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We study the posets (partially ordered sets) P, of partitions of an integer n, 
ordered by refinement, as defined by G. Birkhoff, “Lattice Theory” (3rd ed.) Colloq. 
Pub]. Vol. 25, 1967, Amer. Math. Sot. Providence. R.I. In particular we disprove 
the conjecture that the posets P,, are Cohen-Macaulay for all n. and show that even 
the Mobius function on the intervals does not alternate in sign in general. (’ 1986 

Academic Press. Inc. 

Let P,, for n 2 1 denote the poset of (unordered) partitions of the integer 
n, ordered by refinement, as introduced by Birkhoff [2, pp. 16, 1041. 

We write partitions as n = (a,, a2 ,..., a,), y = (b,, hz ,..., b,) etc., where we 
assume that a, >a22 ... >a,>O, ~,+a,+ ... +u,=n, and similarly for 
y. Then x < y is defined to mean that there is a partition {l,..., k) = 
J, u J2 u . u Jl of the index set of x into I disjoint, nonempty subsets, 
such that bi = CieJ, uj for all 1 d i < I (compare Fig. 1). 

The posets P, have been discussed by Bjiirner [3, p. 1761, who raised 
the question about their topological properties. 

This discussion is organized as follows: After some preliminary remarks 
in Section 1, we interpret in Section 2 the structure of intervals in P, in 
terms of associated “puzzles.” This technique is applied in Section 3 to dis- 
prove the shellability and CohenMacaulay property for large n. In Sec- 
tion 4 we study the Mobius function on P,,, and elaborate on the possible 
structure of intervals of P,. 

(1) GENERAL STRUCTURE 

We first discuss the general structure of the posets P,, numerical 
invariants, the natural embeddings and the connection to the Young lattice 
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FIG. 1. Poset P, 

of all partitions, ordered by containment of their Young diagrams (see, e.g., 
L-1, P. 171). 

For general poset notations as well as for the notions of shellability, 
Cohen-Macaulay poset and related concepts, the reader is referred to 
c3, 51. 

Fix n > 1, then P, is a graded modular poset of rank n - 1, with maximal 
element f = (n) and minimal element 0 = (l,..., 1). Its rank function is given 
by r((al ,..., &))=n-k. 

We note that for m <n, P, has a natural order preserving embedding 
in,, : Pm + P, given by (ai ,..., uk) + (a, ,..., uk, l,..., 1). These embeddings are 
full and faithful in the sense that for x < y in P,, we have [i,,,(x), 

LAY)1 g LdC4 Yl) isomorphic. As we obviously have ik,, 0 i,, = ik,, for 
m < n <k, the direct limit of the sequence (P,), F i of posets is an infinite 
poset: 

p,={(~,,~2,...)~~,~~2~~~~;u~~~,u,=1forallnB~} 

E (h u2,-, UN)lUl 2 4 2 ... 2uN> 1 for some N>O), 

endowed with the obvious (induced) order-relation (See Fig. 2)) This 
poset does not seem to have been studied before. We disregard the infinite 
sequence of parts of size one in every element of P,. P, inherits its rank 
function and its local properties (structure of intervals) from the posets P,, 
has however no maximal element. 
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FIG. 2. Poset P, 

The Whitney numbers of the second kind (cardinalities of the rank 
levels ) are 

for P,: W, = p(n, n - k) = number of partitions of n into n -k parts, 

for P,: W, = p(k) = number of partitions of k. 

This suggests a relation between P, and the Young lattice Y of all par- 
titions, ordered by containment of their Young diagrams, which has the 
same Whitney numbers W,. Indeed, there is the following order preserving, 
bijective map: 

(at ,..., ak) + (at + 1, a2 + l,..., ak + 1). 

