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Abstract

Motivated by the boundary heat control problems formulated in the book of Duvaut and Lions, we study
a boundary Stefan problem and a boundary porous media problem. We prove continuity of the solution
with the appropriate modulus. We also extend the results to the fractional order case and to the anomalous
diffusion problems.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study initial–boundary problems with nonlinear Neumann data on part of its
boundary, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

Hαu(x, t) := �u(x, t) − αut (x, t) = 0, (x, t) ∈ Q := Ω × (0, T ],
−uν(x, t) ∈ βt

(
u(x, t)

)
, (x, t) ∈ Γ × (0, T ],

u(x, t) = 0, (x, t) ∈ (∂Ω − Γ ) × (0, T ],
u(x,0) = u0(x), x ∈ Ω,

(1.1)
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where Ω is a bounded smooth domain in RN+1 (N � 1), Γ is a smooth submanifold of ∂Ω ,
T > 0, u0 is a given smooth function, and β is either (i) a multivalued mapping

β(x) :=
⎧⎨
⎩

ax − 1, x < 0 (a > 0),

[−1,1], x = 0,

bx + 1, x > 0 (b > 0)

(1.2)

or (ii) a continuous increasing real-valued satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) β ′(x) exists for all x �= 0,

(b) β(0) = 0,

(c) β ′(x) � c1 > 0 for some constant c1 and x �= 0,

(d) β ′(x) � C(ε) for x ∈ (− 1
ε
,−ε) ∪ (ε, 1

ε
) and ε > 0,

(1.3)

that is,

Problems (1.1), (1.2) can be thought of as “Boundary Stefan Problem” while (1.1), (1.3) is a
boundary version of a singular equation which includes the porous media equation.

Problems like these occur in boundary heat control and are formulated in Duvaut and Lions
book (see [7]). They prove existence and uniqueness in some particular cases in the proper spaces.
A general existence theory was developed in [8].

For simplicity we shall assume that Γ lies on the hyperplane RN . Our results can be extended
to hold for more general Γ such as Lipschitz manifolds.

The main result in this paper asserts that u is a continuous function of x and t up to the
boundary. Its modulus of continuity will depend, of course, on β . If, in addition, we assume
that β of case (ii) has near zero a homogeneous behavior such as that of the porous media,
i.e., β(u) ∼ u1/m, m > 1, then we obtain a Hölder modulus of continuity. We also show how
our methods can be modified to prove boundedness and continuity to more general anomalous
diffusion problems, i.e.,

{−(−�)δu(x, t) ∈ βt

(
u(x, t)

)
, (x, t) ∈ RN × (0,∞),0 < δ < 1,

u(x,0) = u0(x), x ∈ RN
(1.4)

with the same β’s as before and to Initial–Boundary Value Problems of the type
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

yγ
∇ · (yγ ∇u(x, y, t)

) − αut (x, y, t) = 0, (x, y, t) ∈ RN × R+ × (0,∞),

+ lim
y→0+ yγ uy(x, y, t) ∈ βt

(
u(x,0, t)

)
, (x, t) ∈ RN × (0,∞),

u(x,0, t) −→|x|→∞ 0, (x, t) ∈ RN × (0,∞),

u(x,0) = u0(x), x ∈ RN,

(1.5)

where γ = 1 − 2δ.

2. Normalized lemmas

Our approach is that of DeGiorgi’s method in his celebrated paper [6], and it is based on
a combination of the methods in [1] for the usual Stefan problem and [4] for the treatment of
non-local evolution problems. As it was done in the paper of Caffarelli and Evans (see [1]) we
approximate the β by smooth functions βε but keeping its basic structure and derive our estimates
independently of ε. We note that the bounds on the L∞ norm of uε and the L2 norm of Duε can
be obtained independently of ε > 0.

Let 0 < ε < 1 and define for the case (i)

βε(s) =

⎧⎪⎨
⎪⎩

as − 1 for s < −ε
1−εa

(a > 0),

1
ε
s for − ε

1−εa
� s � ε

1−εb
,

bs + 1 for s > ε
1−εb

(b > 0)

and similar for the case (ii).
Consider, now, the approximate problem

⎧⎪⎪⎨
⎪⎪⎩

�uε(x, t) − αuε
t (x, t) = 0, (x, t) ∈ Ω × (0, T ],

−uε
ν(x, t) = β ′

ε

(
uε(x, t)

)
uε

t (x, t), (x, t) ∈ Γ × (0, T ],
uε(x, t) = 0, (x, t) ∈ (∂Ω − Γ ) × (0, T ],
uε(x,0) = u0(x), x ∈ Ω,

(2.1)

where βε is either of the above.

Proposition 2.1. Suppose u0 ∈ C1(Ω̄) and |u0| and |Du0| are bounded. Then there exists a
unique function uε such that uε ∈ C((Ω ∪ Γ ) × (0, T ]), �uε ∈ L2((Ω ∪ Γ ) × (0, T ]) solving

T∫
0

∫
Ω

(
αuεζt − ∇uε∇ζ

)
dx dt +

T∫
0

∫
Γ

βε

(
uε

)
ζt dS dt

+ α

∫
Ω

u0(x)ζ(x,0) dx +
∫
Γ

βε

(
u0(x)

)
ζ(x,0) dx = 0

for all ζ ∈ C1(Ω̄ × [0, T ]) with ζ = 0 on (∂Ω − Γ ) × {t = T }. Furthermore∥∥uε
∥∥

