[f], while
ROUNDDOWN provides an e3cient deterministic way of generating such a vector.

This kind of probabilistic arguments are frequently used in combinatorics and in
various approximation algorithms for combinatorial optimization problems (see e.g.
[5,69,70]), and the above simple rounding procedures are special cases of the “proba-
bilistic rounding” technique based on conditional probabilities, introduced in
[37,142,143]. When started from p = ( 1

2 ; : : : ;
1
2 ), ROUNDDOWN is essentially equivalent

with the heuristic procedure proposed in [109].

4.3. Local optima

In this section, following the presentation of [91], we shall recall some necessary
conditions of optimality. To avoid unnecessary repetitions, we shall state results only
for the case of minimization problems, although similar necessary conditions can be
stated for maximization problems, as well.
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Let us associate to a binary vector x∈Bn its neighborhood N (x), de/ned as

N (x) = {y|1H (x; y)6 1}; (16)

where 1H (x; y) denotes the so-called Hamming distance of the vectors x and y, de/ned
as the number of components in which these two vectors diMer.

Given a pseudo Boolean function f : Bn �→ R, a binary vector x∈Bn is called a
local minimum of f if f(y)¿f(x) for all neighboring vectors y∈N (x). Let us add
that of course every (global) minimum of f is also a local minimum.

Proposition 6. Given a pseudo-Boolean function f; a binary vector x∈Bn is a local
minimum of f if and only if

xi =

{
1 if �i(x)¡ 0;

0 if �i(x)¿ 0
(17)

for all i∈V.

Proof. Let us denote by yi the binary vector obtained from x by switching its ith
component. Then; by the above de/nition; x is a local minimum iM f(yi)¿f(x) for
all indices i∈V. In view of (4) and of the fact that x and yi diMer only in their ith
components; we have

f(yi) = yi
i�i(yi) + �i(yi) = (1− xi)�i(x) + �i(x)

for i∈V. Hence

f(yi)− f(x) = (1− 2xi)�i(x)

follows for every index i∈V. Thus f(yi)¿f(x) implies (17); for all i∈V.

Let us note that, given a binary vector x∈Bn, conditions (17) are very easy to test.
Even if the pseudo-Boolean function f is given only by an oracle, the derivatives can
be evaluated by n + 1 calls to this oracle (by obtaining the values for f(x) and for
f(yi) for i∈V, as in the proof above.)

The above set of conditions inspired a large number of heuristic algorithms, the so
called local search methods. These algorithms focus on /nding a local minimum, in
the hope that it turns out to be a global one, as well.

LOCALSEARCH(f; x0)
Input: A pseudo-Boolean function f and a binary vector x0 ∈Bn. Set

k = 0. [It is assumed that for every binary vector x∈Bn there
exists a well de/ned and computable subset N (x) ⊆ Bn, called
the neighborhood of x.]

Iteration:While there exists y∈N (xk) for which f(y)¡f(xk), let
xk+1 = y and set k = k + 1.

Output: RETURN the local minimum xk of f.
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Though, these algorithms tend to work very well and fast in practice, theoretical
guarantees for e3ciency exist only in some special cases. Finding a local minimum
remains, in general, a di3cult problem, even in cases when the number of local minima
is very large (see e.g. [96,110,157,158]), and even for special classes of pseudo-Boolean
functions [82]. A further complication is that the number of local minima can indeed be
very large (e.g., exponentially large in the input size of the problem) even for quadratic
pseudo-Boolean functions (see e.g. [112]), and obviously, not all of those are equally
good solutions. A natural idea to increase the chances that a local minimum is also a
global one is to use larger neighborhoods (e.g., considering all points within Hamming
distance k, for k = 2; 3; : : :). Unfortunately, not only the computational cost of each
iteration increases by this, but there are results indicating that, in a worst-case sense (see
e.g. [151,161]) even the use of substantially larger neighborhoods will not necessarily
yield better results either. Various techniques have been proposed in the literature for
the implicit handling of much larger neighborhoods without a sharp increase in the
computational cost of the iterations. Perhaps the most successful and most widely
applied such method is the so called tabu search algorithm, see e.g. [64,65].

Let us add that continuous local optimization techniques are e3cient for the mini-
mization of a convex (or maximization of a concave) function, since any local optimum
of those is also a global one. Recognition of convexity or concavity of some continu-
ous extensions of pseudo-Boolean functions is hence important, and considered also in
the literature (see e.g. [41,42,124]). Other techniques modify the function to achieve
convexity (or concavity) by giving up multi-linearity of the objective function (see e.g.
[90,117]).

4.4. Reductions to quadratic optimization

In this section we recall from [149] that the optimization of a pseudo-Boolean func-
tion can always be reduced in polynomial time to the optimization of a quadratic
pseudo-Boolean function. The basic idea in this reduction is the substitution of the
product of two variables by a new one, and the addition of appropriate penalty terms
having the role of forcing, at any point of optimum, the new variable to take the value
of the product of the two substituted variables.

The following simple observation provides the basic tool for such a substitution.

Observation 1. Assume that x; y; z ∈B. Then the following equivalences hold:

xy = z iM xy − 2xz − 2yz + 3z = 0;

and

xy 
= z iM xy − 2xz − 2yz + 3z¿ 0:

These equivalences can easily be veri/ed by trying out all 8 possible binary substi-
tutions for the variables x; y, and z. Let us further remark that, of course, the above
quadratic expression is not the only one for which such equivalences would hold.

Since a quadratic constraint can be eliminated by inserting the corresponding expres-
sion into the objective function as a penalty term (with a large multiplier), the above
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equivalences suggest the following method for reducing a pseudo-Boolean minimization
problem to a quadratic one:

REDUCEMIN(f)
Input: A pseudo-Boolean function f given by its multi-linear

polynomial form (1).

Initialize: Set M def= 1 + 2
∑

S⊆V |cS |; m = n, and fn = f.
Loop: While there exists a subset S∗ ⊆ V for which |S∗|¿ 2 and

cS∗ 
= 0 repeat:
1. Choose two elements i and j from S∗ and update

c{i; j} = c{i; j} + M; set
c{i;m+1} = c{j;m+1} =−2M and
c{m+1} = 3M; and

for all subsets S ⊇ {i; j} with cS 
= 0 de/ne
c(S\{i; j})∪{m+1} = cS and set cS = 0:

2. De/ne fm+1(x1; : : : ; xm+1) =
∑

S⊆V cS
∏

k∈S xk , and set
m = m + 1.

Output: Set g = fm.

Theorem 1 (Rosenberg [149]). REDUCEMIN(f) terminates in polynomial time in the
size of f; and produces a pseudo-Boolean function g in m variables; the size of which
is polynomially bounded in size(f); and such that

min
y∈Bm

g(y) = min
x∈Bn

f(x):

Proof. In the main loop of the above algorithm we replace each occurrence of xixj by
xm+1; and we add the expression M (xixj − 2xixm+1− 2xjxm+1 + 3xm+1) to the objective
function.

Hence, by Observation 1 and by our choice of M we have fm+1(x1; : : : ; xm+1) =
fm(x1; : : : ; xm)6maxx∈Bmfm(x)¡M=2 whenever xm+1=xixj, and fm+1(x1; : : : ; xm+1)¿
M=2 whenever xm+1 
= xixj. Thus,

min
y∈Bm+1

fm+1(y) = min
x∈Bm

fm(x);

implying the claimed equality of the minima.
It also follows that the number of those terms in fm+1 for which cS 
= 0; |S|¿ 2 is

at least one less than in fm, hence the algorithm must terminate in at most size(f)
iterations, proving the claim about complexity.

Example 4.5. Let us consider the following pseudo-Boolean function:

f(x1; x2; x3; x4; x5) def= 5x1x2 − 7x1x2x3x4 + 2x1x2x3x5:
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Applying REDUCEMIN to this function we get initially M = 1 + 5 + 7 + 2 = 15; m = 5
and f5 = f. We can choose in the Loop /rst i = 1 and j = 2 and we get

c1;2 = c1;2 + M = 20;

c1;6 = c2;6 =−2M =−30;

and

c6 = 3M = 45;

and for the two terms containing both x1 and x2 we get

c3;4;6 = c1;2;3;4 =−7;

c1;2;3;4 = 0;

c3;5;6 = c1;2;3;5 = 2;

and

c1;2;3;5 = 0:

Thus; we obtain

f6 = 45x6 + 20x1x2 − 30x1x6 − 30x2x6 − 7x3x4x6 + 2x3x5x6:

Since there are still terms of degree higher than 2; we have to repeat the Loop; and
can choose e.g. i = 3 and j = 6; yielding

c3;6 = c3;6 + M = 15;

c3;7 = c6;7 =−2M =−30;

and

c7 = 3M = 45;

while for the two terms containing both x3 and x6 we get

c4;7 = c3;4;6 =−7;

c3;4;6 = 0;

c5;7 = c3;5;6 = 2;

and

c3;5;6 = 0:

Therefore; for m = 7 we obtain

f7 = 45x6 + 45x7 + 20x1x2 − 30x1x6 − 30x2x6 + 15x3x6 − 30x3x7

− 7x4x7 + 2x5x7 − 30x6x7:

Since there are no non-quadratic terms left; the algorithm terminates outputting g=f7.
It is easy to verify that indeed;

min
x∈B5

f(x) = min
y∈B7

g(y) =−2
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and that the relations x6 = x1x2 and x7 = x3x6 provide a one-to-one correspondence be-
tween the minima of these functions; i.e. between the sets ArgminB5 (f)={(1; 1; 1; 1; 0)};
and ArgminB7 (f7) = {(1; 1; 1; 1; 0; 1; 1)}.

One might hope for a more e3cient reduction by trying to substitute at a time 3 (or
more) variables with a new one. It is easy to see however that the above procedure
cannot be generalized in this way:

Observation 2. There is no quadratic pseudo-Boolean function f(x; y; z; u) (in four
binary variables) for which f(x; y; z; u) = 0 if u = xyz; and f(x; y; z; u)¿ 0 whenever
u 
= xyz.

Let us note also that the number of (new) variables in the /nal output depends
clearly on the selection of the pairs i; j in the Loop of the above algorithm. One could
try to minimize the number of (new) variables by /nding a better selection procedure
for these pairs. However, this optimization problem is NP-hard, even for cubic inputs,
as shown by the following simple observation.

Observation 3. Let us consider a graph G= (V; E); and de/ne a pseudo-Boolean func-
tion

f(x0; x1; : : : ; xn) =
∑

(i; j)∈E

ai; jx0xixj;

where the coe3cients ai; j are arbitrary reals for all (i; j)∈E. Let us denote by m
the smallest number for which REDUCEMIN(f) produces a quadratic pseudo-Boolean
function g in m binary variables. Then;

m = n + �(G);

where �(G) denotes the size of a smallest vertex cover of the graph G.

Clearly, this shows that determining the smallest m is not easier then computing the
vertex cover of a graph, which is known to be NP-complete (see e.g. [63]).

4.5. Persistency

Let us return now to posiforms, and review some of their speci/c properties. Let
us /rst recall the trivial fact that all (nonconstant) terms of (5) have nonnegative
coe3cients, and hence their sum can never be less than zero. This implies that, in a
way, minimizing a posiform is essentially the same as trying to make as many of its
terms as possible vanish. This is evident e.g. in the maximum satis9ability (or in short
MAX-SAT) problem, which is equivalent with the minimization of a given posiform
� in which a∅ = 0, with the important exception that the objective there is stated as

max
x∈Bn

(A(�)− �(x));

i.e. as the maximization of the total weight of terms which can be made to vanish
simultaneously (and not as the minimization of �.) Recall that A(�) denotes the sum
of the coe3cients of the posiform �, as de/ned in (7).
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This idea also gives us the possibility to recognize whether a partial assignment of
binary values to some of the variables is “optimal” in some sense. For this, let us call
a binary vector y∈BS corresponding to a subset S ⊆ V a partial assignment. (Note
that Bn is only a simpler and possibly more conventional notation used instead of the
more accurate notation BV.) Furthermore, for a subset S ⊆ V of indices and a vector
x∈Bn, let us denote by x[S]∈BS the subvector corresponding to the indices in S, i.e.
x[S] = (xi|i∈ S). For a partial assignment y∈BS and for a vector x∈Bn, let us de/ne
the switch of x by y to be the binary vector z de/ned by

zj =

{
xj if j 
∈ S;

yj if j∈ S

and let us denote it by z= x[S ← y]. For example, if n = 5; S = {1; 2; 5} and y is the
partial assignment y1 = 1; y2 = 0, and y5 = 1, then the switch of x = (1; 1; 1; 0; 0) by
y will be the vector z = (1; 0; 1; 0; 1).

Given a pseudo-Boolean function f, and a partial assignment y∈BS for some subset
S ⊆ V, following [79] we shall say that strong persistency holds for f at y, if for all
x∈ArgminBn(f) we have x[S] = y, i.e. if the restriction of all minimizing points of
f to S coincide with the partial assignment y. Weak persistency is said to hold for
f at y if x[S ← y]∈ArgminBn(f) holds for all x∈ArgminBn(f), i.e. if a switch by
the partial assignment y in a minimizing point always results in a minimizing point.
Clearly, strong persistency implies weak persistency.

There are several examples for persistency observed in the literature, including both
weak and strong persistency for quadratic pseudo-Boolean functions [79], weak per-
sistency in an integer programming formulation of vertex covering [129], etc. Since
satis/ability problems can also be viewed as testing whether a given posiform has its
minimum equal to its constant term, the so-called “autark” assignments introduced in
[127] turn out also to be special cases of weak persistency (c.f. [32]).

Example 4.6. Let us return again to the pseudo-Boolean function g in Example 4.1; and
its posiform representation  1. If we let y∗=(0; 1)∈B{1;2} to be a partial assignment to
the /rst two variables; then we can see that for each vector in ArgminB4 (g) switching
the /rst two components to (0; 1) yields always a vector in ArgminB4 (g). Hence; weak
persistency holds for the pseudo-Boolean function g at y∗. Furthermore; at the partial
assignment z∗ = (0)∈B{1}; both weak and strong persistency hold for g.

Let us add that verifying if weak or strong persistency holds for a pseudo-Boolean
function f at a given partial assignment y∈BS is, in general, a di3cult task. However,
in some special cases posiforms may provide an e3cient guarantee for persistency to
hold.

Given a posiform (5), and a partial assignment y∈BS for some subset S ⊆ V, we
shall say that y is a contractor for � if whenever aT ¿ 0 and there is an index i∈ S
for which xi or Kxi is in T we have

∏
u∈T u(y) ≡ 0. In other words, y is a contractor for

� if it makes all those terms of � vanish which involve at least one of the variables
xi, i∈ S, regardless of the values of the other variables xj, j 
∈ S.



172 E. Boros, P.L. Hammer /Discrete Applied Mathematics 123 (2002) 155–225

Let us note that checking if a given partial assignment is a contractor for a posiform
� can be done in linear O(size(�)) time.

Proposition 7. Given a posiform � as in (5); and a contractor y∈BS of it; we have

�(x[S ← y])6�(x)

for all binary vectors x∈Bn.

