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ABSTRACT Ripley’s K-, H-, and L-functions are used increasingly to identify clustering of proteins in membrane microdomains.
In this approach, aggregation (or clustering) is identified if the average number of proteins within a distance r of another protein is
statistically greater than that expected for a random distribution. However, it is not entirely clear how the function may be used to
quantitatively determine the size of domains in which clustering occurs. Here, we evaluate the extent to which the domain radius
can be determined by different interpretations of Ripley’s K-statistic in a theoretical, idealized context. We also evaluate the
measures for noisy experimental data and use Monte Carlo simulations to separate the effects of different types of experimental
noise. We find that the radius of maximal aggregation approximates the domain radius, while identifying the domain boundary
with the minimum of the derivative of H(r) is highly accurate in idealized conditions. The accuracy of both measures is impacted
by the noise present in experimental data; for example, here, the presence of a large fraction of particles distributed as monomers
and interdomain interactions. These findings help to delineate the limitations and potential of Ripley’s K in real-life scenarios.
INTRODUCTION

The lipid raft hypothesis has led to intense interest in tech-

niques capable of distinguishing clustered distributions of

molecules in membranes (1). Growing evidence using such

approaches suggests that proteins enriched in microdomains

exist as small clusters present in a background of monomers

(2,3). Because of the inherent difficulty in distinguishing

such small clusters from a random distribution, mathematical

tools have become increasingly utilized to extract informa-

tion such as domain size and area fraction. One such tool

is the Ripley’s K-function, used currently to analyze the

distribution of immunolabeled proteins within membrane

sheets as detected by electron microscopy (2,4–9).

The distribution of labeled molecules in such an experi-

ment represents a spatial point pattern. The first moment

property of a spatial point pattern is the number of points

per area and the second moment property is the expected

number of points N within a distance r of another point.

Ripley’s K-function (10) is the second moment property

normalized by the density (or intensity), the number of points

per area l:

KðrÞ ¼ 1

n

Xn

i¼ 1

Npi
ðrÞ=l; (1)

where pi is the ith point and the sum is taken over n points.

The expected value of K(r) for a random Poisson distribution

is pr2 and deviations from this expectation indicate scales of

clustering and dispersion.
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The K-function can be normalized as proposed by Besag

(11) so that its expected value is r (linear):

LðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðrÞ=pÞ

p
: (2)

The K-function can be further normalized so that the

expected value is 0, yielding the so-called H-function (12):

HðrÞ ¼ LðrÞ � r: (3)

Ripley’s K-function is typically used to compare a given

point distribution with a random distribution; i.e., the point

distribution under investigation is tested against the null

hypothesis that the points are distributed randomly and inde-

pendently. For example, a positive value of H(r) indicates

clustering over that spatial scale whereas a negative value

indicates dispersion. Although it is common to use a signifi-

cantly positive value of H(r) to identify clustering

(4,8,12–18), some recent publications have further sought

to use the maximum of H(r) to provide a measure of domain

radius (5–7). The value of r that maximizes H(r) indicates the

radius of maximal aggregation: the radius of a disk in which a

centered test point on average contains the most points per

area. However, it is not clear that the radius of maximal

aggregation would coincide with the domain radius and the

difficulty of using Ripley’s K to identify the radius of point

aggregation has been emphasized by several authors

(7,19–21). We therefore tested the ability of this measure

to accurately report on domain radius in idealized conditions.

We find that for well-separated domains of a radius R, the

radius of maximal aggregation varies between R and 2R.

We show the domain radius may be more precisely identified

by finding the domain boundary where the point density

drops. These theoretical conclusions provide a useful
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understanding of the limitations and potential of Ripley’s K

in a best case scenario. We also evaluate the measures for

noisy experimental data and use Monte Carlo simulations

to separate the effects of different types of experimental

noise.

METHODS

Modeling idealized disk-shaped domains

We considered a distribution of idealized domains of radius R separated by

a distance S (Fig. 1 A) where S is the distance between adjacent domain

centers. Domains were drawn on a square lattice where each lattice node

corresponds to a 1 nm � 1 nm area. In each Monte Carlo realization of

a point pattern, lattice nodes were randomly assigned ‘‘probes’’ at a density

of 0.05 probes nm�2, yielding a 5% occupation of the lattice nodes within

domains. When indicated, nodes outside domains were populated at a density

of 1 � 10�3 probes nm�2 to simulate a monomer fraction. Fig. 1 B shows

one random snapshot of a lattice with domain probes populated at a density

of 0.05 nm�2 and nondomain probes populated at a density of 1 � 10�3

probes nm�2. We only considered values of S R 4R so that adjacent

domains were separated by at least one domain diameter.