L∞(Ω×(0,T ]),
∥∥∇uε

∥∥
L2(Ω×(0,T ))

< C,

where C is independent of ε.
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Proof. The assertions follow from [7] and [8]. �
In order to simplify our approach we start with a normalized situation in a cylindrical domain

Q1
k (defined below) assuming that the oscillation, osc(uε) � 1 and we obtain in the interior of the

cylinder a decay in the oscillation osc(uε) � 1−γ for some 0 < γ < 1 independent of ε. Then we
rescale and repeat. But we are confronted here with two conflicting rescalings. Inside the cylinder,
the heat equation implies parabolic rescaling. On the boundary, in principle, hyperbolic scaling is
required. It turns out that hyperbolic rescaling is the right one. Although the time derivative of the
heat equation disappears in this rescaling, we still obtain the continuity of solutions. This is not
surprising in view of the recent paper [4] where there is no time derivative in Ω . Therefore we
shall normalize our approximate solution uε , i.e., we take 0 < uε < 1 in appropriate rectangular
cylinders whose one side lies on Γ ⊂ RN and the side normal to Γ is small compared to the
others. More precisely, we set B ′

R := (−R,R)N ⊂ RN , Q′
R := B ′

R ×(−R,0], BR := B ′
R ×(0,1),

and QR := Q′
R ×(0,1) where R � 2(N +7) log 2. Notice that because of this normalization β(0)

is not necessarily zero any more.
Before we state our first lemma we define two “comparison” functions and the parabolic

Poisson kernel H(y)(x, t), which we use in our proofs. The first one is precisely the one used
in [4], i.e.,

Elliptic barrier, b:

b(x, y) := 2 cosye−x, x, y ∈ R.

This function is positive harmonic in {x > 0,0 < y < 1} and bounded therein by 2e−x . Also, b

is larger than one on {x = 0,0 � y � 1} and positive on {x ∈ R: y = 0, y = 1}.
The second one is a parabolic variation of the one in [4]:
Parabolic barrier, a:

a(x, y, t) := 2N+1
N∏

i=1

cosxi cosye−t , x = (x1, x2, . . . , xN), y, t ∈ R.

This function is a positive supercaloric in (−1,1)N × (0,1) × (0,∞) and bounded therein by
2N+1e−t . On the bottom of this domain, i.e., on (−1,1)N × (0,1) × {0}, a(x, y,0) is larger than
one and is positive on the rest of the parabolic boundary.

Finally by parabolic Poisson kernel H(y)(x, t) we mean that extends by convolution data
prescribed in the hyperplane y = 0, t > 0, as a caloric function in y > 0, t > 0:

H(y)(x, t) := 2

π
N+1

2

y

(4t)
N+3

2

e− |x|2+y2

4t , x ∈ RN, y, t � 0.

Observe that

∥∥H(y)(x, t)
∥∥

L∞({y�1}) = 2

π
N+1

2

(
N + 3

2e

)N+3
2

, x ∈ RN, t � 0

and

∥∥H(y)(x, t)
∥∥

L1(Q )
�

√
R

.

R π
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2.1. Part 1: Smallness in average implies uniform decay

With these definitions at hand we pass to the first lemma. It says that given u, 0 � u � 1 in a
hypercube in (x, y, t), setting in (Rn+1)+ against the hyperplane y = 0 and going backwards in
time from 0 to −R, if u is very tiny “most of the time”, then in a smaller cube, into the future
from −R, u goes down from 1 to 7/8.

Lemma 2.2. Let QR ⊂ Q := Ω × (−T ,T ] where QR := BR × (−R,0], BR := B ′
R × (0,1),

B ′
R := {(x1, . . . , xN): |xi | < R, i = 1, . . . ,N} and Q′

R : B ′
R × (−R,0]. Suppose that

0 < uε < 1

in QR then there exists a constant σ > 0 independent of ε such that

∫
�

Q′
R

uε dx dt +
∫
�

QR

(
uε

)2
dx dy dt < σ

implies that

uε � 7

8

in QR/8 := B ′
R/8 × (0, 1

8 ) × (−R
8 ,0].

Proof. Step 1 – Energy inequality.
We start by developing the necessary energy inequalities associated to the structure of these

equations. We assume that βε are smooth approximations to β satisfying β ′
ε � c1 > 0, and βε

locally bounded on R. For simplicity, we drop the ε subscript then, in the interior and on RN , u

satisfies

�u − αut = 0 in Ω × (−T ,T ],
−uν = β ′(u)ut on Γ × (−T ,T ].

Choose a smooth cutoff function ζ vanishing near the parabolic boundary of QR , i.e., the
lateral sides and the bottom except that of Q′

R and k � 0. We multiply the above equations by
ζ 2(u − k)+ and integrate by parts to get

α

∫
QR

ζ 2(u − k)+ut dx dy dt +
∫

Q′
R

ζ 2(u − k)+β ′(u)ut dx dt +
∫

QR

ζ 2
∣∣∇(u − k)+

∣∣2
dx dy dt

= −2
∫ (

ζ∇ζ(u − k)+∇u
)
dx dy dt.
QR
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Define

B
(
(u − k)+

) =
u∫

k

β ′(s)(s − k) ds =
(u−k)+∫

0

β ′(k + τ)τ dτ

and inserting it in the above we have

α

2

∫
QR

(
ζ 2[(u − k)+

]2)
t
dx dy dt +

∫
Q′

R

(
ζ 2B

(
(u − k)+

))
t
dx dt

+
∫

QR

∣∣∇(
ζ(u − k)+

)∣∣2
dx dy dt

= +α

∫
QR

[
(u − k)+

]2
ζ ζt dx dy dt + 2

∫
Q′

R

B
(
(u − k)+

)
ζ ζt dx dt

+
∫
Q

[
(u − k)+

]2|∇ζ |2 dx dy dt.