Proof. Let us denote by L(S) the set of literals corresponding to variables with indices
in S; i.e. L(S) ={xi; Kxi|i∈ S}. Let us further consider an arbitrary binary vector x∈Bn;
and let z = x[S ← y] denote its switch by y.

We can see that
 ∑

T⊆L;T∩L(S)=∅
aT

∏
u∈T

u


 (x) =


 ∑

T⊆L;T∩L(S)=∅
aT

∏
u∈T

u


 (z);

since these terms involve only variables not belonging to S, and z[V \ S] = x[V \ S]
holds by the de/nition of z. We can also observe that

 ∑
T⊆L;T∩L(S)�=∅

aT

∏
u∈T

u


 (z) = 0;

since y is assumed to be a contractor for �. Therefore we have

�(z) =


 ∑

T⊆L;T∩L(S)=∅
aT

∏
u∈T

u


 (z)

=


 ∑

T⊆L;T∩L(S)=∅
aT

∏
u∈T

u


 (x)

6�(x);

since the coe3cients of the nontrivial terms of � are all nonnegative, and the constant
term, corresponding to T = ∅, is included in the summation on the previous line.

Corollary 2. If the pseudo-Boolean function f is given as a posiform �; and the partial
assignment y∈BS ; S ⊆ V is a contractor for �; then weak persistency holds for
f at y.

Proof. Immediate by Proposition 7.

In fact, we shall see later that all of the cases for weak persistency cited in the
literature follow from this corollary, and hence can be veri/ed simply by exhibiting an
appropriate posiform of the pseudo-Boolean function in question.
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Example 4.7. Returning to the pseudo-Boolean function of Example 4.1; we can note
/rst that the vector y∗; as de/ned in Example 4.6; is a contractor for the posiform  1.

Let us further remark that not all persistencies follow easily by contractors, e.g. z∗,
de/ned in the same example, is not a contractor for  1, though the pseudo-Boolean
function g has another posiform  2, given in Example (4:1), for which z∗ is a con-
tractor. Of course, this is not always the case.

As a conclusion of the discussions on persistency and contractors, we can see that
posiform representations can provide not only bounds to the optimum values of a
pseudo-Boolean function, but also some information about the values of the variables
in the optima.

4.6. Basic algorithm

In this section, following [91], we present a general algorithm for /nding the op-
timum of a pseudo-Boolean function, based on the necessary conditions of local op-
timality presented in Section 4.3. This algorithm, the so called basic algorithm, was
introduced /rst in [87,88], and later simpli/ed in [91]. We shall also recall some more
recent results from [47], showing that for a special class of problems this algorithm
can be implemented to run in polynomial time.

From a theoretical point of view, conditions (17) can be viewed as a characterization
of the components of a local minimum in terms of the other components of that vector.
This suggests the possibility of /nding an expression for a component in terms of the
other components, which would hold in all local minima, and thus in all minimum
points as well. Such an expression could then be used to eliminate a variable, and
substitute the minimization problem with another one having one variable less. Such
eliminations schemes are well-known from linear algebra.

Let us /rst recall brieFy how the basic algorithm works. For the sake of no-
tational simplicity, we shall assume that variables are eliminated in the order xn,
xn−1; : : : ; x1.

BASICALGORITHM (f)
Input: Let n denote the number of variables. If n=1 and f(1)¿f(0)

then RETURN x∗1 =0, otherwise RETURN x∗1 =1. If n¿ 1 then
continue.

Local optimality: Label the variables, and choose xn to be eliminated. Determine
the pseudo-Boolean function gn de/ned by

gn(x1; : : : ; xn−1) =
{

1 if �n(x1; : : : ; xn−1)¡ 0; and
0 otherwise:

Recursion: Determine fn−1(x1; : : : ; xn−1) def= f(x1; : : : ; xn−1; gn(x1; : : : ; xn−1)),
and obtain the optimal values for x∗1 , x∗2 ; : : : ; x

∗
n−1 by calling

BASICALGORITHM(fn−1).
Output: Set x∗n = gn(x∗1 ; : : : ; x

∗
n−1), and RETURN the binary vector x∗ =

(x∗1 ; : : : ; x
∗
n).
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Of course, the above algorithm needs the speci/cation of what does it mean that a
pseudo-Boolean function is “determined”, e.g. in the cases of gn and fn−1 appearing in
the two main steps of the above procedure. Let us say that we want all pseudo-Boolean
functions in the course of this procedure to be represented either by their unique
multi-linear polynomial form, or by a posiform (though it might be possible to use
some sort of oracle as a description for these functions).

Instead of giving a detailed proof here, for which the reader is referred to [91], we
shall illustrate this algorithm on a small example.

Example 4.8. Let us consider the following simple pseudo-Boolean function f in three
binary variables; de/ned by its unique multi-linear polynomial below:

f(x1; x2; x3) = 3 + 3x1 − 2x1x2 − 4x1x3 + 5x2x3:

After calling BASICALGORITHM (f), we get �3 =−4x1 + 5x2, and thus

g3(x1; x2) =

{
1 if x1 = 1 and x2 = 0;

0 otherwise

}
= x1 Kx2:

Thus, we get

f2(x1; x2) = f(x1; x2; x1 Kx2) = 3 + 3x1 − 2x1x2 + x1 Kx2(5x2 − 4x1)

= 3− x1 + 2x1x2

After calling BASICALGORITHM (f2), we get �2 = 2x1, and therefore

g2(x1) =

{
1 never;

0 always;

}
= 0:

Hence,

f1(x1) = f2(x1; 0) = 3− x1:

After the call BBASICALGORITHM (f1), we have n=1, and since f1(0)¿f1(1), x∗1 =1
is returned.

Then x∗2 = g2(x∗1 ) = g2(1) = 0 is computed and (x∗1 ; x
∗
2 ) = (1; 0) is returned.

Finally, x∗3 = g3(1; 0) = 1 is computed, and x∗ = (1; 0; 1) is returned as a minimizer
of f.

Computationally, the above procedure can be very expensive, since both determining
gk and computing fk−1 can be intractable for inputs of realistic size (in a worst case,
the size of both of these functions can be exponential in the input size).

There are however some special cases, when both the size of these functions, and
the computing time for these steps can be controlled, and therefore the algorithm can
be executed in polynomial time. Such a case was presented and analyzed in [47].

If a pseudo-Boolean function f :Bn �→ R is given by its unique multi-linear poly-
nomial (1), let us associate to it a graph Gf = (V; E), called its co-occurrence graph,
in which (i; j)∈E (for i; j∈V, i 
= j) iM f has a term for which S ⊇ {i; j} and cS 
= 0.
We shall say that Gf is a partial k-tree, if there exists a supergraph G∗ = (V; E∗),
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E∗ ⊇ E and a permutation 4∈Sn of the indices in V such that the set Pi def= {4j|4j ¡4i,
(j; i)∈E∗} ⊆ V is a clique in G∗ and |Pi|6 k, for every i∈V.

Theorem 2 (Crama et al. [47]). If for a pseudo-Boolean function f its co-occurrence
graph Gf is a partial k-tree; then BASICALGORITHM can be implemented to run in
polynomial time in the input size size(f) and in 2k .

Proof. We shall present only a sketch of the proof here. To simplify notation; let
us assume w.l.o.g. that the permutation 4 in the de/nition of a partial k-tree is 4 =
(1; 2; 3; : : : ; n).

Let us observe /rst that if Gf = Gfn is a partial k-tree, then �n and thus gn depend
only on at most k of the variables, and hence their multi-linear polynomials have at
most 2k nonzero coe3cients, which can be computed recursively by (12), in time
polynomial in 2k . The same applies to the computational needs of fn−1.

Let us observe next, that if the substitution of gn into f = fn (when computing
fn−1) generates new terms, and changes thus the co-occurrence graph, then for a new
edge (i; j)∈E(Gfn−1 )\E(Gfn) we must have {i; j} ⊆ Pn, and hence the subgraph G∗

n−1
of G∗, induced by V \ {n} is still a supergraph of Gfn−1 , i.e. the input to the next
level is also a partial k-tree.

Since there are at most n recursive calls in the algorithm, the claimed complexity
follows.

4.7. Posiform maximization

Several of the results and methods we cited so far concern the minimization of
posiforms, or simply the minimization (or maximization) of multi-linear polynomial
expressions. While the minimization and the maximization of a polynomial expres-
sion are quite obviously equivalent problems (the simple change of sign providing the
equivalence), there is no such simple connection between the minimization and maxi-
mization of posiforms. There is, of course, a linear transformation between these two
problems (via the recursive substitutions u= 1− Ku for certain literals u), however, this
transformation typically changes the structure of the expressions, which is particularly
damaging if one tries to translate approximation algorithms.

Let us further remark that posiforms are usually not only more concise representa-
tions of pseudo-Boolean functions than multi-linear polynomial expressions, but are also
specially suggestive, since both the minimization and the maximization of posiforms
have natural and intuitive interpretations.

Let us recall that for a given a graph G=(V; E) its stability number �(G) is de/ned
as the maximum size of a maximal independent vertex set (stable set). Furthermore,
if there are weights w :V �→ R+ associated to the vertices, then the weighted stability
number �w(G) of G is de/ned as the maximum weight of a maximal independent
vertex set, where the weight of a vertex set is the sum of the weights of the vertices
in the set.

Given a posiform � as in (5), let us associate to it a (weighted) graph G� = (T; E),
called its con@ict graph. Vertices of G� correspond to the non-trivial terms of �, i.e.
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T = {T ⊆ L|T 
= ∅; aT ¿ 0}. To a vertex T ∈T we shall associate aT as its weight.
We shall say that two such terms T; T ′ ∈T are in con@ict, if there is a literal u∈T
for which Ku∈T ′. The edges of G� correspond to the conFicting pairs of terms, i.e.
E = {(T; T ′)|T; T ′ ∈T; T and T ′ are in conFict}.

ConFict graphs were introduced in [75] and the following interesting connection was
shown:

Theorem 3. For any posiform �;

max
x∈Bn

�(x) = a∅ + �a(G�): (18)

Proof. Given a binary vector x∈Bn; let us observe /rst that the set Sx
def= {T ∈T|

T (x)=1} consisting of the terms which do not vanish at x is in fact a stable set of the
graph G�. This is clear; because no two of these terms can have a conFicting literal;
since otherwise at least one of them would vanish in the point x∈Bn. Hence;

�(x) = a∅ +
∑
T∈Sx

aT 6 a∅ + �a(G�)

follows for all x∈Bn; by the de/nition of the weighted stability number.
Conversely, if S ⊆T is a stable set of G�, then the terms in S have no conFicting

literals, and thus all literals appearing in these terms can be made simultaneously equal
to 1. In other words, for any stable set S ⊆ T there exists a binary vector xS ∈Bn

such that T (xS) = 1 for all T ∈S. Applying this observation to a maximum weight
stable set S∗, we get

a∅ +�a(G�)=a∅ +
∑

T∈S∗
aT =a∅ +

∑
T∈S∗

aTT (xS∗)6�(xS∗)6max
x∈Bn

�(x):

Furthermore, it can be shown that, conversely, every weighted graph stability problem
corresponds in this way to a posiform maximization.

Theorem 4 (Hammer [75]). Given a graph G=(V; E) and nonnegative weights ai¿ 0
associated to the vertices i∈V ; there exists a posiform �G in n′ ¡ |V | variables;
consisting of |V | terms; and such that

�a(G) = max
x∈Bn′

�G(x): (19)

Proof. Let us consider a covering of the edges of G by (not necessarily induced)

complete bipartite subgraphs of G; i.e. let B
def= {(Aj; Bj)|j = 1; : : : ; n′} be a family of

pairs of subsets of the vertices; such that (i) Aj ∩ Bj = ∅; (ii) Aj × Bj ⊆ E hold for all

j = 1; : : : ; n′; and (iii) E =
⋃n′

j=1 Aj × Bj. Let us associate to such a covering B of the
edges a posiform

�B(x) def=
∑
i∈V

ai

∏
j:i∈Aj

xj
∏

j:i∈Bj

Kxj: (20)

Let us remark that we use the convention of
∏

j∈∅ x1 = 1; implying that the constant
term of �B is the sum of the weights of the isolated vertices of G. It is easy to verify
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that for any covering B of the edges by complete bipartite subgraphs; G is the conFict
graph of the posiform �B.

Since all edges can be covered by at most |V | − 1 stars in any graph, the statement
follows from Theorem 3.

The two theorems above show that there is a very natural and strong equivalence
between weighted graph stability and posiform maximization, even extending to ap-
proximative solutions and approximation algorithms. This connection shows also that
posiform maximization, just like graph stability, is in all likelihood a di3cult problem
even if one needs only a good approximation (see e.g. [57,136].)

On the other hand, this connection raises the problem of characterizing graph stabil-
ity problems for which the corresponding posiform maximization problem has special
characteristics, e.g., it involves a posiform of bounded degree. For instance the so
called quadratic graphs, i.e. those for which there exists a family of complete bipartite
subgraphs, covering all edges, such that the corresponding posiform (20) is quadratic,
were studied in [22,23,43,93]. Clearly, this condition means simply that the edge set of
these graphs can be covered with a family B of complete bipartite subgraphs in such
a way that each vertex belongs to at most 2 of the complete bipartite subgraphs in B.
In spite of their close formal resemblance with line graphs, no good characterization
or recognition algorithm for quadratic graphs is known.

In a similar way in the reverse direction, this connection raises the problem of char-
acterizing those posiforms for which the corresponding conFict graph has some special
characteristics, e.g., bipartite, chordless, perfect, etc. For instance, a family of posi-
forms, having bipartite conFict graphs, was used in [24] to characterize supermodular
cubic posiforms.

Let us remark /nally that the above connection between graph stability and posiform
maximization raises the possibility of applying algebraic manipulations to graph stability
problems. Let us demonstrate this idea on a small example.

Example 4.9. Let us consider the graph G1 = (V; E) given in Fig. 1 (a) and let us
cover its edges with the family B1 ={(A1; B1), (A2; B2), (A3; B3), (A4; B4)} of complete
bipartite subgraphs consisting of 4 stars; here Ai={i} for i=1; : : : ; 4, while B1={2; 3; 7},
B2 = {4; 5}, B3 = {5; 6; 7}, and B4 = {5; 6}. The corresponding posiform is

�1 = x1 + Kx1x2 + Kx1x3 + Kx2x4 + Kx2 Kx3 Kx4 + Kx3 Kx4 + Kx1 Kx3:

Since in this example all complete bipartite subgraphs will actually be stars, we indi-
cated these stars in the /gures with small arcs along the edges pointing out form the
center of the stars.

Applying the identities Kx1x3 + Kx1 Kx3 = Kx1, and x1 + Kx1 = 1 we /nd that �1 = 1 + �2,
where

�2 = Kx2x4 + Kx1x2 + Kx2 Kx3 Kx4 + Kx3 Kx4:

The conFict graph G2 = G�2 is shown in Fig. 2, together with another conFict repre-
sentation of it, corresponding to the following complete bipartite subgraph covering of
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Fig. 1. Graph G1 of Example 4.9 and its conFict representation using the complete bipartite subgraph cover
B1.