Modeling K-ras nanoclusters

In recent experiments (2,17), point patterns of the distribution of the protein

Ras on the plasma membrane have been obtained by immunoelectron

microscopy. Analyses of the point patterns in (2,17) indicated that Ras asso-

ciates with nanoclusters that have a constant size (~16 nm) and coexist with

randomly arrayed monomeric protein. The ratio of clustered to monomeric

protein was found to be constant over a multilog range of expression, sug-

gesting that the fraction of clustered molecules is maintained by an active

process (3,17). On average, it was found that each nanocluster contained

3.2 gold particles, and the monomer population was ~56%. Where indicated,

a Monte Carlo model was used to simulate these immunogold point patterns.

Domains with a radius of 16 nm were placed on a 500 � 500 square lattice

where each lattice node corresponded to 1 nm2 area. The density of

immunogold particles was allowed to vary from 400 to 1200 particles per

1000 nm � 1000 nm. In the experimental model 44% of the particles

were arrayed in nanoclusters with a stoichiometry of 3.2 gold particles per

nanocluster. Thus, for a given number of immunogold particles N, the

FIGURE 1 Distribution of idealized domains and distribution of points.

(A) Disk-shaped domains of radius R are tiled on a square lattice in a trian-

gular pattern with periodic boundary conditions. The distance between the

centers of any two adjacent domains is S. The distance between neighboring

domain edges is S � 2R. (B) A random snapshot of a distribution of points

(black pixels) with density 0.05 nm�2 within domains and 0.001 nm�2

outside of domains. The horizontal bar indicates 10 nm. Domains have

radius R ¼ 20 nm and are separated by S ¼ 120 nm.
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nearest whole number of 0.44 � N/3.2 domains were assigned to the lattice.

Nanoclusters were arrayed randomly over the model membrane, subject to

the constraints that they could not overlap and must be completely contained

within the lattice. The N particles were then randomly assigned to domain

nodes and nondomain nodes in a 0.44:0.56 ratio. Where indicated, we modi-

fied the point pattern in three ways. First, we allowed the domain size to vary

from 6 to 16 nm. In the case of no monomer fraction, all the nondomain

particles were deleted. In the case of no domain interaction, domains were

randomly assigned subject to the constraint that they were separated by

a distance 4R from each other and 2R from the domain boundary.

Computing Ripley’s H and H0 functions

Without regard to whether points are located within or outside domains,

Ripley’s K-statistic is computed for all points on the lattice. Periodic boundary

conditions are used to obviate edge effects. The periodic extension for the

idealized point patterns is seamless because domains are arranged in a trian-

gular pattern. While generating point patterns that simulate K-ras nanoclus-

ters, we require that domains are completely contained within the lattice so

that there are no broken or overlapping domains when the lattice pattern is

tiled. The derivative of the H-function is computed from the H-function at

each value of r nm by taking the average derivative of H over the interval

[r � 1 nm, r þ 1 nm], which resulted in a sufficiently smooth function.

RESULTS

Comparing the radius of maximal aggregation
with the domain radius in distributions
of idealized, disk-shaped domains

To investigate the relationship between H(r) and the domain

radius, we evaluated H(r) for the case of an idealized point

pattern in which points are aggregated within well-separated,

disk-shaped domains of radius R and separation S (Fig. 1 A).

Domains were drawn on a square lattice. Lattice nodes were

randomly assigned ‘‘probes’’ at a density of 0.05 probes nm�2.

We only considered values of S R 4R so that adjacent

domains were separated by at least one domain diameter.

As expected, for this idealized case, H(r) was positive over

the interval [0, S/2] for the aggregated distribution, indicating

clustering over that interval (Fig. 2 A, solid black line). In

contrast, applying H(r) to a Poisson distribution yields

a constant value of H(r) of zero, consistent with the absence

of clustering (Fig. 2 A, dotted line).