Since, by the properties of β ,

B
(
(u − k)+

)
� c1

(u−k)+∫
0

τ dτ = c1

2

[
(u − k)+

]2
,

B
(
(u − k)+

)
� (u − k)+

(u−k)+∫
0

β ′(k + τ) dτ �
(
β(1) − β(0)

)
(u − k)+

and by replacing t = 0 with any −R < t � 0 as the upper limit of integration, we obtain by
standard estimates

c1

2
max

−R�t�0

∫
B ′

R

[
(u − k)+ζ

]2
dx

+ α

2
max

−R�t�0

∫
BR

∣∣(u − k)+ζ
∣∣2

dx dy +
∫

QR

∣∣∇(
(u − k)+ζ

)∣∣2
dx dy dt

� 2
(
β(1) − β(0)

) ∫
Q′

R

(u − k)+|ζt |dx dt +
∫

QR

[
(u − k)+

]2(
α|ζt | + |∇ζ |2)dx dy dt.

Since 0 � α � 1 and the second term above is nonnegative we have



I. Athanasopoulos, L.A. Caffarelli / Advances in Mathematics 224 (2010) 293–315 299
max
−R<t�0

∫
BR

∣∣(u − k)+ζ
∣∣2

dx +
∫

QR

∣∣∇((
u − k+)

ζ
)∣∣2

dx dy dt

� C

( ∫

Q′
R

(u − k)+|ζt |dx dt +
∫ [

(u − k)+
]2(|ζt | + |∇ζ |2)dx dy dt

)
(2.2)

where C = 2
c1

max{2(β(1) − β(0)),1}.
Step 2 – DeGiorgi type iteration.

Now that we have our energy inequality (2.2), we propose to obtain an iterative sequence
of inequalities. We distinguish two cases: α = 0 and 0 < α � 1. In both cases and in particular
α = 0 it follows the general lines of Lemma 6 in [4]. We work in detail case 0 < α � 1. For
simplicity in this case we can take α = 1 in α-heat equation without effecting our estimates; as
a matter of fact they are improving as α is getting smaller. Note that α does not appear in the
energy equation (2.2).

We recall that the method consists in taking a sequence of decreasing cut offs in space and
time ζm that converge to the indicator function of QR/4, and simultaneously a series of cut
offs of the graph of u, um that converge to (u − 7/8)+ and prove by iteration that in the limit
limQR/2(u − 7/8)+ ≡ 0−. In this proof we follow closely the corresponding argument in [4].

To this end we define for m = 0,1,2,3, . . . ,

km := 9

16
+ 1

16

(
1 − 2−m

)
, Rm := R

4

(
1 + 1

2m

)
,

Q′
m := {

(x1, . . . , xN , t): −Rm � xi � Rm, −Rm � t � 0
}

and we choose the cutoff functions ζm to depend only on x and t such that

χQ′
m+1

� ζm � χQ′
m
,

|∇ζm| � C2m,
∣∣(ζm)t

∣∣ � C2m.

We set um := (u − km)+ and we denote

Im :=
∫ ∫

(ζmum)2 dx dt +
δm/2∫ ∫ ∫
0

∣∣∇(ζmum)
∣∣2

dx dy dt

where 0 < δ < 1 is chosen such that

2N+1 · 2− (N+7)2−m−1

δm � 2−m−7 (2.3)

holds. We also choose M to satisfy

2N+2M− m
2
(
δN+1)−m−1 � 2−m−6, (2.4)

M−m � C 4m(1+ 1
N

)M−(m−3)(1+ 1
N

), m � 14N. (2.5)
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Such choices of δ and M are permissible as it is shown in Lemma 7 of [4].
Now, we want to prove simultaneously that for every m � 0

Im � M−m, (2.6)

um = 0 on Q′
m ×

{
δm

2

}
. (2.7)

We prove them, inductively.

Step 2a. We prove in this substep that (2.6) is verified for 0 � m � 14N and that (2.7) is verified
for m = 0. Substituting km for k, ζm for ζ we see that for 0 � m � 14N if we take σ such that

228Nσ � M−14N

(2.6) is verified, where we used that |∇ζm|2 � C228N for 0 � m � 14N . Now, by maximum
principle, we have in QR := BR × (0,1) × (−R,0]

u � (uχQ′
R
) ∗ H(y) + y + a

(
x

R
,y, (t + R)

)
+ w(x,y)

where

w(x,y) =
N∑

i=1

{
b(xi + R,y) + b(−xi + R,y)

}
.

Now, for t � −R
2 we have

a

(
x

R
,y, (t + R)

)
� 2N+1e− R

2 � 2N+1e−(N+7) log 2 = 1

26

for −R
2 � xi � R

2 for all i = 1, . . . ,N ,

w(x,y) � 4Ne− R
2 � 4Ne−(N+7) log 2 <

1

25

and

∥∥uχQ′
R

∗ H(y)
∥∥

L∞({y� 1
2 }) �

∥∥H(y)
∥∥

L∞({y� 1
2 })

∫
Q′

R

u(x, t) dx dt

� 2N+3

π
N+1

2

(
N + 3

2e

)N+3
2 ∣∣Q′

R

∣∣ · σ <
1

64

if we choose σ small enough. Therefore

u � 9
for y = 1

, x ∈ B ′
R/2, t � −R

.