Fig. 2. The conFict graph G2 of the posiform �2 in Example 4.9, and its conFict representation using the
complete bipartite subgraph cover B2.

its edge set: B2 = {(A1; B1), (A2; B2)}, where A1 = {1}, B1 = {2; 3; 4}, A2 = {2}, and
B2 = {3}. This representation yields the posiform

�3 = y1 + Ky 1 + Ky 1y2 + Ky 1 Ky 2:
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Applying here again the trivial identities Ky 1y2 + Ky 1 Ky 2 = Ky 1 and y1 + Ky 1 = 1, we
obtain

�3 = 1 + Ky 1:

Summarizing the above, we have

�(G1) = max
x∈B4

�1(x)

= 1 + max
x∈B4

�2(x) = 1 + �(G2) = 1 + max
y∈B2

�3(y)

= 2 + max
y1∈B

Ky 1 = 3:

Of course, not all graphs can be handled with the same e3ciency. An algorithm,
based on a systematic way of applying this type of algebraic manipulations, was pro-
posed in [54], and studied further in e.g. [51,83,84,102–104,106]. Using algebraic ma-
nipulations of the type indicated above, the so called struction algorithm transforms a
graph G into another graph G′, such that

�(G) = 1 + �(G′)

holds. Repeating this transformation, one can, in principle, arrive to a trivial graph,
and hence can determine the stability number of G.

In reality, the sequence of graphs produced in this way may have an exponential
growth in size [106], although several classes of graphs are known [83,84,102–104]
where this di3culty does not arise, and the stability number of which can therefore be
found in polynomial time by the repeated application of struction. In a recent study [4]
it was observed that the application of a single step of the struction algorithm leads
to a graph for which the gap between the upper and lower bounds of the stability
number (obtained by using some of the usual techniques) is considerably smaller than
the corresponding gap for the original graph.

The basic idea of the struction method is to select an arbitrary vertex, say v0, of
a graph G as the “center” of the transformation, impose an arbitrary order, say v1,
v2; : : : ; vk among the vertices in its neighborhood N (v0)={v∈V (G)|(v0; v)∈E(G)}, use
a family of stars with centers vi, i = 1; : : : ; k to cover all the edges which have at least
one endpoint in the closed neighborhood N [v0]=N (v0)∪{v0}, and cover the remaining
edges of the graph by an arbitrary family of other complete bipartite subgraphs. Let
� denote the posiform corresponding to this edge covering with complete bipartite
subgraphs. It was shown in [54] that this posiform can always be written after some
simple algebraic transformations as

� = 1 +  ;

where  is also a posiform, obtainable from � in polynomial time. If G′ is the conFict
graph of  , then we have the equation

�(G) = max
x∈Bn

�(x) = 1 + max
x∈Bn

 (x) = 1 + �(G′):
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Fig. 3.

Let us illustrate this on a small example G=(V; E) given in Fig. 3, in which all vertex
weights are equal to 1.

For example, if we choose vertex v0 as the center of struction, if the stars used
in the transformation are S1 = {{v1}; {v0; v2; v4; v5}}, S1 = {{v2}; {v0; v4; v5}}, S3 =
{{v3}; {v0; v6}}, S4 = {{v4}; {v0; v6}}, if we cover the rest of the edges with an ar-
bitrary family B of bipartite subgraphs, and we denote the variable associated to the
star Si, by xi, i = 1; : : : ; 4, then the posiform corresponding to this edge covering will
be

�(x) = Kx1 Kx2 Kx3 Kx4 + x1 + Kx1x2 + x3 + Kx1 Kx2x4 +  (x);

where  is the posiform corresponding to B. It is easy to see that

Kx1 Kx2 Kx3 Kx4 + x1 + Kx1x2 + x3 + Kx1 Kx2x4 = 1 + x1x3 + Kx1x2x3 + Kx1 Kx2x3x4

and hence

�(x) = 1 + x1x3 + Kx1x2x3 + Kx1 Kx2x3x4 +  (x):

In fact it was shown in [54] that a similar transformation which allows to write the
original posiform as the sum of a positive constant and another posiform can always
be carried out. It was also shown that this procedure has a direct and easy graph
theoretic interpretation, describing directly the construction of the conFict graph of the
new posiform, and by-passing all the algebraic manipulations.

Returning to the example, notice that each of the three new nonconstant terms on
the right-hand side above contains exactly two noncomplemented variables, and that
a one-to-one correspondence can be established between them and the non-edges of
the subgraph induced by N (v0). The conFict graph of the posiform �(x) − 1 on the
right-hand side is shown in Fig. 4 (where we have denoted by vi; j the vertex associated
to the nonedge (vi; vj) in the subgraph induced by N (v0)).
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Fig. 4.

Fig. 5.

Clearly, the stability number of this graph is exactly one unit smaller than that of
the original graph. Repeating now the same transformation to the new graph and taking
v1;3 as the center of the struction, we /nd the graph in Fig. 5, whose stability number
is exactly 2 units smaller than that of the original graph. By executing two additional
struction steps, using /rst v10 as center, and then v8 as center, produces in turn the
graphs in Figs. 6(a) and (b), showing that the stability number of the original graph,
being 4 units higher than that of the last graph produced, was equal to 5.

4.8. l2-approximations and applications to game theory

In this section, following [80], we shall consider lower degree l2-approximations of
pseudo-Boolean functions.

Let us denote by Fk the family of pseudo-Boolean functions of degree at most k
(k = 0; 1; : : : ; n). Clearly, F0 ⊂F1 ⊂ · · · ⊂Fn.



182 E. Boros, P.L. Hammer /Discrete Applied Mathematics 123 (2002) 155–225

Fig. 6.

Given a pseudo-Boolean function f and a /xed integer k¿ 0, let us consider the
following approximation problem:

min
g∈Fk

∑
x∈Bn

[g(x)− f(x)]2: (21)

Proposition 8. Problem (21) has a unique solution.

Proof. Let us consider pseudo-Boolean functions in n variables represented by their
table form; or equivalently; as vectors in R2n

. Then;

Wk
def= {(g(x)|x∈Bn) | g∈Fk} (22)

is clearly a linear subspace of R2n
; for k = 0; 1; : : : ; n. It is immediate to see then that

Problem (21) is equivalent to computing the orthogonal projection of (f(x)|x∈Bn)
onto Wk; and hence the solution exists and is unique.

Let us denote in the sequel by Ak [f]∈Fk the unique solution of Problem (21),
which provides the best l2-approximation of f.

Given a subset S ⊆ Bn, let us denote the average value of the function f over the
subset S by AveS [f], i.e.

AveS [f] =
1
|S|
∑
x∈S

f(x): (23)

Given a term t(x) =
∏

u∈T u (where T ⊆ L), let us associate to it the Boolean
subcube BT de/ned by

BT = {x∈Bn|t(x) = 1}: (24)

Furthermore, let us associate to T the half-integral vector zT ∈{0; 1
2 ; 1}n, de/ned by

(zT)j =




1 if xj ∈T;

0 if Kxj ∈T; and
1
2 otherwise:

Before showing a characterizing property of l2-approximations, we need to state two
simple lemmas.
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Lemma 1. For a pseudo-Boolean function f; and a subset T ⊆ L we have

AveBT [f] = f(zT):

Proof. Follows from Proposition 5.

Lemma 2. Given a sequence of m reals; a1; a2; : : : ; am; their average 9 = Ave[a1;
a2; : : : ; am] is the unique minimizing point of the expression

m∑
i=1

(9− ai)2:

Proof. This well-known fact follows immediately from the equation

0 =
d
d9

m∑
i=1

(9− ai)2 = 2
m∑
i=1

(9− ai);

since
∑m

i=1 (9− ai)2 is a strictly convex function of 9.

We are now ready to state a characterizing property of l2-approximations.

Theorem 5. Given a pseudo-Boolean function f in n variables; a function g∈Fk is
equal to Ak [f] if and only if

AveBT [f] = AveBT [g] (25)

for all subsets of literals T ⊆ L with |T |6 k.

Proof. Let us assume /rst that g = Ak [f]. Choosing an arbitrary subset T ⊆ L for
which |T |6 k; let t(x) =

∏
u∈T u; and let us consider the optimization problem

min
9∈R

∑
x∈Bn

[g(x) + 9t(x)− f(x)]2:

On the one hand, we can see immediately that this problem has 9 = 0 as its unique
minimum, since g′ = g + 9t is also a function belonging to Fk (because of |T |6 k),
and g = Ak [f] is a unique minimizer of

∑
x∈Bn [g′(x)− f(x)]2 in Fk .

On the other hand, we can observe that only those terms can inFuence the above
minimization problem in which t(x) 
= 0, i.e. that the problem can be written equiva-
lently as

min
9∈R

∑
x∈BT

[g(x) + 9− f(x)]2 = min
9∈R

∑
x∈BT

[9− (f(x)− g(x))]2:

Applying Lemma 2 to the sequence {(f(x)− g(x))|x∈BT}, we obtain

0 = AveBT [f − g] = AveBT [f]− AveBT [g]; (26)

thus proving (25).
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For the converse direction, let us assume that (25) holds for all subsets T ⊆ L
with |T |6 k. We shall show that these equations determine g∈Fk uniquely, implying
then the statement, since we have just shown above that the same equations hold for
Ak [f]∈Fk , too.

For this end, let us rewrite Eqs. (25) with the help of Lemma 1 as

g(zT) = f(zT) for all T ⊆ L; |T |6 k (27)

and let us assume that both g∈Fk and g′ ∈Fk satisfy all these equalities. Then,

g(zT)− g′(zT) = 0

must also hold for all subsets T ⊆ L, |T |6 k. Let us represent g − g′ ∈Fk by its
unique multilinear polynomial form

g(x)− g′(x) =
∑

S⊆V;|S|6k

ĉS
∏
j∈S

xj;

assume that g 
= g′, and denote by S an arbitrary subset for which ĉS 
= 0. Let us further
denote by TS′ the subset of the literals de/ned as TS′ = {xj|j∈ S \ S ′} ∪ { Kxj|j∈ S ′}.
Then we have

0 =
∑
S′⊆S

(−1)|S
′|(g(zTS′ )− g′(zTS′ )) = ĉS ;

which can be veri/ed by elementary computations. Thus we get ĉS = 0, contradicting
the choice of S, and hence our assumption that g 
= g′, thus proving the uniqueness of
g.

Let us observe that in fact we have shown somewhat more than the claim of Theorem
5. Namely, if Eqs. (27) hold for two pseudo-Boolean functions, f and g, then g and
Ak [f] have the same coe3cients in their multilinear polynomials for all terms of degree
at most k.

Let us also observe that Eqs. (27), which form a system of linear equations in the
coe3cients of the multilinear polynomial representing g=Ak [f], provide a simple and
direct way of computing the best l2-approximation Ak [f] of a given pseudo-Boolean
function f.

Proposition 9. Given a pseudo-Boolean function f; the multilinear polynomial expres-
sion for Ak [f] can be computed in time polynomial in Nn

k =
∑k

i=0( n

i
); by evaluating

f in Nn
k points.

Proof. It can easily be seen that writing the Eqs. (27) e.g. for all sets T ⊆ L+;
which do not involve complemented literals and for which |T |6 k; we obtain a full
rank system of linear equations in the Nn

k coe3cients of the multilinear polynomial
expression of Ak [f].

Since Ak is an additive operator, perhaps the simplest way to compute the best l2

approximations is to compute separately the sums of the l2 approximations of simple
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terms, e.g.

Ak


∑

S⊆V
cS
∏
j∈S

xj


=

∑
S⊆V

cSAk


∏

j∈S

xj


 :

For instance, the best l2 approximations were computed in this way in [80] for some
low values of k.

Proposition 10 (see Hammer and Holzman [80]). For S ⊆ V we have

A1


∏

j∈S

xj


=−|S| − 1

2|S| +
1

2|S|−1

∑
j∈S

xj;

and

A2


∏

j∈S

xj


=

(|S| − 1)(|S| − 2)
2|S|+1

− |S| − 2
2|S|−1

∑
j∈S

xj +
1

2|S|−2

∑
i; j∈S
i¡j

xixj: (28)

Linear l2-approximations play an important role in game theory.
Let us consider V as the set of players of a multiperson game, where the subsets

S ⊆ V are called coalitions. The game (more precisely, a game with side payments in
characteristic function form) is given by a function : : 2V �→ R, for which it is assumed
that :(∅) = 0. We can view the value :(S) as the “worth” of coalition S. Identifying
2V with Bn in the usual natural way, we can view all such games as pseudo-Boolean
functions : for which :(0; 0; : : : ; 0) = 0.

A game is called simple if :(x)∈B for all x∈Bn, and : is monotone, i.e. if
:(S)6 :(S ′) whenever S ⊆ S ′. In this case, the coalitions S ⊆ V for which :(1S) = 1
are called winning, while the rest are loosing. Given a simple game :, one would
like to be able to compute real values pi for i∈V, representing the “inFuence” of
the individual players on the game. Such values are called power indices. One of the
power indices considered in the literature, and in many applications, computes pi as
the proportion of those loosing coalitions which turn winning if player i joins them.
More precisely, the so called Banzhaf index (see [15]) is de/ned as

pi = Ave
[

d:
dxi

]

for i∈V. It can be seen easily from our analysis that these indices are in fact the
linear coe3cients of A1[:].

Another, similar index was introduced by Shapley (see [154]), and that also can be
shown to correspond to the linear coe3cients in a best “linear”-approximation of : in
a slightly diMerently weighted norm (see [80]).
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5. Quadratic pseudo-Boolean functions

This part is devoted to the study of quadratic pseudo-Boolean functions, a class of
functions arising naturally in the formulation of numerous combinatorial optimization
problems. The importance of these functions is further explained by the fact—discussed
in Section 4.4—that all pseudo-Boolean optimization problems can be reduced to the
quadratic case. In this section we shall survey results regarding bounds, structural prop-
erties, polyhedral representations, as well as heuristic and exact optimization algorithms
for this class of pseudo-Boolean functions.

Let us remark that in the case of quadratic pseudo-Boolean functions, optimization
of polynomial representations is computationally equivalent with the optimization of
quadratic posiform representations, since transformations between these two forms are
polynomial.

For the sake of uniformity, we shall present all results for the case of minimiza-
tion problems, but obviously, all results mentioned in the sequel can naturally be
re-formulated for the case of maximization problems.

Let us start by recalling some results regarding a useful upper bound of quadratic
pseudo-Boolean functions, called the roof dual, introduced in [79], which was shown
to be obtainable through several alternative approaches. Next, we show that these ap-
proaches, as well as the bound given by them, can be generalized to a hierarchy of
increasingly tighter bounds. Following [135], we shall recall results about polyhedral
formulations of these optimization problems, and /nally survey some algorithms for
quadratic pseudo-Boolean optimization.

Let us denote by F2 the family of quadratic pseudo-Boolean functions, and special-
izing the notations introduced earlier, let us assume that they are represented either by
their (unique) quadratic polynomial expression

f(x1; : : : ; xn) = c0 +
n∑

j=1

cjxj +
∑

16i¡j6n

cijxixj (29)

or by a quadratic posiform

f(x1; : : : ; xn) = a0 +
∑
u∈L

auu +
∑

u;v∈L;u �=v

auvuv; (30)

where, as before, L denotes the set of literals, au¿ 0 and auv¿ 0 for all u; v∈L.
Let us remark that among the posiforms representing a quadratic pseudo-Boolean

function there may also be some having degrees higher than 2.