Now Y is a distributive lattice, and as such even EL-shellable (see, e.g., 
[4]), it is Cohen-Macaulay and has all the related “nice” combinatorial 
properties. We suggest as a partial explanation of the “bad” behavior of P, 
and P, (as discussed in Sects. 3,4) the fact that P, can be thought of as 
an extension of the well-behaved lattice Y, where the additional order- 
relations (respectively the additional faces in the corresponding complexes) 
spoil the topological properties of Y. For example, it is easy to see that for 
x G y in Y with T(X, y) > 2, [4(x), d(y)] has connected proper part in P,, 
contrary to the behavior observed in Section 3. 

(2) Puzzm INTERPRETATION 

Let n be fixed, x, y E P,, x < y. To study the structure of the interval 
[x, y], we observe that it can be visualized as a puzzle, where the “board” 
is given as the multiset Y of parts of y, the “pieces” as the multiset X of 
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parts of x. (Depicting y as its Young diagram, X as a collection of rec- 
tangles, the connection to the notion of a puzzle as described by Rota and 
Joni [7] becomes obvious.) 

Now a “solution” of the puzzle [x, y] corresponds to a subposet of the 
interval [x, y] with connected proper part (for Y(X, y) > 2). 

EXAMPLES. (a) The puzzle corresponding to [S, 4, 3,2, l), (8, 6, l)] in 
P,, has a unique solution (in the obvious sense) given by 8 = 5 + 3, 6 = 
4 + 2, 1 = 1. It is easy to see that this interval is isomorphic to the Boolean 
algebra B,. 

(b) The puzzle [(5, 5, 5), (15)] in P,, has the unique solution 15 = 
5 + 5 + 5. The interval is a chain, because all possible ways to “split 15” are 
here essentially equivalent. 

(3) SHELLABILITY OF P, 

The posets P, can be viewed as quotients of the (geometric) partition lat- 
tices Z7, under the natural action of the symmetric group S,. The posets P, 
are semimodular, however not locally semimodular for n 3 8, as first poin- 
ted out by A. Bjorner [3] in view of the not-semimodular interval 
[ (3, 2, 1, 1, 1); (5, 3)] in P,. Similarly P,* is semimodular, but not locally 
semimodular for n 2 8. Local semimodularity would imply that the posets 
are even CL-shellable [4]. Bjorner remarks that P, is nevertheless 
shellable. Indeed, a shelling of P,, for n < 9 is given by the reverse 
lexicographic order of the maximal chains of P,, as induced by the 
lexicographic order of the partitions in P, themselves. This method 
however breaks down in the interval [(3, 2, 2, 2, l), (6,4)] in P,,. But P,O 
can still be checked to be shellable. 

We use now the technique developed in Section 2 to show that P, does 
not have these nice topological properties for larger n. In particular we give 
a negative answer to the question raised by Bjiirner in [3, p. 1771: 

THEOREM. For n > 19 the posets P, contain an interval of rank 3 with dis- 
connected proper part. The P, are therefore not Cohen-Macaulay and (a for- 
tiori) not shellable for n > 19. 

ProoJ: Consider the interval Ji = [(6, 5, 3, 2, 2, l), (8, 7,4)] in P,,. The 
corresponding puzzle has two distinct solutions, given by 

8 7 4 
1st Solution: 6+2 5+2 3+1 

2nd Solution: 5 + 3 6+ 1 2+2 
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which are totally disjoint in the sense that they do not allow any “common 
split”. 

Thus the maximal chains in 7, are split into two disjoint classes, which 
do not have any point in common, i.e., J, is an interval of rank 3 with dis- 
connected proper part, which contradicts CohenMacaulay type of J1, PI9 
and (via the embedding in Sect. 1) of P, for all n > 19. (The interval J, has 
actually the structure of two Boolean algebras of rank 3, identified at their 
maximal and minimal elements: J, = B3 + B,, IJ, 1 = 14, A,(J, ) g L, 
H,(J,) z Z2.) 