16 2 2
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Hence

u0 :=
(

u − 9

16

)+
� 0 for y = 1

2
, x ∈ B ′

R/2, t � −R

2
.

That is

ζ0u0 = 0 on ∂pQ0

where Q0 := Q′
0 × [0, δ0

2 ].
Step 2b. We assume in this substep that (2.6) and (2.7) hold true for m and we want to show that
(2.7) is true for m + 1. Now, again by maximum principle in Qm, we have

um � ζmum ∗ H(y) + a

(
x

Rm

,
2y

δm
,

2(t + Rm)

δm

)

+
N∑

i=1

[
b

(
2(xi + Rm)

δm
,

2y

δm

)
+ b

(
2(−xi + Rm)

δm
,

2y

δm

)]
.

So in Qm+1 we have

a � 2N+1e− 2(−Rm+1+Rm)

δm = 2N+1e− R 2−m−2
δm � 2−m−7

thanks to (∗) and the third term is bounded by

4Ne− R2−m−1
δm � 2−m−7.

By (∗∗) we have for y = δm+1

2

∥∥ζmum ∗ H(y)
∥∥ � I

1/2
m

∥∥H(y)
∥∥

L2({y� δm+1
2 })

� 2N+2M−m/2

(δN+1)m+1

∥∥H(1/2)
∥∥

L2

� 2−m−6.

So in Qm+1

um+1 �
(
um − 2−m−5)+

or

um+1 �
(
ζmum ∗ H(y) − 2−m−6)+

,

i.e.,

ζm+1um+1 �
(
ζmum ∗ H(y) − 2−m−6)+

.
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In particular

ζm+1um+1 �
(
ζmum ∗ H(y)

)
ζm+1. (2.8)

Therefore

ζm+1um+1 = 0 on ∂pQm+1

where Qm := Q′
m × [0, δm

2 ].
Step 2c. By the previous steps we have that (2.7) is true up to m = 14N +1, (2.6) up to m = 14N

and (2.8) up to m = 14N . In this step we show that if (2.7) is true for m − 3 and (2.6) for m − 3,
m − 2, m − 1 then (2.6) is true for m. Since by Step 2 (2.7) is also true for m − 2, m − 1, m we
only have to show that

Im � C4m(1+ 1
N

)I
1+ 1

N

m−3 , m � 14N + 1.

For, by (2.2)

Im � C2m

∫
ζm−1um dx dt + (

C2m
)2

∫
(ζm−1um)2 dx dy dt.

Since um < um−1 and {um �= 0} = {um−1 > 2−m−4} the integral of the first term on the right is
bounded by

1

2

∫
(ζm−1um)2 dx dt + 1

2

∣∣{um �= 0} ∩ Q′
m−1

∣∣

� 1

2

∫
(ζm−1um−1)

2 dx dt + 2m+3
∫

(ζm−1um−1)
2 dx dt

� 1

2

(
1 + 2m+4)∫

(ζm−1um−1)
2 dx dt.

By (2.8) the integral of the second term above is bounded by

∫ ∣∣ζm−2um−2 ∗ H(y)
∣∣2

dx dy dt � ‖H‖2
L1(QR)

∫
(ζm−2um−2)

2 dx dt.

Therefore

Im � C4m

∫
(ζm−2um−2)

2 dx dt

� C4m

(∫
(ζm−2um−2)

2· N+1
N dx dt

) N
N+1 · ∣∣{um−2 �= 0} ∩ Q′

m−2

∣∣ 1
N+1

� C4m(1+ 1
N

)

∫
(ζm−3um−3)

2· N+1
N dx dt.
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By Sobolev’s inequality

Im � C4m(1+ 1
N

)

(∫
(ζm−3um−3)

2 dx dt +
∫ ∣∣Λ1/2(ζm−3um−3)

∣∣2
dx dt

)N+1
N

where Λ(ζm−3um−3) = − ∂
∂y

(ζm−3um−3). Since

∫ ∣∣Λ1/2(ζm−3um−3)
∣∣2

dx dt �
∫ ∣∣∇(ζm−3um−3)

∣∣2
dx dy dt

we have

Im � C4m(1+ 1
N

)I
1+ 1

N

m−3 , m � 14N + 1,

i.e., Im → 0 as m → ∞ provided

I0 � C−N 4−N(N+1) = 1

4N(N+1)

(
c1

2 max{2(β(1) − β(0)),1}
)N

=: σ.

To complete the proof of our lemma consider the function v defined by

�v − vt = 0 in QR/4,

v = 1 on ∂pQ̄R/4 \ {y = 0},
v = 5

8 on Q′
R/4.

Then v < 7
8 in QR/8 and by maximum principle u � v. �

Our next result, Lemma 2.4, relies on a “parabolic” version of DeGiorgi’s isoperimetric
lemma. This lemma is proved in [4] and with minor adjustments applies to our situation. We
state it as our next lemma, Lemma 2.3.

Lemma 2.3. Given σ1 > 0 there exists a δ1 > 0 such that for every subsolution uε to (2.1) with
β ′

ε � C satisfying

0 < uε < 1 in QR,∣∣{(x, y, t) ∈ QR: uε = 0
}∣∣ � σ1|QR|

if
∣∣∣∣
{
(x, y, t) ∈ QR: 0 < uε <

1

2

}∣∣∣∣ < δ1|QR|

then

∫
�

Q′

(
uε − 1

2

)+
dx dt +

∫
�

QR/4

[(
uε − 1

2

)+]2

dx dy dt � C
√

σ1
R/4
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where C depends on the bound of β ′
ε but not on the “ε”.