Example 5.1. Let us consider the following quadratic pseudo-Boolean function:

f(x1; x2; x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3

along with two diMerent posiform representations of it:

f(x1; x2; x3) =−1 + Kx1 + x1x2 + x1x3 + Kx2 Kx3

= x1x2x3 + Kx1 Kx2 Kx3:
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The equivalence of these expressions can be shown easily by expanding the comple-
mentations in the posiforms.

Let us denote by Pk the family of posiforms of degree at most k, for k¿ 1, let
P =

⋃
k¿0 Pk , and for k¿ deg(f) let Pk(f) denote the family of those posiforms of

degree at most k, which represent the pseudo-Boolean function f. Let us also denote
by C(�) the constant term of a posiform �∈P, and let us note that � − C(�)¿ 0
holds for all posiforms �∈P.

5.1. Roof duality

Three diMerent approaches were shown in [79] to yield the same upper bound for a
quadratic pseudo-Boolean function f∈F2. This common upper bound was called the
roof dual of f. Here we recall these results reformulated for the case of lower bounds,
for which the term floor dual would perhaps be more suitable. However, we keep the
name roof dual in order to emphasize that all the results are perfectly analogous for
the case of upper and lower bounds.

Roof duality has been studied in many papers since its introduction in [79], and its
strong relation to several other basic techniques was demonstrated in several publica-
tions, together with numerous generalizations and algorithmic improvements (see e.g.,
[1,2,25,28,30,31,36,38,81,94,125,156]).

We recall /rst the three basic techniques, leading to the same bound, as shown in
[179].

5.1.1. Majorization
A term-by-term majorization procedure, introduced in [79], provides a useful upper

bound to a pseudo-Boolean function f, by appropriately selecting the linear majorants
of the terms of its polynomial representation. Analogously, we can /nd lower bounds
based on linear minorants of the terms.

The method of developing a “good” linear majorant (or minorant) of a pseudo-
Boolean function appeared in the literature much earlier (see e.g. [77,89,150]) and was
also applied to graph stability [78]. Here we recall the technique from [79], translated
to the case of minimization.

A linear function

l(x) = l0 + l1x1 + · · ·+ lnxn

is called a linear minorant of f∈F2, if l(x)6f(x) holds for all x∈Bn. Let us
denote by F1 the family of linear functions.

A family S of linear minorants of f is called complete if f is the pointwise
maximum of these linear functions, i.e. if

f(x) = max
l∈S

l(x)

for all x∈Bn. For a complete family of minorants, we have the equality

min
x∈Bn

f(x) = min
x∈Bn

max
l∈S

l(x):
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Interchanging the minimization and maximization on the right-hand side above, we
obtain a lower bound to the minimum of f:

M (f;S) def= max
l∈S

min
x∈Bn

l(x)6 min
x∈Bn

f(x): (31)

For an e3ciently computable lower bound of this type, we shall consider a complete
family of linear minorants, formed by combining “best l1-norm” linear minorants of
the quadratic terms of f∈F2.

It can easily be seen that all linear minorants � + ;x + 9y of the quadratic term
xy, which minimize the sum of the gaps for all four possible binary substitutions, i.e.
which are solutions of the problem (in variables �, ; and 9)

minimize
∑

(x;y)∈B2

[xy − �− ;x − 9y]

subject to xy¿ � + ;x + 9y for all (x; y)∈B2

are of the form −� = ; = 9 = <, for any 06 <6 1. Similarly, it can be shown that
the best l1-norm linear minorants of −xy are of the form −<x − (1 − <)y, for any
06 <6 1.

Given a quadratic pseudo-Boolean function f∈F2 as in (29), let us de/ne a fam-
ily of linear minorants of it, by taking the weighted sum of the best l1-norm linear
minorants of its terms, and using as weights the coe3cients of the terms, i.e.

R(f) def=




c0 +
n∑

j=1

cjxj

+
∑

16i¡j6n
cij¿0

cij<ij[xi + xj − 1]

+
∑

16i¡j6n
cij¡0

cij[<ijxi + (1− <ij)xj]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

06 <ij6 1

16 i¡ j6 n

cij 
= 0




:

In [79] the analogously de/ned linear majorants are called roofs. Let us call here
the corresponding lower bound

M2(f) def= M (f;R(f)) = max
l∈R(f)

min
x∈Bn

l(x) (32)

the roof dual of f.
It was demonstrated in [79] that the same bound can be computed by solving a linear

programming problem. To see this, let us observe /rst that if l(x)=l0+l1x1+· · ·+lnxn,
then minx∈Bn l(x) is the maximum value of the linear program

l0 +
n∑

j=1

zj → max

lj¿ zj and 0¿ zj for j = 1; : : : ; n:

Replacing then the inner minimization in the right-hand side of (32) with the above
maximization, we /nd that M2(f) is the maximum value of the following linear
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program:

maximize c0 −
∑

16i¡j6n
cij¿0

<ijcij +
n∑

j=1

zj

subject to cj +
∑
i �=j

cij¿0

<ijcij +
∑
16i¡j
cij¡0

cij(1− <ij) +
∑
j¡i6n
cij¡0

cij<ij¿ zj

0¿ zj for j = 1; : : : ; n;

06 <ij6 1 for 16 i¡ j6 n; cij 
= 0:

(33)

5.1.2. Linearization
Linearization is a standard, and quite natural technique to reduce nonlinear binary op-

timization to linear integer programming. The /rst publication of this nature is perhaps
[60], and there were many others to follow, see e.g. [3,12,55,67,68,88,146,163].

The basic idea in all these transformations is to replace a nonlinear term by a new
variable, and use linear inequalities to force the new variable to take in all feasible
solutions the value of the corresponding term. For instance, to enforce the equality
u = xyz for binary variables x; y; z ∈B, we can write

u6 x; (34a)

u6y; (34b)

u6 z; (34c)

u¿ x + y + z − 2; (34d)

u¿ 0: (34e)

It is easy to see that for all binary assignments to x, y and z, the only feasible
assignment to the variable u is the value xyz. Let us also add that in a minimization
problem constraints (34a)–(34c) are redundant if u has a positive objective function
coe3cient, and constraints (34d)–(34e) are redundant when the objective function
coe3cient of u is negative (and the other way around for maximization problems.)

Applying this re-formulation to the minimization of f∈F2 given by (29), and
introducing new variables yij=xixj for all quadratic terms of f, we obtain the following
equivalent linear 0–1 programming problem:

minimize c0 +
n∑

j=1

cjxj +
∑

16i¡j6n

cijyij

subject to
yij¿ xi + xj − 1

yij¿ 0

}
16 i¡ j6 n; cij ¿ 0;

yij6 xi

yij6 xj

}
16 i¡ j6 n; cij ¡ 0;

xj ∈B; 16 j6 n:

(35)
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Replacing in the above formulation the integrality conditions on x by the constraints
06 xj6 1 for j = 1; : : : ; n, we obtain a linear programming relaxation, the optimum
value of which will be denoted by L2(f). Clearly, L2(f) is a lower bound of the
minimum of f.

There are several variations of such linearization methods. For instance, we could
also consider a quadratic posiform �∈P2(f), and introduce new variables for the
products of literals appearing in �. Assuming that � is represented by the form (30),
we obtain the formulation

minimize a0 +
∑
u∈L

auu +
∑

u;v∈L;u �=v

auvyuv

subject to
yuv¿ u + v− 1

yuv¿ 0

}
u; v∈L; auv ¿ 0

xj ∈B; 16 j6 n:

(36)

(Here of course we write in the constraints 1 − xj for u = Kxj and xj for u = xj.) Let
us replace again the integrality constraints x∈Bn by 06 xj6 1 for j = 1; : : : ; n, and
let us denote by L2(�) the optimum value of this linear programming relaxation of
problem (36). It is obvious again that L2(�) is a lower bound of the minimum of �.

5.1.3. Complementation
The third approach considered in [79] is based on representing a quadratic pseudo-

Boolean function f∈F2 by a quadratic posiform �∈P2(f), and using the constant
term C(�) of � as a lower bound of the minimum of f. Then the problem of /nding
the best lower bound of this type can be formulated as

C2(f) def= max
�∈P2(f)

C(�): (37)

This problem can also be formulated as a linear program. For this, let us consider
the coe3cients of the posiform � as unknowns, and let us formulate the conditions
that this posiform (30) represents the function f given by (29). From these conditions
we get the following equalities:

c0 = a0 +
n∑

j=1

a Kxj +
∑

16i¡j6n

a Kxi Kxj ; (38a)

cj = axj − a Kxj +
∑
16i6n

i �=j

(a Kxixj − a Kxi Kxj) for j = 1; : : : ; n; (38b)

cij = axjxj + a Kxi Kxj − axi Kxj − a Kxixj for 16 i¡ j6 n: (38c)
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Expressing a0 from the /rst equation (38a), we can write C2(f) equivalently as the
maximum value of the linear programming problem

maximize c0 −
n∑

j=1

a Kxj −
∑

16i¡j6n

a Kxi Kxj

subject to axj − a Kxj +
∑
16i6n

i �=j

(a Kxixj − a Kxi Kxj) = cj for j = 1; : : : ; n;

axjxj + a Kxi Kxj − axi Kxj − a Kxixj = cij for 16 i¡ j6 n;

au; auv¿ 0 for u; v∈L; u 
= v:

(39)

5.1.4. Equivalence of formulations and persistency
The /rst major result of [79] is that the three approaches described in the previous

three subsections for obtaining a lower bound for the minimization of f∈F2, are in
fact equivalent, in the sense that they all yield the same value:

Theorem 6 (Hammer et al. [79]). For any quadratic pseudo-Boolean function f∈F2;
we have

M2(f) = L2(f) = C2(f)6 min
x∈Bn

f(x);

moreover; the equality of these lower bounds with the minimum of f(x) can be tested
in linear time by solving a 2-SAT problem.

The somewhat technical proof, which the reader can /nd in [79], is based on showing
that formulations (33) and (39) are both equivalent with the dual of (35). Using a
similar proof, one can also show that

Theorem 7. For a quadratic pseudo-Boolean function f∈F2 and for any posiform
representation �∈P2(f) of it; the equality C2(f) = L2(�) holds.

Some other formulations are also known to be equivalent with roof duality; these
include Lagrangean formulations, the so-called “paved duality”, etc. (see e.g. [1,2,42,
77,94,125].)

The second major result of [79] provides a strong persistency property for quadratic
pseudo-Boolean optimization:

Theorem 8 (Strong Persistency, Hammer et al. [79]). Given a quadratic pseudo-Boolean
function f∈F2; let �∈P2(f) be a posiform representing it (given as in (30)); such
that C(�) = C2(�). Then � has the property that if au ¿ 0 for some literal u∈L;
then u = 0 in all binary vectors x∈Argmin(f) minimizing f.

Let us denote by L(�) the linear part of the posiform (or pseudo-Boolean function)
�, e.g. if � is given by (30), then L(�) = a0 +

∑
u∈L auu. The above theorem implies

then that L(�) must vanish at any minimum of f, whenever C(�) = C2(�). Let us
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denote by P∗
2 (f) the family of such posiforms, i.e. P∗

2 (f)={�∈P2(f)|C(�)=C2(f)}.
The linear parts L(�) of such extremal quadratic posiforms �∈P∗

2 (f) are the roofs
of f. Clearly, P∗

2 (f) is a convex subset of the family of quadratic pseudo-Boolean
functions, implying

Proposition 11 (Hammer et al. [79]). For every f∈F2; there exists a posiform �∗ ∈
P∗

2 (f) such that au ¿ 0 in �∗ if the literal u has a nonzero coeBcient in some
posiform �∈P∗

2 (f).

The linear part L(�∗) of such a posiform is called a master roof of f.
For a given quadratic pseudo-Boolean function f∈F2 the convex cone P∗

2 (f)
maybe nontrivial, and therefore f may have many roofs. Since the sets of variables
whose values in the optimum can be determined by using the strong persistency theorem
vary with the particular roofs chosen, it is very important to note that the set of variables
which can be /xed using a master roof is the union of all those sets of variables which
can be /xed by any particular roof (see e.g. [77,78] for applications of persistency in
graph theory).

Even though the roof dual as well as a particular roof of a given quadratic pseudo-
Boolean function can be computed in polynomial time by using one of the formulations
in the previous subsections, the determination of a master roof may still not be obvious
(see e.g. [25]). We shall show in the next subsection that in fact master roofs can be
computed with the same eMort as needed for /nding the roof dual.

Example 5.2. Let us consider the quadratic pseudo-Boolean function

f(x1; x2; x3) = 6− x1 − 4x2 − x3 + 3x1x2 + x2x3:

It can be shown that the roof dual value of this function is C2(f)=2; and two examples
for posiforms belonging to P∗

2 (f) are

g1 = 2 + 2x1 + 3 Kx1 Kx2 + Kx2 Kx3 (40)

and

g2 = 2 + 2 Kx2 + 2x1x2 + Kx1 Kx2 + Kx2 Kx3: (41)

Clearly; the convex combination of g1 and g2

g = 1
2g1 + 1

2g2 = 2 + x1 + Kx2 + x1x2 + 2 Kx1 Kx2 + Kx2 Kx3

is also a member of P∗
2 (f). As it will be seen in the next section; in fact 2 + x1 + Kx2

is a master roof of f.
The Strong Persistency Theorem implies then that x1 = Kx2 = 0, i.e. x1 = 0 and x2 = 1

in all minima of f. Hence for this example we have

min
x ∈B3

f(x) = min
x3∈B

2 = 2:

The above fortunate example illustrates that the variable /xation implied by per-
sistency can sometimes simplify the minimization problem to a trivial one. Though
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this cannot be expected in general, the equality C2(f) = minx∈Bn f(x) can always be
tested in polynomial time. To see this, let us compute /rst a posiform �∈P∗

2 (f),
then /x those variables which are implied by persistency, remove the constant term,
and denote by �′ the quadratic posiform obtained in this way. According to the above
discussion, the minimization of f is equivalent with the minimization of �′, thus
C2(f) = minx∈Bn f(x) if and only if minx∈Bn �′(x) = 0. Since �′ has only quadratic
terms with positive coe3cients, the latter is obviously equivalent with a 2-SAT prob-
lem, which is solvable in polynomial (in fact in linear) time.

A somewhat diMerent but similar conclusion can also be drawn from the integrality of
some of the components of an optimal solution to the linear programming formulation
(35):

Theorem 9 (Weak Persistency, Hammer et al. [79] Nemhauser and Trotter [129], Picard
and Queyranne [139]) Let f∈F2; and let x̃ be an optimal solution of the linear
program (35); for which x̃j = 1 for j∈O; and x̃j = 0 for j∈Z (where O and Z
are disjoint subsets of the indices). Then; for any minimizing vector x∗ ∈Argmin(f)
switching the components to x∗j = 1 for j∈O and x∗j = 0 for j∈Z will also yield a
minimum of f.

While strong persistency’s main advantage is that it allows a /xation of the values
of a subset of variables, which holds in every optimum of the problem, the advantage
of weak persistency is the /xation of a (usually) larger set of variables, valid in at
least one of the optima of the problem.