We remark that the interval J, in P,, is not a singular “bad’ incident, as 
can be seen from the intervals [ (6,4,4, 3,2, 1); (8, 7, 5)] in PI0 or 
[(S, 4, 4, 3, 3, 2); (8, 7, 6)] in P2,, which have the same structure as the 
interval J, just discussed. In fact there are infinitely many intervals 
isomorphic to J1 in P,, even if intervals obtained by scalar multiplication 
or addition of constants are not counted as different. This can be seen from 
the study of the four-parameter set of intervals [(a, b, c, d, e,f); (a + b, 
c+d, e+f)], where a,b,c,d,e=a+b-d andf=c+d-a are positive 
integer coordinates. The intervals failing to have the proper structure will 
lie on a finite number of hyperplanes in four-space. 

Furthermore it is easy to construct product intervals J, x B,: the puzzle 
[(2’k, 22k-1 ,..., 2’), (2k+22k, 2”- ‘+22kP’ ,..., 21+2k+‘)] is uniquely 
solvable because binary representation is unique. Thus this interval as well 
as any scalar multiple corresponds to B,. To get an interval J, x B,, we 
multiply “board-parts” and “pieces” of this puzzle by 12 5 and adjoin them 
to those of the puzzle J,. Similarly we can construct intervals of the form 
J’;=J1 x ... x J1 by duplicating J, with parts and pieces of larger size, e.g., 
[(8+6, 8+5, 8+3, 8+2, 8+2, 8+1, 6, 5, 3, 2, 2, l), (16+8, 16+7, 
16+4, 8, 7, 4)] = [(14, 13, 11, 10, 10, 9, 6, 5, 3, 2, 2, l), (24, 23, 20, 8, 7, 
4)] E J, x J,. NOW by [6, Theorem 4.31 and [8, Theorem 62.51 we com- 
pute the homology of J, x B, to be i7JJ, x Bk) = RJS(J, * B,)) = 
flp- ,(J, * Sk-*) = fip,,(.&), which shows that the Cohen-Macaulay 
property is violated in arbitrarily high homology groups. 

On the other hand standard arguments in homology theory (Eilen- 
berg-Zilber theorem, Kiinneth formula and Mayer-Vietoris sequence, see 
[8]) allow to compute that the Betti numbers of J: satisfy the recursion 

hence 

&,(J:)=(,Y;k+2> 2PP2k+2, k> 1. 

This shows that the Betti numbers below the top-dimension become 
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arbitrarily large, and the number of nonvanishing homology groups is not 
limited either. 

Thus, in a certain sense, the Cohen-Macaulay property fails “to unboun- 
ded extent” on the intervals of P,, 

(4) MOBIUS FUNCTION 

As P, is Cohen-Macaulay for n 6 10, its Mobius function will alternate 
is sign, i.e., 

p(x; y) * ( - 1 )r(x*v) > 0 (1) 

for x d y. The counterexample in Section 3 has ,u(J) = -1, which does not 
violate this condition (as r(J1) = 3). However, we construct: 

THEOREM. The Miibius function does not alternate in sign on P, for 
n > 111. For sufficiently large n, the property (1) fails on intervals oj 
arbitrary rank r > 7. 

Proof: We study the following interval of rank 7 in P,,, : 

J2 = [(21, 20, 11, 11, 8, 8, 6, 6, 6, 5, 5, 5); (27, 26, 25, 18, 15)]. 

The corresponding puzzle has only the two following solutions. 