In order to complete the proof of oscillation decay we have to consider two alternatives. One
is when u is, on average, very close to the singular value of β and the second when it is far from
it. In the next lemma we handle the second more delicate alternative situation to Lemma 2.2.

Lemma 2.4. Let QR and σ be as in Lemma 2.2 and

0 < uε < 1 in QR

a solution to (2.1) with β ′
ε(x) < C, C independent of ε for x < 1/4. Then, if

∫
�

Q′
R

uε dx dt +
∫
�

QR

(
uε

)+
dx dy dt � σ, (2.9)

uε � Cσ for every (x, y, t) ∈ QR/32.

Proof. For simplicity again we drop the “ε”. Now, if (2.9) holds then it follows that

∣∣∣∣
{
u >

σ

4

}
∩ QR

∣∣∣∣ � c0σ |QR|

for some c0 < 1. Therefore we define

w := 4

σ

(
u − σ

4

)−

and we observe that w is a subsolution to problem (2.1). Following DeGiorgi’s method we will
consider a dyadic sequence of normalized truncations, i.e.,

wk := 2k
(
w − (

1 − 2−k
))+

still subsolutions to (2.1). We will show that in a finite number of steps k0 = k0(δ1) (where δ1 is
defined in Lemma 2.3 with C

√
σ1 � σ ) that

∣∣{wk0 > 0}∣∣ = 0.

Note that for every k, 0 � wk � 1 and |{wk = 0} ∩ QR| � σ1|QR|. Assume, now, that for every
k |{0 < wk < 1

2 } ∩ QR| � δ1|QR|. Then for every k

∣∣{wk = 0}∣∣ = ∣∣{wk−1 = 0}∣∣ +
∣∣∣∣
{

0 < wk−1 <
1

2

}∣∣∣∣ �
∣∣{wk−1 = 0}∣∣ + δ1|QR|.

Hence after a finite number of steps, say k0 � 1/δ,

∣∣{wk = 0}∣∣ � |QR|.
0
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Therefore

wk0 < 0

or

2k0
(
w − (

1 − 2−k0
)+) = 0,

i.e.,

w < 1 − 2−k0 .

Suppose, now, that there exists k′, 0 � k′ � k0 such that

∣∣∣∣
{

0 < wk′ <
1

2

}∣∣∣∣ < δ1.

By Lemma 2.3 applied to wk′ and consequently by Lemma 2.2 applied to wk′+1 we have

wk′+1 � 7

8

in QR/32, i.e.,

w < 1 − 1

8
· 2−(k′+1).

A fortiori, in both cases we have

w < 1 − 2−(k0+4) in QR/32

that is

u � 2−k0−5σ

in QR/32. �
We conclude this section by proving our normalized oscillations decay. Lemma 2.5 below

encompasses both alternatives.

Lemma 2.5. Let uε be a solution to (2.1) with

0 < uε < 1 in QR

and suppose that β ′
ε(x) � C (C independent of ε) for x � 1

4 or x � 3
4 . Then

osc
QR/32

u � 1 − Cσ.

Remark. Depending if the singularity of β falls above or below 1/2 one of the alternatives holds.
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Proof. If u is close in measure of order σ to zero or to one then by Lemma 2.2 applied to u or
to 1 − u we obtain

osc
QR/8

u � 7

8
.

If not then by Lemma 2.4 applied to u or 1 − u we obtain

osc
QR/32

u � 1 − Cσ

provided that 1
8 � Cσ < 1. �

2.2. Part 2: Oscillation decay: Iteration

The estimates we obtained in the previous section, apart that they are independent of “ε”, are,
also, independent of the “α”, the coefficient to ut in the equation. This allows us to scale hyper-
bolically without effecting the estimates and consequently we obtain a modulus of continuity.

We would like now to iterate the lemmas above to force the oscillation of u to decrease to
zero along this in a dyadic sequence of decreasing hypercubes to obtain continuity of u. Since
the estimates at hand will deteriorate as β ′

ε goes to infinity, our modulus will not be Hölder,
except in case (ii) where we have an extra rescaling invariance.

Proposition 2.6. Let uε be a solution to problem (2.1) in QR . Suppose that

βε

(
sup
QR

uε
)

− βε

(
inf
QR

uε
)

� K and inf
QR

β ′
ε � δ > 0

where K and δ are independent of ε. Then

∣∣uε(x, y, t) − uε(0,0,0)
∣∣ � ω

(|x|, |y|, |t |)

where ω is a modulus of continuity (i.e., ω monotone and ω(0) = 0) depending only on K and δ.

Proof. We drop again “ε” from our notation. Set

Qk := QR/(32)k =
(

− R

(32)k
,

R

(32)k

)
×

(
0,

1

(32)k

)
×

(
− R

(32)k
,0

]

and mk := infQk
u, Mk := supQk

u.
Define

v := uk − mk

Mk − mk

where uk(x, y, t) := u( x
k ,

y
k , t

k ). Then v verifies

(32) (32) (32)
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�v − α

(32)k
vt = in QR,

−vν = β̄ ′(v)vt on Q′
R

where β̄(v) = 1
(Mk−mk)

β((Mk − mk)v + mk). Now we apply Lemma 2.5 to v to obtain

osc
QR/32

v � (1 − Cσ)

where σ := infQR
β̄(v)

β̄(1)−β̄(0)
. Hence, in our original setting we have

osc
Qk+1

u � μk osc
Qk

u

where μk := (1− Cδ
K

oscQk
u). We see, therefore, that μk −→

k→∞ 1 only when oscQk
u −→

k→∞ 0 which

yields our modulus of continuity. �
As mentioned in the Introduction with the additional assumption on β of case (ii), which,

of course, includes the porous media case, i.e., β(u) ∼ u1/m, m > 1, we can achieve a Hölder
modulus of continuity. This was achieved by a different approach for the porous media equation
in [2].