5.1.5. Network @ow model
According to the above discussion, the computation of the roof dual is a polyno-

mial problem, since it can be carried out by solving a linear program. Because of its
usefulness, several even more e3cient combinatorial procedures were developed for its
solution, see e.g. [30,36,38]. We shall recall here the network Fow computation based
method of [36], since this is perhaps the most e3cient procedure to compute the roof
dual, providing at the same time a master roof; moreover this method can also be used
to obtain simple proofs for some of the theorems cited in the previous subsection.

Let us assume that the quadratic pseudo-Boolean function f∈F2 is given as a
posiform �∈P2(f) of form (30). Let us associate to such a quadratic posiform a
capacitated directed network G� = (N; A), where the node set is de/ned as N = L ∪
{x0; Kx0}, where x0 and Kx0 are two additional symbols representing the constants x0 = 1
and Kx0 =0, respectively. Let us associate two arcs to every quadratic term of �, namely

let us associate to term cuvuv the arcs (
→
u; Kv) and (

→
v; Ku), and let the capacity of both

arcs be 1
2cuv. Similarly, let us homogenize the linear terms in � by writing cuu=cuux0,

and thus associating to this term the arcs (
→

u; Kx0) and (
→

x0; Ku), both with capacities 1
2cu.

Let us note that the constant term of � was disregarded in this construction.
Conversely, given a directed network G = (N; A) with N = L ∪ {x0; Kx0}, and with

nonnegative capacities cuv assigned to the arcs (
→
u; v)∈A, we can associate to it a
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quadratic posiform

�G
def=

∑
(u;v→)∈A

cuvu Kv:

Let us remark that in the above de/nition, all those terms which correspond to arcs
entering x0, or leaving Kx0 must vanish, since u Kx0 = Kx0v = 0, due to the assumption
Kx0 = 0.

It is easy to see that the above de/nitions imply.

Proposition 12. There is a one-to-one correspondence between quadratic posiforms
�∈P2 for which C(�) = 0 and capacitated directed networks G = (N; A) with node
set N = L ∪ {x0; Kx0}. Furthermore; the involution

G�G = G and �G� = �

holds for such corresponding pairs.

Let us recall next that a feasible Fow in the capacitated network G = (N; A) with
source x0 and sink Kx0 is a mapping ’ : A �→ R+, satisfying the constraints

’(u; v)6 cuv for all arcs (
→
u; v)∈A;

and ∑
(u;v→)∈A

’(u; v) =
∑

(v;w→)∈A

’(v; w) for all nodes v∈L:

Given a capacitated network G = (N; A) and a feasible Fow ’ in it, let us de/ne the
residual network G[’] = (N; A’) by setting the residual capacities

c’uv =




cuv − ’(u; v) for (
→
u; v)∈A;

’(u; v) for (
→
v; u)∈A:

(42)

Let us observe that, due to the special structure of this network (all arcs come in pairs

(
→
u; v) and (

→
Kv; Ku)), a feasible Fow can always be assumed to be symmetric, i.e. such

that ’(u; v) = ’( Kv; Ku) holds for every pair u; v.
An augmenting path of capacity @ in the residual network is a sequence of nodes

v0; : : : ; vk such that v0=x0, vk= Kx0, and c’vj;vj+1 ¿ @ for j=0; 1; : : : ; k−1. Let us note that for
symmetric feasible Fows ’ in G = (N; A) the path Kvk , Kvk−1; : : : ; Kv0 is also augmenting,
and these two augmenting paths can actually share arcs! It is well known that all
feasible Fows can be obtained from the constant zero Fow by iteratively increasing the
Fow along augmenting paths.

If u1; u2; : : : ; uk are literals from L, let us call an expression of the form

u1 + u 1u2 + u 2u3 + · · ·+ uk−1uk + uk ; (43)

an alternating sum. Let us say that a quadratic posiform � contains the alternating
sum (43) with weight !, if we have au1 ¿!, a Ku juj+1 ¿! for j = 1; : : : ; k − 1, and
a Ku k ¿! for all the corresponding coe3cients of �.
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Proposition 13. The following identity holds for alternating sums:

u1 + u 1u2 + u 2u3 + · · ·+ uk−1uk + uk = 1 + u1u 2 + · · ·+ uk−1uk : (44)

Proof. Immediate by elementary calculation.

If a quadratic posiform � contains the alternating sum (43) with weight !, then it
can be changed into an equivalent posiform with a larger constant term, as follows:
/rst we re-group the terms of � and write it as

� = ![u1 + u 1u2 + u 2u3 + · · ·+ uk−1uk + uk ] + �′;

where �′ is also a quadratic posiform. Then we apply the identity (44) to get

� = ! + ![u1 + u 1u2 + u 2u3 + · · ·+ uk−1uk + uk ] + �′:

Observing now that there is a one-to-one correspondence between alternating se-
quences contained in a posiform, and augmenting paths in the corresponding network,
we have

Proposition 14. Let us consider a posiform �∈P2; and a feasible @ow ’ in the
corresponding capacitated network G = G�. Then; x0; u1; : : : ; uk ; Kx0 is an augmenting
path of capacity @¿ 0 in G[’] if and only if u1 + Ku 1u2 + · · · + Kuk−1uk + Kuk is an
alternating sum of weight @ in the corresponding posiform �G[’].

Proof. Follows easily form the above observations (see [36]).

Two further consequences of the above are (see [36]):

Proposition 15. Let �∈P2(f) for a quadratic pseudo-Boolean function f∈F2; and
let ’ be a feasible @ow in the corresponding network G�. Let us denote by :(’) the
value of the @ow (e.g. the total @ow leaving the source); and let  = �G�[’] denote
the posiform corresponding to the residual network. Then we have C(�) + :(’) +
 ∈P2(f).

Proposition 16. If �;  ∈P2(f) for a quadratic pseudo-Boolean function f with
C(�)¡C( ); then there is an augmenting path in the network G�.

Putting all these facts together, we can see that the quadratic posiforms representing
a given quadratic pseudo-Boolean function f, and having the largest constant term, are
those which correspond to the residual network of a maximum Fow in the network
associated to any quadratic posiform of f.

Theorem 10 (Boros et al. [36]). Given a quadratic pseudo-Boolean function f; and a
posiform representation �∈P2(f) of it; let us denote by :∗ the maximum @ow value
in the network G�. Then

C2(f) = C(�) + :∗:

Furthermore, from an easy analysis of the residual network corresponding to a max-
imum Fow, we get the following
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Theorem 11. Let �∈P2(f) for a quadratic pseudo-Boolean function f; let ’∗ denote
a maximum @ow in G = G�; and let S ⊆ L denote the set of nodes of G which are
reachable from x0 via a path with positive residual capacities. Then; u(x∗) = 1 for all
u∈ S and for all vectors x∗ ∈Argmin(f) minimizing f.

Proof. Let us denote by  the posiform corresponding to the residual network G[’∗].
Then C( ) = 0 by de/nition; and every term of  with a positive coe3cient involving
a literal u or Ku for some u∈ S involves also a negated literal Kv for some v∈ S; since
there cannot be an arc in G[’∗] with positive residual capacity leaving the set of nodes
S. Thus; the partial assignment y de/ned by u(y) = 1 for all u∈ S is a contractor for
 ; and since C2(f) +  ∈P2(f); weak persistency holds for y at the minima of f by
Corollary 2. Adding that all nodes in S can be reached via arcs with positive residual
capacity in G[’∗]; it follows that u(x∗) = 1 must hold for all x∗ ∈Argmin(f); i.e. that
strong persistency must also hold for y.

Example 5.3. Let us illustrate the above discussion on the following example:

f(x1; x2; x3; x4; x5) = 10− 4x1 − 4x3 − 2x4 + 4x1x2 − 2x2x3 + 4x3x4 − 2x4x5:

Substituting the identity x = 1− Kx for the /rst variables in each of the quadratic terms
having a negative coe3cient; as well as in the negative linear terms; we /nd that

� =−4 + 4 Kx1 + 6 Kx3 + 2 Kx4 + 2 Kx5 + 4x1x2 + 2 Kx2x3 + 4x3x4 + 2 Kx4x5

is a quadratic posiform representing f; i.e. �∈P2(f). The corresponding network G�

is shown in Fig. 7.
Checking in Fig. 7, we can see that in the network G�, unit Fows can be pushed

sequentially through each of the following augmenting paths:

x0 → x1 → Kx2 → Kx3 → Kx0 and its twin x0 → x3 → x2 → Kx1 → Kx0;

x0 → x3 → Kx4 → Kx0 and its twin x0 → x4 → Kx3 → Kx0;

x0 → x3 → Kx4 → Kx5 → Kx0 and its twin x0 → x5 → x4 → Kx3 → Kx0:

These augmenting paths correspond, respectively, to the following alternating sequences:

Kx1 + x1x2 + Kx2x3 + Kx3 and Kx3 + x3 Kx2 + x2x1 + Kx1;

Kx3 + x3 Kx4 + x4 and Kx4 + x4x3 + Kx3;

Kx3 + x3x4 + Kx4x5 + Kx5 and Kx5 + x5 Kx4 + x4x3 + Kx3:

Since there is no further augmenting path in the residual network shown in Fig. 8, we
have arrived to a maximum Fow of value :=6. The /nal network in Fig. 8 corresponds
indeed to the quadratic posiform

 = 2 Kx1 + 2x1x2 + 2 Kx1 Kx2 + 2x2 Kx3 + 4 Kx3 Kx4 + 2x4 Kx5

for which we have � = C(�) + : +  = 2 +  . Hence C2(f) = 2 and 2 +  ∈P∗
2 (f)

follow.
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Fig. 7. The capacitated network G� corresponding to the posiform � of example 5:3.

Fig. 8. Residual network of Example 5.3. Only arcs with positive residual capacity are indicated. Dotted
arcs, i.e. those which enter the source or leave the sink, have positive capacity but play no role in our
analysis.
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From the /nal network, we can see that nodes x1 and Kx2 can be reached from the
source via arcs with positive residual capacity, and hence x1 = 1 and x2 = 0 must hold
in all minima of f. Substituting this into the last posiform  we can conclude that the
minimization of f is equivalent with the minimization of

 ∗ = 4 Kx3 Kx4 + 2x4 Kx5:

5.2. Hierarchy of bounds

In this section we study the family of nonnegative pseudo-Boolean functions, along
with their generators, and show that the roof dual bound can be extended to a complete
hierarchy of bounds.

5.2.1. Cones of positive quadratic pseudo-Boolean functions
We shall view quadratic pseudo-Boolean functions in |V|= n variables as vectors of

the 1+n+( n

2
) coe3cients of their unique polynomial form, i.e., as vectors in R1+n+( n

2 ).
For a subset S ⊆ V of the variables, let us denote by FS the family of quadratic

pseudo-Boolean functions depending only on variables from S, and let F+
S ⊆ FS

denote the subfamily of nonnegative ones among them. Clearly, FS is a subspace of
dimension 1 + |S| + ( |S|

2
) of R1+n+( n

2 ), and F+
S is a convex cone in this subspace.

It is also easy to see that F+
S is /nitely generated, since it is a polyhedral cone,

described by the 2|S| inequalities requiring the nonnegativity at each of the 2|S| binary
substitutions to these variables. Let us de/ne next

Qk
def= cone{F+

S | S ⊆ V; |S|6 k}
for 26 k6 n, as the convex cone in R1+n+( n

2 ), generated by the unions of the above
cones corresponding to at most k of the variables, chosen in all possible ways. It
follows from these de/nitions that

Q2 ⊆ Q3 ⊆ · · · ⊆ Qn (45)

and that all these cones are /nitely generated. Let us denote by B(Qk) such a /nite
set of generators of the cone Qk . Finally let us note that Qn = F+

V is the family of all
nonnegative quadratic pseudo-Boolean functions.

The characterization of the extremal elements of the above introduced cones is an
interesting problem in itself, and as we shall see in the subsequent sections, it has its
own importance for several algorithmic problems. The full characterization however
seems to be too di3cult, and at this time we only have partial solution to it.

Let us consider the following special family of functions, which we recall from [28]:

bU;�
def=



∑
u∈U

−�

2


 (46)

where U ⊆ L is a subset of the literals, not containing complemented pairs, and where
�∈Z is an integer. (Here we use ( x

2
) = x(x − 1)=2 for all integers x∈Z.) Clearly,

the above de/nes a pseudo-Boolean function, and by using the identity u2 = u for the
literals u∈L, we can compute the quadratic polynomial representing these functions.
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Example 5.4. If U = {x; Ky} and � = 1; we get

b{x; Ky};1 =
(x + Ky − 1)(x + Ky − 2)

2

=
x2 + Ky 2 + 2x Ky − 3x − 3 Ky + 2

2
= x Ky − x − Ky + 1

= Kxy:

Proposition 17 (Boros et al. [28]). If U ⊆ L is a subset of the literals containing no
complemented pairs; and � is an integer such that 16 �6 |U | − 2 for |U |¿ 3; and
� = 1 for |U |= 2; then bU;� ∈B(Qk) for k¿ |U |.

The above statement implies that in the nested sequence of convex cones (45) there
are no equalities:

Q2 ⊂ Q3 ⊂ · · · ⊂ Qn: (47)

Example 5.5. For instance; if U = {u; v; w} ⊆ L is a subset of 3 distinct literals; and
contains no complemented pair; then bU;1 = uvw + uvw = uv + uw + vw− u− v− w +
1∈Q3 \ Q2.

For k6 3 the following characterization of the extremal elements of Qk is known:

Proposition 18 (Boros et al. [29]). Let

B2 = {uv | u; v∈L; u 
= v; u 
= Kv}
= {bU;1 |U ⊆ L containing no complemented literals; |U | = 2}; and

B3 = {uvw + uvw | u; v; w∈L; u 
∈ {v; Kv; w; Kw}; v 
∈ {w; Kw}}
= {bU;1 |U ⊆ L containing no complemented literals; |U | = 3}:

Then, we have B(Q2) = B2 and B(Q3) = B2 ∪B3.

Not every generator of the cones Qk is a function of the form (46). In [33] several
families of extremal elements of Qk ; k¿ 10 are exhibited, which are not in the form
of this type.

5.2.2. Complementation, majorization, linearization
Following [28] we shall recall in this section a generalization of the three approaches

yielding the roof dual value.
The /rst approach, the so called complementation, can be extended in a natural way

as follows. Let us observe that since every quadratic pseudo-Boolean function f can
be represented by a quadratic posiform � (possibly with a negative constant term),
there exists a constant C such that f − C ∈Q2 ⊆ Qk for k¿ 2. Thus, let us de/ne

Ck(f) = max{C ∈R |f − C ∈Qk} (48)
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for k = 2; 3; : : : ; n. Since Qk is a closed convex cone in R1+n+( n
2 ) for k = 2; 3; : : : ; n, and

since f takes only /nitely many diMerent values, in the above de/nition the maximum
exists.

It is clear from the de/nition of the cones Qk that

C2(f)6C3(f)6 · · ·6Cn(f) = min
x∈Bn

f(x);

implying that the values Ck(f) form a sequence of increasingly better lower bounds
of f.