27 26 25 18 15 

Solution 1: 21+6 20+6 11+8+6 11+7 5+5+5 

Solution2: 11+11+5 21+5 20+5 6+6+6 8+7 

To check that these solutions are actually disjoint, first observe that the 
corresponding two parts of Jz have no atom in common, as no pair of 
numbers that occur in the same column in Solution 1 also occur in the 
same column in Solution 2. Second, the two parts of J2 have no coatom in 
common, as no column can be split into two parts in the same way in both 
solutions. For example, Solution 1 allows 25 to be written as 11 + 14, or 
8 + 17, or 6 + 19, whereas Solution 2 splits 25 as 20 + 5. Now if the two 
solutions had any proper element in common or any relation, then the 
interval J2 would contain a maximal chain that contains an atom of one 
and a coatom of the other. This maximal chain determines a third solution 
of the puzzle, which does not exist. Thus J2 has a disconnected proper part 
and is especially not shellable. Let C1 and C2 be the connected components 



POSET OF PARTITIONS OF AN INTEGER 221 

of JZ. Then from the equivalence of the “cuts” in 15 = 5 + 5 + 5 and 18 = 
6 + 6 + 6 we see that 3 is a factor of both c, and c2. Hence ,(e,) = 
~(6,) = 0, and p(JZ) = +l, violating (1). (The structure of J, can be seen to 
be~~=~‘,+C,,whereC,r3xB,,C223xB~xMs,whereM,isthelat- 
tice of rank 2 and five elements corresponding to “25 = 11 + 8 + 6”. We 
have Z?,,(z)= Z, H,(z)=0 for p>O, p#5 as c, and c2 are Cohen- 
Macaulay, and H5(J2) = 0 can be read from the structure of Ci and Cl, as 
well as ]J,I=3.32+3.8.5-2=214). 

Adding different pieces and boards as in Section 3, all of sizes larger than 
27 and yielding a uniquely solvable puzzle, it is easy to construct intervals 
isomorphic to J2 x B, of rank 7 + k in P,, which still violate (1) as 
AJz x &I = AJz) ~1(Bk) = (- 1)“. 

In fact the complicated structure of p on P, (or: P,) reflects the variety 
of patterns that can arise in puzzles as described in Section 2. On the other 
hand, we can note that 

- the number i(r) of nonisomorphic intervals of given rank r in P, is 
linite, e.g., i( 1) = 1, i(2) = 6, 

- the Mobius function on intervals of rank 3 is indeed never positive. 
The first assertion follows by induction on r, observing that each coatom in 
[x, y] corresponds to splitting a part of y into two. Now the multisets of 
parts X, Y (as in Sect. 2) satisfy 1 I”\Xl < r, Ix\ YI < 2r, and the part in Y 
split to get a coatom has to be a sum of elements in X/Y, i.e., there are less 
than 22’ coatoms in [x, y], and the number of nonisomorphic intervals of 
rank r - 1 is finite by induction hypothesis. (The maximum value of six 
elements in the proper part of an interval of rank 2 is, e.g., reached in 
C(6, 5,4, 3, 2, 1); (7, 6, 5, 3)] of P,,.) The second assertion is readily 
established by case-by-case analysis of the possible situations that can yield 
a poset of rank 3 with disconnected proper part. In the connected case, the 
interval is Cohen-Macaulay and has therefore never positive Mobius 
function. 

Finally we note the following extension (and correction) of the result in 
[Z, p. 1043: 

THEOREM. In P, let x,(r) := (r+ 1, l,..., l), x2(r)= (r, 2, l,..., l), and 
S,:={xl(r)Il<r<n-1}, S2:={x2(r)12<r<n-2). Then for x~y, 
XESI: 

i 

( _ 1 )kV) 

Ax, Y) = 
0 

for yESInS,, 
otherwise, 

~(0, y)=O forall y~P,withr(y)a2. 

582a/42/2-5 
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ProojI We use induction over r(x, y), x = y being trivial. The MGbius 
function satisfies ,u(x, y) = - xXgz< y p(x,z) for x<y, where x<z<y 
implies r(x, z) < r(x, y). 

Now the theorem follows from the observation that (S, u Sz) n [x, y] is 
an interval in S, u S,, with minimal element x, and maximal element y,, 
where y=y, if ~ES,US,, y, < y otherwise (in this case y, E Sz, as 
y,>x,(r) implies y,>x,(r+ l)>?c,(r)). 
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