Proposition 2.7. Let uε be a solution to problem (2.1) in QR with βε being as the one in case (ii).
Suppose that for any m < M

( inf[m,M]β
′
ε) · (M − m)

β(M) − β(m)
� �

where � is a positive constant independent of ε then

∣∣uε(x, y, t) − uε(0,0,0)
∣∣ � C

(|x| + |y| + |t |)γ

where γ = γ (�).

Proof. As in the proof of the preceding proposition we arrive at

osc
Qk+1

u � (1 − C�)osc
Qk

u

or

osc
Qk

u � (1 − C�)k osc
QR

u. �
Theorem 2.8. Let u be solution to (1.1) with β satisfying (1.2) or (1.3) then u is continuous with
a modulus depending on the nature of the singularity of β .

Proof. By Propositions 2.1 and 2.6, or Proposition 2.7, we can extract a subsequence uεm which,
by standard methods, converges uniformly to our solution u. �
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3. Fractional diffusion case

The purpose of this section is to show how our methods of Section 2 can be generalized to
yield continuity of the solutions to problems (1.4) and (1.5).

According to an extension theorem of [3] problem (1.4) is equivalent to problem (1.5) when
we set α = 0. We point out that the adaptation of the methods of [4] to general fractional dif-
fusion (γ > 0) was carried out by Constantin and Wu [5]. Therefore it is enough to treat only
problem (1.5). We approximate again the β by smooth βε and we note that the bounds on the
L∞ norm of uε and the L2 norm of Duε can be obtained by standard methods independently of
ε > 0. More precisely, we consider the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

yγ
∇(

yγ ∇uε(x, y, t)
) − αuε

t (x, y, t) = 0, (x, y, t) ∈ RN × R+ × (0,∞),

+ lim
y→o+ yγ uε

y(x, y, t) = β ′
ε

(
uε(x,0, t)

)
uε

t (x,0, t), (x, t) ∈ RN × (0,∞),

uε(x, y, t) −→|x|→∞ 0, (x, t) ∈ RN × (0,∞),

uε(x, y,0) = uε
0(x, y), (x, y) ∈ RN × R+,

(3.1)

where γ ∈ (−1,1) (γ = 1 − 2δ) and βε is the one of Section 2.
We shall use, in the proofs which will follow, again two comparison functions and the frac-

tional parabolic Poisson kernel. That is, we consider a function b(γ )(x, y) defined by

b
(γ )
xx + b

(γ )
yy + γ

y
b

(γ )
y = 0, in (0,∞) × (0,1),

b(γ )(0, y) = 1, 0 � y � 1,

b(γ )(x,0) = b(γ )(x,1) = 0, 0 < x < +∞.

Then there exists a universal constant Cγ < 1 such that

∣∣b(γ )(x, y)
∣∣ � Cγ e−

√
(1−γ )(5−γ )

2 x.

As a matter of fact, by the method of separation of variables

b(γ )(x, y) =
∞∑

n=1

cne
−λnx

(
y

1 − γ

) 1−γ
2

J 1−γ
2

(λny)

where J 1−γ
2

is the Bessel function of the first kind of order 1−γ
2 and cn the corresponding Fourier

coefficients. It is well known (see [9, p. 485]) that λ1 >
√

(1−γ )(5−γ )
2 .

The second function is

a(γ )(x, y, t) := 2N

N∏
cosxie

−t , x = (x1, . . . , xN), t � 0

i=1
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which is positive supersolution

1

yγ
∇(

yγ ∇a(γ )
) − a

(γ )
t � 0

in (−1,1)N × (0,1) × (0,∞). On the bottom of this domain, i.e., on (−1,1)N × (0,1) × {0}
a(γ )(x, y,0) is larger than one and positive on the rest of its parabolic boundary.

Finally by fractional parabolic Poisson kernel we mean

H(γ )(y)(x, t) := 2

π
N+1−γ

2

y1−γ

(4t)
N+3−γ

2

e− |x|2+y2

4t , x ∈ RN, y, t � 0.

Observe that

∥∥H(γ )(y)(x, t)
∥∥

L∞({y�1}) = 2

π
N+1−γ

2

·
(

N + 3 − γ

2e

)N+3−γ
2

and

∥∥H(γ )(y)(x, t)
∥∥

L1(QR)
� 2

2 − γ

√
R

π1−γ
.

Lemma 3.1. Let uε be a solution to (3.1) with

0 < uε < 1

in QR with R � 2(N+7) log 2√
1−γ

. Then there exist a σ > 0 and a 0 < λ < 1 independent of ε such that

∫
�

Q′
R

uε dx dt +
∫
�

QR

yγ
(
uε

)2
dx dy dt < σ

implies that

uε � 1 − λ

in QR/8 := B ′
R/8 × (0, 1

8 ) × (−R
8 ,0].