Using a generating set B(Qk) of the cone Qk , we can also express the lower bound
Ck(f) as the optimum of a linear programming problem

Ck(f) =max C

subject to f − C =
∑

b∈B(Qk )

�bb;

�b ¿ 0 for all b∈B(Qk);

(49)

where the equations correspond to the 1 + n + ( n

2
) coe3cients of f.

Using Proposition 18 and the above linear programming problem for k = 2, it can
be veri/ed that C2(f) is indeed the roof dual value of f, as de/ned in the previous
sections. The linear programming problem corresponding to k = 3 was analyzed in
[29], and C3(f) was introduced there as the cubic dual of f. It was also shown that
C3(f)¿C2(f) with equality holding if and only if C2(f) = C3(f) = minx∈Bn f(x),
i.e. if and only if these bounds are tight.

The main idea of the second approach, minorization, is to consider a family of linear
minorants of the quadratic pseudo-Boolean function f, and to /nd a “best” one among
these linear functions. This idea was considered in [12,79], and a generalization, which
we recall here appears in [28].

For a purely quadratic function h of k variables (i.e., for which h(0; 0; : : : ; 0) =
h(1; 0; : : : ; 0) = · · ·= h(0; : : : ; 0; 1) = 0) let

M(h) def= {l | l linear; l(x)6 h(x) for all x∈Bk}
denote a family of linear minorants of h over the Boolean vectors.

For a quadratic pseudo-Boolean function f, and for a /xed integer k, let us consider
a representation of f of the form

f = l +
∑
j∈J

fj; (50)

where l is linear, and the fj’s are purely quadratic functions of at most k variables.
Then, the linear functions of the form

p = l +
∑
j∈J

lj;

with lj ∈M(fj) for j∈ J , are linear minorants of f. Let Mk(f) denote the set of all
linear minorants of f obtained in this way, varying (50) over all possible representa-
tions. Then, by de/nition,

M(f) = Mn(f) ⊇Mn−1(f) ⊇ · · · ⊇M3(f) ⊇M2(f):
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By de/ning

Mk(f) def= max
p∈Mk (f)

min
x∈Bn

p(x); (51)

we obtain another series of lower bounds of f

min
x∈{0;1}n

f(x) = Mn(f)¿Mn−1(f)¿ · · ·¿M3(f)¿M2(f):

The elements of M2(f) were called paved upper planes in [79]. It was also shown
there that the bound, obtained by taking the minimum in (51) for k = 2 over certain
“minimal” elements p(x) of M2(f), rather than over all of M2(f), is always equal
to C2(f). As a consequence, it follows that M2(f)¿C2(f). Later, in [98] it has been
proved that C2(f) = M2(f) (see also [2,42]).

Using the notation b = lb + qb for b∈B(Qk), where lb denotes the linear part of
b, and qb is purely quadratic, we can obtain a computationally simpler derivation of
Mk(f), given by

Mk = max
l is linear; �b¿0

f=l+
∑

b∈B(Qk ) �bqb

min
x∈Bn


l +

∑
b∈B(Qk )

�blb


 : (52)

The third approach, linearization, is a standard method to represent nonlinear ex-
pressions in terms of linear functions and inequalities.

To a quadratic pseudo-Boolean function over Bn

f(x) def= q0 +
n∑

j=1

qjxj +
∑

16i¡j6n

qijxixj;

we shall associate a linear function over Rn+( n
2 ), given by

Lf(x; y) def= q0 +
n∑

j=1

qjxj +
∑

16i¡j6n

qijyij;

where (x; y) denotes the vector (x1; : : : ; xn; y12; : : : ; yn−1; n)∈Rn+( n
2 ). This association es-

tablishes in fact a one-to-one correspondence between quadratic pseudo-Boolean func-
tions in n variables and linear functions in n + ( n

2
) variables.

Let us de/ne then a polyhedron for 26 k6 n by

S[k] def= {(x; y) |Lb(x; y)¿ 0 for all b∈B(Qk)}
and let

Lk(f) def= min Lf(x; y) s:t: (x; y)∈S[k]: (53)

It is easy to see by the de/nition of the cones Qk ; k = 2; : : : ; n that

S[2] ⊇ S[3] ⊇ · · · ⊇ S[n]:

It follows by Proposition 18 that S[2] is the same polyhedron appearing (with slight
variations) in many publications (see e.g., [11,31,59,60,67,68,95,122,146]).

It has been shown in [135] that all fractional vertices of S[2] are cut oM by the
so called triangle inequalities, i.e. by the inequalities Lb(x; y)¿ 0 for b∈B(Q3). A
stronger statement was proved in [29]:
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Proposition 19 (Boros et al. [29]). The polyhedron S[3] is the 9rst ChvCatal closure of
S[2].

Using Proposition 18, we can easily see that the roof dual of a quadratic pseudo-
Boolean function f is the common value of the three bounds: C2(f)=M2(f)=L2(f).
The main result of [28] generalizes this property:

Theorem 12 (Boros et al. [28]). Given a quadratic pseudo-Boolean function f in n
variables; the equalities

Ck(f) = Mk(f) = Lk(f)

hold for all k = 2; 3; : : : ; n; providing increasingly tighter lower bounds on f; with

min
x∈Bn

f(x) = Cn(f) = Mn(f) = Ln(f):

De/nition (53) provides also a simple linear programming formulation to compute
these bounds, at least for those cases when B(Qk) is known. For instance, we have

S[2] =




(x; y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−yij 6 0

−xi +yij 6 0

−xj +yij 6 0

xi +xj −yij 6 1

for 16 i¡ j6 n




(54)

and

S[3] = S[2] ∩




(x; y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi +xj +xk −yij −yik −yjk 6 1

−xi +yij +yik −yjk 6 0

−xj +yij −yik +yjk 6 0

−xk −yij +yik +yjk 6 0

for 16 i¡ j¡k6 n




: (55)

The sharpness of the roof dual bound, i.e. the validity of C2(f) = minx∈Bn f(x),
can be recognized in O(|f|) time (see [79]), while the sharpness of C3(f) was shown
in [28] to be NP-complete. It was also shown there that C2(f) = C3(f) only if these
bounds are sharp, while C4(f) =C3(f)¡minx∈Bn f(x) is possible for some quadratic
pseudo-Boolean functions.

5.3. Polyhedra

As for almost all combinatorial optimization problems, polyhedral formulations are
quite natural, and are also frequent in the literature of quadratic pseudo-Boolean opti-
mization. In fact, the technique of linearization has already associated some polyhedra
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with this problem. In this section we survey some of the relevant notions and results,
selecting only the most closely related ones, from a very large and active area.

The most natural polytope associated to quadratic pseudo-Boolean optimization is
the so called Boolean quadric polytope, introduced in [135], and de/ned by

Q def= {(x; y) |x∈Bn; yij = xixj for all 16 i¡ j6 n}: (56)

It was shown in [135] that S[2] ⊇ Q, that the dimension of both polytopes is n+( n

2
);

a number of facet de/ning inequalites were also introduced in the same paper. These
polytopes were also shown to have several other interesting properties.

Let us call the 1-skeleton of a polytope P the family of its 1-faces, and let us say
that a polytope P has the Trubin property with respect to another polytope Q ⊆ P if
the 1-skeleton of Q is a subfamily of the 1-skeleton of P (see [13,14,160]).

Proposition 20 (Padberg [135]). The polytope S[2] has the Trubin property with re-
spect to Q; furthermore; all vertices of S[2] are half-integral.

The relations

S[2] ⊇ S[3] ⊇ · · · ⊇ S[n] =Q

were observed in [28], together with the fact that the facets of Q correspond in a
one-to-one way to the generators of the cone Qn of nonnegative quadratic pseudo-
Boolean functions.

Proposition 21 (Boros et al. [28]). A quadratic pseudo-Boolean function f is nonneg-
ative (i.e.; f∈Qn); if and only if the inequality Lf(x; y)¿ 0 is valid for Q. Moreover;
f∈B(Qn) if and only if Lf(x; y)¿ 0 is facet de9ning for Q.

The fact that S[2] has the Trubin property with respect to Q corresponds to the fact
that B(Q2) ⊂ B(Qn). We believe that a more general property must also hold, namely
that

B(Q2) ⊂ B(Q3) ⊂ · · · ⊂ B(Qn);

implying that, S[i] has the Trubin property with respect to S[ j] for all 26 i¡ j6 n.
Another strongly related polytope is the so called cut polytope. Let G=Kn+1 denote

the complete graph on vertices v0; v1; : : : ; vn, and let E = E(G) denote its edge set. Let
us call an edges set F ⊆ E a cut set, if the removal of F disconnects G, and let us
de/ne C ⊆ [0; 1]E as the convex hull of the characteristic vectors of cut sets.

It was noted in [49] that the mapping

z0i = xi for i = 1; : : : ; n;

zij = xi + xj − 2yij for 16 i¡ j6 n (57)

is an invertible linear mapping establishing a one-to-one correspondence between Q and
C. Combining this with the f ↔ Lf association, we get also a one-to-one correspon-
dence between the points of the cut polytope, and the nonnegative quadratic-pseudo-
Boolean functions. These mappings help to identify the corresponding results about
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the facial structure of the cut polytope (see e.g. [18,19,52,53]), the Boolean quadric
polytope ([135]) and the conical structure of nonnegative quadratic pseudo-Boolean
functions ([28,33]), and are also useful in extending those results.

For instance, the inequalities in (54) and (55) were shown to de/ne facets for Q in
[135], a fact which also follows easily from the characterization of B(Qk) for k = 2; 3
given in the previous section. It can be seen easily by (57) that the inequalities of (55)
correspond to the so called triangle inequalities for the cut polytope.

Proposition 21 provides also a constructive approach to obtain valid inequalities for
Q (and hence for C), since nonnegative quadratic pseudo-Boolean functions can be
constructed by various algebraic techniques.

It is easy to see that if l :Bn → Z is an integer valued linear function, then
l(x)(l(x) − 1) de/nes a nonnegative quadratic pseudo-Boolean function, and hence
Ll(l−1)(x; y)¿ 0 is a valid inequality for Q. It was shown in [33] that this family
of valid inequalities includes all hypermetric inequalities of the cut polytope (see e.g.
[52,53]).

A further generalization was introduced in [33].

Proposition 22 (Boros and Hammer [33]). Let 16p6 n; k¿ 0; let lj¿ 0;
j = 1; : : : ; p and lj ¡ 0 for j = p + 1; : : : ; n be integers; and let T be a spanning
tree on vertices {1; : : : ; p}. Then the function

f(x) def=

(
n∑

i=1

lixi

)(
n∑

i=1

lixi − (2k + 1)

)
+ k(k + 1)


 p∑

j=1

xj −
∑

(i; j)∈E(T )

xixj



(58)

de9nes a nonnegative quadratic pseudo-Boolean function.

It can be seen that the facets of C, de/ned through the above correspondence, include
the cycle inequalities (for k=1), and many other families of valid de/ning inequalities,
giving at the same time rise to new families of facet de/ning inequalities:

Proposition 23 (Boros and Hammer [33]). Let r = k + 1; n¿ 3k + 7; p = [(n + k +
1)=(k + 2)] for k¿ 1; and let l1 = · · ·= lp = r; lp+1 = · · ·= ln =−1. Let furthermore
T be an arbitrary spanning tree on the vertices {1; 2; : : : ; p}. Then f; de9ned by (58);
is an extremal element of Qn; i.e.; f∈B(Qn).

Let us also remark that the facet class de/ned in this way for C not only includes
some facet de/ning cycle inequalities, but also has polynomial time separation (since
a maximum weight spanning tree can be found in polynomial time.)

5.4. Heuristics

There is a large variety of techniques applied in the literature for solving problems
that can be modelled by quadratic pseudo-Boolean functions. Many of the published
algorithms are either branch-and-bound or branch-and-cut type, exploiting some of the
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results (bounds, facets, etc.) which were mentioned in the previous subsections, treating
essentially those problems as integer programs.

In this brief survey of pseudo-Boolean optimization we shall restrict ourselves to
recall a simple but very successful heuristic, which utilizes techniques highly speci/c to
quadratic pseudo-Boolean functions. The DDT algorithm (Devour, Digest and Tidy-up)
was introduced in [35] and was later applied successfully for delay-fault testing in
VLSI design [39,153], and to a number of other problems transformed to quadratic
pseudo-Boolean optimization via a penalty function technique [66].

The basic idea in this heuristic is to represent the problem as the minimization of
a quadratic posiform, and then sequentially restrict the Boolean cube to smaller and
smaller subsets of it, on which the quadratic terms with the highest coe3cients vanish.
In this process the restriction is represented as the set of solutions to a quadratic
Boolean equation, the consistency of which can be tested e3ciently. In each iteration,
logical consequences of the current Boolean equation are substituted back into the input
formula, which is then simpli/ed, before choosing the next term for elimination.

To make this procedure more precise, let us assume that we would like to minimize
the quadratic posiform

�(x) =
∑
T⊂L

aT

∏
u∈T

u; (59)

where aT ¿ 0 for all T ⊆ L, and aT ¿ 0 if and only if |T |6 2.
A straightforward one step implementation of the above idea would be to choose a

smallest threshold J¿ 0 for which the quadratic Boolean equation
∨

T :aT¿J T (x) = 0
is still consistent, and then output a solution of this equation. A re/ned sequential
version, the so called DDT algorithm, is described below (see [35]).

DDT (DEVOUR–DIGEST–TIDY-UP)
Initialization: Input � given by (59), and set S = ∅, and �̃ = �.
Devour: Find a term T of �̃ with the largest coe3cient, and let

S = S ∪ {T}.
Digest: Draw all logical conclusions C of the Boolean equation∨

T∈S T (x) = 0 ($)
Tidy-up: Substitute into �̃ the consequences C, drawn in the pre-

vious step, and simplify the resulting posiform �̃. If �̃ 
= const
then return to Devour.

Output: Output a solution x of the quadratic Boolean equation
($), and STOP.

Let us add that the logical conclusions drawn in step Digest are of the form u = 0
or uv = 0 for some literals u and v, and that all such conclusions can be derived
in polynomial time from the quadratic Boolean equation ($). It is important to note
that the completeness of this step implies that all terms which have positive coe3cients
after the substitution of the derived logical consequences in step Tidy-up are consistent
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with the current quadratic equation ($), i.e. any one of those could be added to S
without implying the inconsistency of the quadratic Boolean equation ($).

Instead of giving a formal proof (simple, but technical, see [35]) for the correctness
and /niteness of the above procedure, let us illustrate it on a small example.

Example 5.6. Let us consider the minimization of the following quadratic posiform:

�(x1; x2; : : : ; x5) = 17 Kx1 + 12x1 Kx2 + 10x2 Kx4 + 8x1x4 + 8x4 Kx5

+ 7x5 + 6x3 Kx4 + 5 Kx3 + 4x2x3 + 4x4 + Kx2;

in which terms are listed in the decreasing order of their coe3cients. The DDT algo-
rithm will take 5 steps before termination; and will output x = (1; 1; 0; 0; 0); which in
this case is indeed a minimum of �:
(1) T = Kx1; S = { Kx1}; C = {x1 = 1} and �̃ = +13 Kx2 + 12x4 + 10x2 Kx4 + 8x4 Kx5 + 7x5 +

6x3 Kx4 + 5 Kx3 + 4x2x3.
(2) T = Kx2; S={ Kx1; Kx2}; C={x1 = x2 = 1} and �̃= 14 + 8x4 Kx5 + 7x5 + 6x3 Kx4 + 2x4 + Kx3.
(3) T = x4 Kx5; S={ Kx1; Kx2; x4 Kx5}; C={x1 = x2 = 1; x4 Kx5 = 0} and �̃= 14 + 7x5 + 6x3 Kx4 +

2x4 + Kx3.
(4) T = x5; S = { Kx1; Kx2; x4 Kx5; x5}; C = {x1 = x2 = 1; x4 = x5 = 0} and �̃ = 15 + 5x3.
(5) T = x3; S = { Kx1; Kx2; x4 Kx5; x5; x3}; C = {x1 = x2 = 1; x3 = x4 = x5 = 0} and �̃ = 15.