Proof. We follow the steps of Lemma 2.2 and we arrive at the estimate

max
−R�t�0

∫
B ′

R

∣∣ζ(u − k)+
∣∣2

dx +
∫

QR

yγ
∣∣∇(

ζ(u − k)+
)∣∣2

dx dy dt

� C

(∫

Q′
|ζt |(u − k)+ dx dt +

∫
QR

(|ζt | + |∇ζ |2)yγ
∣∣(u − k)+

∣∣2
dx dy dt

)
(3.2)
R
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where

C := max(2(β(1) − β(0)),1)

min( c1
2 ,1)

.

Again, we distinguish two cases: α = 0 and 0 < α � 1. Both cases can be treated as in
Lemma 6 of [4]. In particular α = 0 has been worked out in Proposition 3.3 of [5]. We treat
here the case 0 < α � 1. For simplicity, as before, we take α = 1 and we obtain an iterative
sequence of inequalities with

km := 1 − λ∗

2

(
1 + 2−m

)
, Rm := R

4

(
1 + 1

2m

)

for m = 0,1,2, . . . , where 0 < λ∗ < 1 a constant to be defined below.
The cutoff function ζm depends on x and t only with

χQ′
m+1

� ζm � χQ′
m
, |∇ζm| � C2m,

∣∣(ζm)t
∣∣ � C2m

where Q′
m := {(x1, . . . , xN ,0, t): −Rm � xi � Rm, −Rm � t � 0, i = 1, . . . ,N} and um :=

(u − km)+. Since the second integral differs, our new Im is defined as:

Im :=
∫ ∫

(ζmum)2 dx dt +
δm/2∫ ∫ ∫
0

yγ
∣∣∇(ζmum)

∣∣2
dx dy dt

where 0 < δ < 1 is chosen such that

2N2
− (N+7)2−m−1

δm
√

1−γ � λ∗2−m−4 (3.3)

holds, and we choose M to satisfy

M−m/2
∥∥H(γ )(1/2)

∥∥
L2

(
δN+5)−m−1 � λ∗2−m−3, (3.4)

M−m � C
(
λ∗)− 2(1−γ )

N 4m(1+ 1−γ
N

)M−(m−3)(1+ 1−γ
N

), m � 14N. (3.5)

We want, again, to prove simultaneously that for every m

Im � M−m (3.6)

and

ζmum = 0 for y = δm

2
. (3.7)

We prove them inductively.



I. Athanasopoulos, L.A. Caffarelli / Advances in Mathematics 224 (2010) 293–315 311
Step 1. In this step we prove that (3.6) is verified for 0 � m � 14N and that (3.7) is verified for
m = 0. Substituting in (3.2) km for k, ζm for ζ we see that for 0 � m � 14N , if we take σ such
that

228Nσ � M−14N

(3.6) is verified. Now by the maximum principle we have in QR := BR × (0,1) × (−R,0]

u � (uχQ′) ∗ H(γ )(y) + y1−γ + a(γ )

(
x

R
,y, t + R

)
+ w(γ )(x, y)

where

w(γ )(x, y) :=
N∑

i=1

{
b(γ )(xi + R,y) + b(γ )(−xi + R,y)

}
.

Now, for t � −R
2 we have

a(γ )

(
x

R
,y, t + R

)
� 2Ne

− (N+7) log 2√
1−γ � 1

2
7√

1−γ

for −R
2 � xi � R

2 , i = 1, . . . ,N ,

w(γ )(x, y) � 2NCγ e
− (N+7) log 2√

1−γ � 2N+12
− N+7√

1−γ � 1

2
6√

1−γ

and

∥∥(uχQ′
R
) ∗ H(γ )(y)

∥∥
L∞({y� 1

2 }) �
∥∥H(γ )(y)

∥∥
L∞({y� 1

2 })
∫

Q′
R

u(x, y) dx dy

� 2N+3

π
N+1−γ

2

(
N + 3 − γ

2e

)N+3−γ
2 ∣∣Q′

R

∣∣σ <
1

2
7√

1−γ

if we choose σ small enough. Now, we define λ∗ by

λ∗ := 1 −
(

1

2
5√

1−γ

+ 1

21−γ

)

and 0 < λ∗ < 1 when γ < 1. Therefore

u � 1 − λ∗ for y = 1

2
, x ∈ B ′

R/2, t � − r

2
.

Hence

u0 := (
u − (

1 − λ∗))+ = 0 for y = 1
, x ∈ B ′

R/2, t � −R
,

2 2
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i.e.,

ζ0u0 = 0 on ∂pQ0

where Q0 := Q′
0 × [0, δ0

2 ].
Step 2. We assume that (3.3) and (3.4) hold true for m and we want to show that (3.4) is true for
m + 1. Again by maximum principle in Qm we have

um � (ζmum) ∗ H(γ )(y) + a(γ )

(
x

Rm

,
2y

δm
,

2(t + Rm)

δm

)

+
N∑

i=1

[
b(γ )

(
2(xi + Rm)

δm
,

2y

δm

)
+ b(γ )

(
2(−xi + Rm)

δm
,

2y

δm

)]
.

So in Qm+1 we have

a(γ ) � 2Ne− 2(−Rm+1+Rm)

δm = 2N 2− R2−m−1
δn

� 2Ne
− (N+7)2−m−1

δm
√

1−γ � λ∗2−m−4

thanks to (3.3) and the third term is bounded by

2NCγ e
−

√
(1−γ )(5−γ )R

ζm2m−3 � λ∗2−m−4.

By (3.4) we have for y = δm+1/2

∥∥(ζmum) ∗ H(γ )(y)
∥∥ � I

1/2
m

∥∥H(γ )(y)
∥∥

L2({y� δm+1
2 })

� M−m/2

(δN+5)m+1

∥∥H(γ )(1/2)
∥∥

L2

� λ∗2−m−3

so in Qm+1

um+1 �
(
um − λ∗2−m−2)+

or

um+1 �
(
ζmum ∗ H(γ )(y) − λ∗2−m−3)+

,

i.e.,

ζm+1um+1 �
(
ζmum ∗ H(γ )(y) − λ∗2−m−3)+

.
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In particular

ζm+1um+1 �
(
ζmum ∗ H(γ )(y)

)
ζm+1. (3.8)

Therefore

ζm+1um+1 = 0 on ∂pQm+1

where

Qm := Q′
m ×

[
0,

δm

2

]
.

Step 3. So, by the previous steps we have (3.7) true up to m = 14N + 1, (3.6) up to m = 14N ,
and (3.8) up to m = 14N . We will show here that if (3.7) is true for m − 3 and (3.6) for m − 3,
m − 2, m − 1 then (3.6) is true for m. Since by Step 2 (3.7) is also true for m − 2, m − 1, m we
only have to show that

Im � C.

By (3.2)

Im � C2m

∫
(ζm−1um)dx dt + (

C2m
)2

∫
y(γ )(ζm−1um)2 dx dy dt

since um < um−1 and {um �= 0} = {um−1 > λ∗2−m−1} the integral of the first term is bounded by

1

2

∫
(ζm−1um−1)

2 dx dt + 1

2

∣∣{um �= 0} ∩ Q′
m−1

∣∣

� 1

2

∫
(ζm−1um−1)

2 dx dt + 2m

λ∗

∫
(ζm−1um−1)

2 dx dt

= 1

2

(
1 + 2m−1

λ∗

)∫
(ζm−1um−1)

2 dx dt.

By (3.8) the integral of the second term is bounded by
∫

yγ
(
(ζm−2um−2) ∗ H(γ )(y)

)2
dx dy dt. �

∥∥H(γ )
∥∥2

L1

∫
(ζm−2um−2)

2 dx dt.

Therefore

Im � C4m

∫
(ζm−2um−2)

2 dx dt

� C4m

(∫
(ζm−2um−2)

2· N+1−γ
N dx dt

) N
N+1−γ · ∣∣{um−2 �= 0} ∩ Q′

m−2

∣∣ 1−γ
N+1−γ

� C4m(1+ 1−γ
N

)

∗ 2(1−γ )
·
∫

(ζm−3um−3)
2· N+1−γ

N dx dt.

(λ ) N



314 I. Athanasopoulos, L.A. Caffarelli / Advances in Mathematics 224 (2010) 293–315
By Sobolev’s inequality

Im � C4m(1+ 1−γ
N

)

(λ∗)
2(1−γ )

N

(∫
(ζm−3um−3)

2 dx dt +
∫ ∣∣Λ 1−γ

2 (ζm−3um−3)
∣∣2

dx dt

)N+1−γ
N

where Λ1−γ (ζm−3um−3) := − limy→0+ yγ ∂
∂y

(ζm−3um−3). Since

∫ ∣∣Λ 1−γ
2 (ζm−3um−3)

∣∣2
dx dt �

∫
yγ

∣∣∇(ζm−3um−3)
∣∣2

dx dy dt

we have

Im � C4m(1+ 1−γ
N

)

(λ∗)
2(1−γ )

N

I
1+ 1−γ

N

m−3 for m � 14N + 1,

i.e., Im → 0 as m → ∞ provided

I0 � C
− N

1−γ

(λ∗)−2
4− N

1−γ
(1+ N

1−γ
) = (λ∗)2

4
N

1−γ
( N

1−γ
+1)

(
c1

2 max(2(β(1) − β(0)),1)

) N
1−γ = 2σ.

Finally, consider the function defined by

1

yγ
∇(

yγ ∇v
) − vt = 0 in QR/4,

v = 1 on ∂pQR/4 \ {y = 0},
v = 1 − λ∗

2
on Q′

R/4,

then v < 1 − λ∗
4 in QR/8. Since by maximum principle u � v by setting λ := λ∗/4 the proof of

the lemma is complete. �
The next lemma is a weighted version of Lemma 2.3. Its proof is essentially that of Lemma 8

of [4] (see, also, Proposition 3.4 in [5]).

Lemma 3.2. Given σ1 > 0 there exists a δ1 > 0 such that for every subsolution uε to (3.1) with
β ′

ε � C satisfying

0 < uε < 1 in QR,∣∣∣∣
{
(x, y, t) ∈ QR: 0 < uε <

1

2

}∣∣∣∣ < δ1|QR|

then

∫
�

Q′
R/4

(
uε − 1

2

)+
dx dt +

∫
�

QR/4

yγ

[(
uε − 1

2

)+]2

dx dy dt � C
√

σ1.



I. Athanasopoulos, L.A. Caffarelli / Advances in Mathematics 224 (2010) 293–315 315
To proceed we observe that the analog to Lemmas 2.4 and 2.5 as well as to Propositions 2.6
and 2.7 are straightforward. Therefore we have completed the continuity of our solutions, i.e.,

Theorem 3.3. Let u be a solution to problem (1.4) or to problem (1.5). Then u is continuous with
a modulus depending on the nature of the singularity of β .
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