A slightly simpler version of the DDT algorithm, in terms of signed graph balancing
was also presented in [35], and it was shown that both version can be implemented to
run in O(n|�|) time.

Let us add that the selection of the next term to be eliminated in the DDT algorithm
is based on a very simple “greedy” utility measure, namely the size of the coe3cient
of that term. One could further modify the above algorithm by making a more careful
selection, based on some look-ahead procedure, analyzing several steps in advance
before choosing the term to be eliminated, or based on some probabilistic analysis of
the expected bene/t from eliminating a particular term, etc. Several such variants were
recently examined in [66].

6. Special classes

In this section we survey some special classes of pseudo-Boolean functions, lim-
iting our attention to those for which specialized optimization algorithms have been
developed.

6.1. Sub- and supermodular functions

Among the most widely studied classes of set functions submodular and supermod-
ular functions play a well-known and special role. A set function f : 2V → R is called
submodular if

f(X ) + f(Y )¿f(X ∪ Y ) + f(X ∩ Y ) (60)
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holds for all subsets X; Y of a base set V of n elements. Functions, for which the
reverse inequality holds for all subsets X; Y ⊆ V are called supermodular, while those
for which f(X ) + f(Y ) = f(X ∪ Y ) + f(X ∩ Y ) for all subsets X; Y ⊆ V are called
modular. Clearly, f is submodular iM −f is supermodular, and vice versa; furthermore,
functions which are both sub- and supermodular, are the modular ones.

It is well-known that submodular functions can be minimized in polynomial time
(see e.g. [71]), and even strongly polynomial algorithms are available for this task
(see e.g. [108,152]). Of course, the same applies to the maximization of supermodular
functions.

It is an interesting problem to recognize if a given polynomial expression or a given
posiform de/nes a sub- or supermodular set function.

It is easy to see that a set function is modular if and only if its unique polynomial
expression is linear. This is also an easy consequence of the more general characteri-
zation of supermodular functions.

Proposition 24 (Fisher et al. [58]). A pseudo-Boolean function f :Bn → R is super-
modular if and only if its second order derivatives

�ij(x) def=
@f

@xi@xj
(x)¿ 0

are nonnegative for all 16 i¡ j6 n and for all x∈Bn.

Clearly, f is modular iM both f and −f are supermodular, i.e. if and only if
�ij(x) ≡ 0 for all i 
= j, and consequently, if and only if it is linear.

For a quadratic pseudo-Boolean function f it follows that f is supermodular iM all
quadratic terms of it have nonnegative coe3cients, or equivalently, f is submodular iM
its quadratic terms are nonpositive. The minimization of such a quadratic submodular
function is known to be equivalent with /nding a minimum capacity cut in a corre-
sponding network (see e.g. [72,99]). Indeed, let us consider a quadratic posiform of a
quadratic submodular function. According to the above, such a posiform � can always
be written, possibly after some simple transformations, as

�(x1; : : : ; xn) =
∑
i∈P

aixi +
∑
j∈N

aj Kxj +
∑

16i¡j6n

aijxi Kxj;

where P; N ⊆ V, and where all the coe3cients ai (i=P∪N ) and aij (16 i¡ j6 n) are
nonnegative. Let us associate then to � a network N� on the node set V (N�)={s; t}∪V,
with arcs corresponding to the terms of f:

A(N�) = {(s; j) | j∈N} ∪ {(i; t) | i∈P} ∪ {(i; j) | 16 i¡ j6 n};
where the capacities of the arcs are de/ned as cs; j = aj for j∈N; ci; t = ai for i∈P,
and ci; j = aij for 16 i¡ j6 n. Then the s; t-cuts of this network are in a one-to-one

correspondence with the binary vectors: x∈Bn ↔ Sx
def= {s} ∪ {j | xj = 1}. It is easy to

check that with these de/nitions we have

�(x) =
∑

u∈Sx ;v �∈Sx

cu;v
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for all x∈Bn, and hence the minimum of � will correspond to a minimum capacity
cut of N�.

The above analysis was extended to cubic posiforms, as well.

Proposition 25 (Billionnet and Minoux [24]). A cubic posiform

 (x) =
∑
T⊆L

aT

∏
u∈T

u;

with aT ¿ 0 for all T ⊆ L; and aT = 0 for all |T |¿ 3; de9nes a supermodular set
function if and only if all terms of it are pure; i.e. if and only if T ⊆ {x1; : : : ; xn} or
T ⊆ { Kx1; : : : ; Kxn} holds whenever aT ¿ 0.

Based on the above characterization, the maximization of supermodular cubic posi-
forms was also shown to be equivalent with a network Fow computation in [24]. Sev-
eral other related classes have also been considered in the literature, including almost
positive functions, polar functions, and their switch equivalents (see e.g. [41,45,46,100]).

The above results cannot be generalized easily. The recognition of sub(or super)
modularity for higher degree posiforms turns out to be a hard problem, unless P = NP.

Proposition 26 (Gallo and Simeone [62]). The recognition of supermodularity of
quartic (degree 4) posiforms is co-NP-complete.

Let us remark /nally that even though the minimum of a submodular (or the maxi-
mum of a supermodular) set function can be found in polynomial time [71], or even in
strongly polynomial time (see [108,152]), the opposite optimization problems, i.e. the
maximization of a submodular (or the minimization of a supermodular) set function is
NP-hard (see e.g. [58,130]).

Let us further add that a standard greedy procedure for the maximization of a sub-
modular set function provides a (1 − 1=e)-approximation of the maximum, as shown
in [58,130].

6.2. Half-products

In this section we consider half-products, a special subclass of supermodular func-
tions, de/ned by multilinear polynomial expressions of the following form:

f(x) def=
∑

16i¡j6n

aibjxixj −
n∑

i=1

cixi; (61)

where a=(a1; : : : ; an), b=(b1; : : : ; bn) and c=(c1; : : : ; cn) are nonnegative integer vectors
(in fact, the values of an and b1 are not used).

These functions were considered independently in [9,10,118], and have attracted
considerable attention, since a number of scheduling problems can be formulated as
half-product minimization; examples where this model arises include the scheduling of
two machines to minimize total weighted completion time or to minimize the makespan,
and the scheduling of a single machine to minimize completion time variance, agreeably
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weighted completion time variance, or total weighted earliness and tardiness (see e.g.
[9,10,40,111,118]). Half-products also occur in physics, e.g. in the in/nite range Mattis
model of a spin-glass, the energy function is in fact a half-product (see [6,126]).

Half-products clearly form a subfamily of supermodular set functions by Proposition
24, since all quadratic terms of a half-product have a nonnegative coe3cient. It can
be shown that the minimization of even these special supermodular functions remains
NP-hard.

Proposition 27 (Badics and Boros [10]). The minimization of half-products is NP-
hard.

Still, a fully polynomial time approximation scheme exists for the minimization of
half-products, providing another attractive feature of this class.

Proposition 28 (Badics and Boros [10]). Given a half-product f(x) by (61); let A =∑n−1
i=1 ai; and let x∗ denote a minimum of f. Then; for every @¿ 0; one can 9nd in

O((n2 ln A)=@) time a binary vector x@; for which

f(x@)− f(x∗)6 @|f(x∗)|:

The main component of the above approximation scheme is the existence of a
pseudo-polynomial dynamic programming algorithm. Introducing

gk(x1; : : : ; xk) def=
∑

16i¡j6k

aibjxixj −
k∑

i=1

cixi;

and

hk(xk+1; : : : ; xn) def=
∑

k¡i¡j6n

aibjxixj −
n∑

i=k+1

cixi

for k = 1; 2; : : : ; n− 1, we can write the half-product f as

f(x) = gk(x1; : : : ; xk) +

(
k∑

i=1

aixi

) n∑
j=k+1

bjxj


+ hk(xk+1; : : : ; xn):

From this it can be seen that if x and y are binary vectors for which xj = yj for
all j¿k, gk(x1; : : : ; xk)6 gk(y1; : : : ; yk), and

∑k
i=1 aixi6

∑k
i=1 aiyi, then f(x)6f(y).

As a consequence, the /rst k components x∗1 ; : : : ; x
∗
k of a minimizing vector x∗ of f

will correspond to one of the minimal two-dimensional integer vectors of the form
(gk(x1; : : : ; xk);

∑k
i=1 aixi), x∈Bn, of which we have at most

∑k
i=1 ai6A diMerent ones.

Thus, updating recursively for k=1; 2; : : : ; n these (at most A) diMerent two-dimensional
vectors, we can determine the minimum of f in O(nA) steps.

The above dynamic programming idea was further specialized for the case of the so
called ordered symmetric half-products in [119]. A half-product f is called symmetric
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if it can be written as

f(x) =
∑

16i¡j6n

aibj(2xixj − xi − xj)

for some nonnegative integer vectors a = (a1; : : : ; an) and b = (b1; : : : ; bn). It is called
ordered symmetric if either a16 a26 · · ·6 an, or b1¿ b2¿ · · ·¿ bn.

Proposition 29 (Kubiak [119]). An @-approximation of the minimum of an ordered
symmetric half-product can be found in O(n2=@) time for any @¿ 0.

6.3. Hyperbolic pseudo-Boolean programming

An interesting special class of pseudo-Boolean optimization is the maximization (or
minimization) of the ratio of two linear functions:

max
x∈Bn

f(x) =
a0 +

∑n
j=1 ajxj

b0 +
∑n

j=1 bjxj
: (62)

This problem was introduced in [91] as fractional programming, and was studied
later in [97,128,147]. Its applications include query optimization in data bases and
information retrieval (see e.g. [97]).

It is known [91] that (62) has an easy polynomial time solution if

b0 +
n∑

j=1

bjxj ¿ 0 for all x∈Bn: (63)

In order to see the solution of (62), let us observe /rst that condition (63) implies
that strong persistency holds for f at the partial assignment y de/ned by

yj =

{
1 if (aj ¿ 0 and bj6 0) or (aj = 0 and bj ¡ 0);

0 if (aj ¡ 0 and bj¿ 0) or (aj = 0 and bj ¿ 0):
(64)

Let us also note that if aj = bj = 0 then in fact f(x) does not depend on xj, and that
by substituting xj = 1 − x′j whenever aj ¡ 0 and bj ¡ 0 we can obtain an equivalent
maximization problem, in which the coe3cients of all variables are positive.

Thus, in case (62) holds, we can assume without any loss of generality that

bj ¿ 0 for j = 0; 1; : : : ; n; and aj ¿ 0 for j = 1; 2; : : : ; n: (65)

Denoting by x∗ an optimum of (62), let us observe next that f(x∗)¿ t if and only
if

a0 − tb0 +
n∑

j=1

(aj − tbj)x∗j ¿ 0

or equivalently, if and only if

max
x∈Bn

n∑
j=1

(aj − tbj)xj¿− a0 + tb0:
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This latter optimization problem is trivial to solve, and for every value of the threshold
t its optimal solution is one of the n + 1 binary vectors of the form

xjl = 1 for l6 k and xjl = 0 for l¿k (66)

for k = 0; 1; : : : ; n, where (j1; : : : ; jn) is a permutation of the indices such that
aj1

bj1

¿
aj2

bj2

¿ · · ·¿ ajn

bjn
:

Hence, the optimum of (62) is one of these n+ 1 binary vectors whenever (63) holds.
Since these vectors can be generated in O(n log n) time, and all corresponding values
of f can be determined in O(n) time, problem (62) can be solved in this case in
O(n log n) time.

Let us add that an analogous analysis with a similar conclusion can obviously be
carried out in case (62) is a minimization problem.

Let us remark next that of course, if b0 + b1x1 + · · ·+ bnxn can also take the value
zero, then (62) may not have a /nite optimum. Furthermore, even if the condition

b0 +
n∑

j=1

bjxj 
= 0 for all x∈Bn (67)

holds, but the denominator can take both negative and positive values (e.g. b0 ¡ 0),
problem (62) is NP-hard. To see this latter claim, let us consider the problem of
deciding if there exists a binary assignment x∈Bn for which

n∑
j=1

sjxj = S; (68)

where sj ¿ 0, j = 1; : : : ; n and S are given integers. This problem is known as the
subset sum problem, a well-known NP-complete decision problem. Let us associate to
it the hyperbolic pseudo-Boolean optimization problem

max
x∈Bn

−1
(−1− 2S) +

∑n
j=1 2sjxj

: (69)

It is easy to verify that the maximum of (69) is 1 if and only if (68) has a solution,
implying that maximizing (69) cannot be easier than /nding a solution to (68).

6.4. Products of linear functions

Another interesting special case of pseudo-Boolean optimization is the maximization
(or minimization) of the product of two linear functions over binary variables

max
x∈Bn

f(x) = l1(x)l2(x); (70)

where

l1(x) = a0 + a1x1 + · · ·+ anxn; and l2(x) = b0 + b1x1 + · · ·+ bnxn:
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This problem was considered in [76], and was shown to be an NP-hard optimization
problem via a reduction from the subset sum problem cited above. The continuous
relaxation

max
q∈Un

f(q) = l1(q)l2(q); (71)

was also considered in [76], and a polynomial O(n log n) time algorithm was presented
for it. Based on this, a branch-and-bound algorithm was developed for (70). Computa-
tional experiments were carried out with problems of this type involving up to 10 000
variables.

7. Approximation algorithms

7.1. MAX-SAT and variants

The maximum satis9ability problem is one of the central problems of computer
science and combinatorial optimization. Given a family of weighted elementary dis-
junctions (so called clauses), the maximum satis/ability problem consists in /nding
a binary assignment to the Boolean variables which maximizes the total weight of
satis/ed clauses. Using the equality∨

u∈C

u = 1−
∏
u∈C

u

for subsets C ⊆ L of literals, we can reformulate this problem as a pseudo-Boolean
optimization problem, as shown in Section 3: Given a family C of literals, and non-
negative weights aC ∈R+ associated to the clauses C ∈C, the maximum satis/ability
problem can be stated as

max
x∈Bn

∑
C∈C

aC

(
1−

∏
u∈C

u

)
: (72)

The maximum satis/ability problem is a well-known NP-hard optimization problem,
a common generalization of many other combinatorial optimization problems (e.g.,
maximum cut in graphs, maximum directed cut in directed graphs, etc.), which is also
known to have good approximations, as well as inapproximability results.

For a maximization problem max f(x) a vector x̃ is called an �-approximation, if

f(x̃)
max f(x)

¿ �:

It is important to note that this measure of approximability is not invariant under
several simple operations, which otherwise do not change the optimization problem.
For instance, the same x̃ vector may not be an �-approximation of the objective function
f(x)− K , where K is a nonnegative constant, though the maximization of f(x)− K
is clearly equivalent with the maximization of f(x). It is also important to point out
here that while the maximum satis/ability problem is equivalent with the minimization
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of the corresponding posiform∑
C∈C

aC

∏
u∈C

u

the latter problem cannot be approximated well, unless P = NP. For a more precise
treatment of approximation algorithms and related notions of complexity see [136].

Returning to approximations of the maximum satis/ability problem, there are many
relevant results to mention here, with a particular increase in research volume in the
last decade, due to two important new techniques: on the one hand, semide/nite for-
mulations yielded new e3cient approximations to several variants of the maximum
satis/ability problem, while, on the other hand, the development of probabilistic proof
veri/cation techniques made it possible to prove inapproximability beyond certain rates,
assuming P 
= NP.

Before giving a brief overview of these results, let us recall an extended terminology
for the many variants of this problem. MAX SAT refers to the maximum satis/ability
problem as stated in (72). If |C|6 k for all clauses C ∈C, the problem is called
MAX-k-SAT. Particular attention is given in the literature to MAX-2-SAT, which is,
as an optimization problem, equivalent with quadratic pseudo-Boolean optimization.

A natural generalization of maximum satis/ability is called maximum constraint
satisfaction problem, or MAX CSP. Let g be an arbitrary Boolean expression, and
let us denote by g(S) the value of this function when applied to the set of literals
S ⊆ L. For any /xed Boolean expression g, MAX CSP(g) denotes the following
problem: Given a collection S of subsets of literals, and nonnegative weights aS ∈R+

associated to these subsets S ∈S, /nd a binary assignment to the variables, which
maximizes the function∑

S∈S

aSg(S): (73)

It is easy to see that for most interesting cases in the literature, g has a very short
posiform representation, and hence MAX CSP(g) is a special case of pseudo-Boolean
optimization in all these cases. For instance, denoting by

OR(S) =
∨
u∈S

u = 1−
∏
u∈S

u;

we /nd that MAX CSP(OR) is the maximum satis/ability problem as written in (72),
while if

AND(S) =
∧
u∈S

u =
∏
u∈S

u;

then MAX CSP(AND) is the posiform maximization as considered in Section 4.7.
It is customary to indicate in the lower index if the size of the sets S to which these

functions are applied are limited in size, e.g. MAX CSP(OR2) denotes MAX-2-SAT,
etc. For instance, if

XOR2(u; v) = u Kv + uv
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then MAX CSP(XOR2) is in fact a generalization of the maximum cut problem in
graphs and signed graphs. Another interesting case is the majority function

MAJ3(u; v; w) =

{
1 if u + v + w¿ 2;

0 otherwise:

It is easy to see that MAX CSP(MAJ3) is the problem of /nding the maximum number
of clauses in a given 3-CNF, which can be switched to a Horn formula, a problem
arising in arti/cial intelligence (see [26]).

A 1
2 -approximation algorithm for MAX-SAT is simply the application of ROUNDUP

(see Section 4.1) starting with ( 1
2 ;

1
2 ; : : : ;

1
2 ), as proposed in [109]. In fact that algorithm

provides a (1 − 1=2k)-approximation whenever all terms are of degree k or larger,
implying e.g. a 3

4 -approximation for MAX-2-SAT in which there are no linear terms.
For the case, when the linear terms are present, but cannot be trivially simpli/ed
a (
√

5 − 1)=2-approximation (0:618-approximation) was obtained by [123]. In [116]
a randomized algorithm is presented yielding a 2

3 -approximation, in expected value. A
transformation producing an equivalent problem without linear terms, and yielding a
3
4 -approximation with the help of ROUNDUP starting from ( 1

2 ;
1
2 ; : : : ;

1
2 ) was presented

in [166]. In fact this method for MAX-2-SAT is simply a combination of roof-duality
and the ROUNDUP procedure. We shall recall this procedure in more detail in the next
subsection.

In [69] a new 3
4 -approximation algorithm was provided by a combination of the

rounding method and another (1 − 1=e)-approximation obtained via a linear program-
ming formulation. Though this latter method solves the problem by solving a higher
dimensional model /rst, it can be simpli/ed somewhat by using a simple convex ma-
jorant of the input posiform, and a robust 3

4 -approximation algorithm can be obtained
via convex programming in the original space of the variables [9].

A substantial improvement was presented in [70] based on an O(n2)-dimensional
semide/nite formulation of the problem, yielding a 0:87856-approximation for both
MAX-2-SAT and MAX CUT (in fact for MAX CSP(XOR2)). This method also yielded
a 0:758-approximation for MAX SAT. This has further been improved to a 0:93109-
approximation for MAX-2-SAT and an 0:859-approximation for quadratic posiform
maximization (MAX CSP(AND2)) in [56].

This novel approach of solving a semide/nite relaxation and then rounding the re-
sulted O(n2)-dimensional fractional solution to a binary n-vector has been applied in
the last few years to a large variety of combinatorial optimization problems. Among
these we mention the 7

8 -approximation for MAX-3-SAT by [113], a 1
2 -approximation

for MAX CSP(AND3), and a 2
3 -approximation for MAX CSP(MAJ3) by [168]. Let

us add that for the latter problem a robust but weaker 40
67 -approximation can be ob-

tained using pseudo-Boolean techniques without solving a large semide/nite
relaxation [26].

On the negative side, the development of the theory of probabilistically checkable
proofs [7,8] lead to a series of inapproximability results. For instance the results men-
tioned above for the MAX-3-SAT, MAX CSP(AND3) and MAX CSP(MAJ3) problems
are all known to be best possible, unless P = NP (see [20,101,159]). It is also known
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that for MAX-2-SAT it is impossible to obtain in polynomial time an approximation
better than 21

22 , unless P = NP (see [159]).
To give a more detailed overview of all these results and techniques is beyond

the scope of our survey of pseudo-Boolean optimization. We shall recall only two
results, where the applied techniques are speci/c to the theory of pseudo-Boolean
functions. These results also show that a robust and reasonably good approximation
can be achieved without solving a high dimensional relaxation.

Let us point out that most approaches which do not employ semide/nite program-
ming used in fact a variant of the ROUNDUP procedure with ( 1

2 ; : : : ;
1
2 ) as a starting

point. We would like to show that by applying algebraic transformation to the input
posiform /rst, and using persistency before applying ROUNDUP (see e.g. [166]), as well
as precomputing a better starting point than ( 1

2 ; : : : ;
1
2 ) (see e.g. [9,27]) can lead to

substantial performance improvements.

7.2. 3
4 -approximation of MAX-2-SAT via roof-duality

As a /rst example, let us describe here a simple proof for the 3
4 -approximation algo-

rithm of [166] for the MAX-2-SAT problem. Let us consider a MAX-2-SAT instance
as given by

f(x) =
∑
u∈L

au(1− u) +
∑
u;v∈L
u �=v

auv(1− uv): (74)

By introducing

�(x) =
∑
u∈L

auu +
∑
u;v∈L
u �=v

auvuv

and recalling that A(�) denotes the sum of the coe3cients of the posiform �, we can
write the above MAX-2-SAT problem as

max
x∈Bn

f(x) = max
x∈Bn

(A(�)− �(x)) = A(�)− min
x∈Bn

�(x): (75)

By applying roof-duality (see Section 5.1.3) we can bring the quadratic posiform �
to the form

�(x) = C2(�) + l(x) +  (x); (76)

where C2(�) is the roof-dual value of �, l(x) is a linear posiform, and  (x) is a pure
quadratic posiform.

Let us also recall (see Section 5.1.5) that the right-hand side of (76) can be obtained
by iteratively applying identities of form (44)

u1 + u 1u2 + u 2u3 + · · ·+ uk−1uk + uk = 1 + u1u 2 + · · ·+ uk−1uk :

Since the sum of coe3cients is exactly one more on the left-hand side than on the
right-hand side above, the following equation is implied: A(�)=2C2(�)+A(l)+A( ).
Since both A(l) and C2(�) are nonnegative, we can conclude that

A( )6A(�)− C2(�): (77)
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Let us now denote by x∗ an optimum of the above MAX-2-SAT instance, i.e. a
minimum of both � and  according to (76). Furthermore, let xr denote the binary
vector obtained by eliminating /rst the variables which are /xed by strong persistency
(see Theorem 8), and then by applying ROUNDDOWN ( ; ( 1

2 ; : : : ;
1
2 )) to derive the values

of the rest of the variables. Thus, for both vectors

l(x∗) = l(xr) = 0 (78)

holds by the above de/nitions, implying by (76) that

min
x∈Bn

�(x) = �(x∗) = C2(�) +  (x∗) (79)

and

�(xr) = C2(�) +  (xr): (80)

Furthermore, by Proposition 5 we have

 (x∗)6  (xr)6  ( 1
2 ;

1
2 ; : : : ;

1
2 ) = Exp[ ]: (81)

Here the expectation is taken in a probability space, as in Proposition 5, in which the
variables are pairwise-independent random variables with probabilities Prob(xj = 1) =
Prob(xj = 0) = 1

2 , j = 1; : : : ; n. Since here Prob(uv = 1) = 1
4 for any pair of literals with

u 
∈ {v; Kv}, and since  is a pure quadratic posiform, we obtain from (81) that

 (xr)6 1
4A( ): (82)

Putting all the above together we get

f(xr)
f(x∗)

=
A(�)− C2(�)−  (xr)
A(�)− C2(�)−  (x∗)

¿
A(�)− C2(�)− 1

4A( )
A(�)− C2(�)

¿
3
4
:

Here the /rst equality follows by (79) and (80). The /rst inequality follows by (82)
and by  (x∗)¿ 0, while the last inequality is implied by (77).

Thus, the above inequality shows that xr provides a 3
4 -approximation of the problem

(75). Let us add that xr can be derived in O(n3) time from f, /rst determining the
roof dual (76) by computing the maximum Fow in a network of 2n + 2 nodes (see
Section 5.1.5) in O(n3) time, next /xing some of the variables by strong persistency in
O(|�|)=O(n2) time, and /nally applying ROUNDDOWN ( ; ( 1

2 ; : : : ;
1
2 )) in O(|�|)=O(n2)

time again.

7.3. 3
4 -approximation of MAXSAT via convex majorization

In this section we recall a 3
4 -approximation algorithm for the MAX SAT problem

from [9]. This algorithm computes a vector p∗ ∈Un via convex programming without
increasing the dimensions of the problem, and then constructs an approximative solution
by applying the ROUNDDOWN algorithm starting from p∗. The proof of correctness is
very analogous to the one given in [69] with the notable diMerence that here only
one starting point is needed for the rounding procedure, and even that point has to be
determined only up to a certain /xed precision, allowing thus a faster and more robust
computation.
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Let us consider a posiform given as

�(x) =
∑
C∈C

aC

∏
u∈C

u; (83)

where C is a given family of subsets of literals, and aC are positive integers for C ∈C.
Furthermore, let us consider the corresponding MAX SAT instance

max
x∈Bn

∑
C∈C

aC

(
1−

∏
u∈C

u

)
= max

x∈Bn
(A(�)− �(x)); (84)

where A(�) =
∑

C∈C aC denotes again the sum of the coe3cients of the posiform �.
Let us next consider the following convex majorant of �

g(x) =
∑
C∈C

aC

(∑
u∈C u
|C|

)|C|
(85)

formed as the sum of convex termwise majorants. It is easy to verify that

g(p)¿�(p) holds for every p∈Un: (86)

Let us further /x a small positive constant

@ =
3

16
− 1

2e
≈ 0:00356: (87)

Let p∗ be the minimum of g(x) over Un (since g is a smooth convex function, p∗

is unique), and let p̂∈Un be such that

g(p̂)6 g(p∗) + @: (88)

It is well-known that such a p̂ can be determined in polynomial time in the size of g,
and hence in the size of �, see e.g. [131]. In fact, due to the tolerance @, most convex
optimization algorithms provide such a vector in a very fast and numerically robust
way.

Let us denote again by x∗ ∈Bn a minimum of �, and /nally let xr ∈Bn denote the
binary vector obtained by the application of ROUNDDOWN ( ; p̂), unless � is a quadratic
posiform and �(x∗) = 0, in which case let xr = x∗.

Theorem 13 (Badics [9]). The vector xr is a 3
4 -approximative solution of the MAX

SAT problem (84).

Proof. Clearly; if � is a quadratic posiform; the equality �(x∗) = 0 can be detected
in O(|�|) time; by solving the corresponding quadratic Boolean equation. Obviously;
xr = x∗ is the exact optimum of (84) in this case; and hence the statement holds.

Let us assume in the sequel that either � is not quadratic, or �(x∗)¿ 0, and let us
compute xr in polynomial time, as described above, by solving a convex minimization
problem /rst, up to a precision of @, and then running ROUNDDOWN ( ; p̂). We have
then the inequalities

�(xr)6�(p̂)6 g(p̂)6 g(p∗) + @6 g(x∗) + @ (89)
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and

g(p̂)6 g(p∗) + @6 g( 1
2 ; : : : ;

1
2 ) + @; (90)

implying thus

�(xr)6
g( 1

2 ; : : : ;
1
2 ) + g(x∗)
2

+ @: (91)

Let us also introduce the notation

lC =
∑
u∈C

u(x∗) (92)

for C ∈C. With this notation we have �(x∗) =
∑

C∈C: lC=|C| aC , and thus

f(x∗) = A(�)− �(x∗) =
∑

C∈C: lC¡|C|
aC: (93)

Furthermore, we can write (91) as

f(xr) = A(�)− �(xr)

¿ A(�)− @− g( 1
2 ; : : : ;

1
2 ) + g(x∗)
2

¿−@ +
∑
C∈C

aC

(
1− 1

2

(
lC
|C|
)|C|
− 1

2|C|+1

)
: (94)

It is easy to verify by elementary calculations that

1− 1
2

(
lC
|C|
)|C|
− 1

2|C|+1
¿




1
4 if lC = |C|; |C|¿ 0;
3
4 if lC ¡ |C|; |C|6 2;
3
4 + @ if lC ¡ |C|; |C|¿ 3:

(95)

Substituting these estimates back into (94) we obtain

f(xr)¿
3
4

∑
C∈C

lC¡|C|

aC +
1
4

∑
C∈C

lC=|C|

aC + @


−1 +

∑
C∈C

lC¡|C|
|C|¿3

aC


 : (96)

Since the coe3cients aC for C ∈C are assumed to be positive integers, and since
1
4 ¿@, we have

1
4

∑
C∈C

lC=|C|

aC + @


−1 +

∑
C∈C

lC¡|C|
|C|¿3

aC


6 0
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if and only if∑
C∈C

lC=|C|

aC = 0 and
∑
C∈C

lC¡|C|
|C|¿3

aC = 0;

i.e, if and only if � is a quadratic posiform and �(x∗) = 0. Since this case was treated
separately at the beginning of this proof, we can conclude from (96) that in all other
cases

f(xr)¿
3
4

∑
C∈C

lC¡|C|

aC (97)

must hold, implying thus by (93) that
f(xr)
f(x∗)

¿
3
4
: (98)

8. Uncited References

[16,85].
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