In previous studies, the value yielding the maximum of

H(r) was used to provide a measure of domain radius

(5–7). Here, we will denote this as the radius of maximal

aggregation R* ¼ [HMAX], where the brackets indicate the

value of r that yields the maximum value (an inverse opera-

tion). For the example shown in Fig. 2 A, we found that

R* ¼ 25 5 1 nm was slightly larger than the actual value

of R ¼ 20 nm. We considered the possibility that the differ-

ence between the actual domain radius and that predicted by

[HMAX], arises because K, H, and L are accumulative func-

tions, meaning that effects at larger distances are confounded

with those at smaller distances. The functions are accumula-

tive because for each value of r, Ripley’s K considers the

number of points within a radius r, so that the points within

smaller radii will always be included.
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FIGURE 2 Using Ripley’s H-function to identify

domain radius. (A) H(r) for a random (Poisson) distribution

(dotted line), points entirely clustered within 25 domains of

radius R ¼ 20 nm separated by S ¼ 100 nm (black solid
line), or points clustered in domains in the presence of

a monomer fraction (gray solid line). The arrow labeled

‘‘HMAX’’ indicates where H(r) is maximized and the arrow

labeled ‘‘H0MIN’’ indicates where the slope of H(r) is first

�1 for the entirely clustered distribution. To simulate a

monomer fraction, nodes outside domains were populated

at a density of 1 � 10�3 probes nm�2. (B) H(r) calculated

for three distributions containing 25 domains with a constant domain radius of 20 nm but varied domain separation (100, 200, or 300 nm). Note that the magni-

tude and position of [HMAX] shifts systematically with the domain separation (solid black circles indicated by arrows). (C) The domain radius R* predicted by

[HMAX] as a function of the domain separation. The domain radius and diameter are indicated by the dashed gray lines at 20 nm and 40 nm, respectively. Data

represent the mean 5 SD for five independent point distributions containing 25 domains of radius R ¼ 20 nm.
To further study how accumulative effects impact the rela-

tionship between R* and the actual domain radius, we calcu-

lated H(r) for idealized distributions in which the domain

radius was held constant but the interdomain separation

was varied (Fig. 2, B and C). Examples of plots of H(r) for

three different values of S are shown in Fig. 2 B. This

analysis revealed that as the interdomain separation was

increased, the radius of maximal aggregation shifted to

progressively larger radii. We repeated this calculation for

a range of values of S and calculated the radius of maximal

aggregation [HMAX] for each case (Fig. 2 C). As shown in

Fig. 2 C, the domain radius R* predicted by [HMAX] mono-

tonically increases from the domain radius R to the domain

diameter 2R as the separation is increased from 4R to arbi-

trarily large values. We evaluated the radius of maximal

aggregation predicted as S / N by applying Ripley’s K

to a single domain without periodic boundary conditions,

and found that [HMAX] approaches 2R.

This dependence of [HMAX] on S can be understood by re-

calling that the H-function compares the observed density

within a test radius with the expected density in a Poisson

distribution. The critical point of H(r) (where H0 ¼ 0) is

located where aggregation effects within the domain are

perfectly canceled out by dispersion outside the domain.

When domains are the same size but the domain separation

is larger, aggregation of points is actually greater because

points are aggregated within a relatively smaller area. (This

is indicated by the fact that the maximum value of H(r)

increases with S). The extent of aggregation relative to the

total area between domains increases and a greater area is

required to offset that aggregation. Nevertheless, although

the radius of maximal aggregation does not exactly corre-

spond to the domain radius, even in this idealized scenario,

it is encouraging that [HMAX] estimates the domain radius

within a factor of 2.

Using the derivative to subtract accumulative
effects

Given that the location of maximal aggregation given by

[HMAX] does not measure the domain radius precisely, we

asked if another measure may yield the domain radius.
With regard to this issue, Weigand and Moloney (21) have

noted that although the K-function may be used to detect

the spatial range of repulsive and attractive effects, functions

based on the derivative of the K-function should be used to

describe the extent of aggregation at a particular distance.

This is the case because the rate of change of a function

does not depend on the function’s magnitude, and thus is

not affected by accumulative effects (21). We therefore

tested the use of the derivative of H(r) to subtract accumula-

tive effects.

To test this, we calculated H0(r) versus r for the same three

simulations shown in Fig. 2 B. Although all the curves of

H0(r) intersect the x axis in different locations, each intersects

the line y ¼ �1 at the same radius of r ¼ 2R (Fig. 3 A). This

suggests that the point at which the derivative of H(r) is

equal to �1 can provide a measure of the domain radius

that is independent of accumulative effects. To test this

further, we calculated the value of r where H0(r) is �1 for

idealized domains with a constant domain radius for a range

of domain separations (Fig. 3 B). We found that a plot of the

value of r where H0(r) ¼ �1 accurately predicts the domain

FIGURE 3 Taking the derivative of H(r) removes accumulative effects.

(A) H0(r) calculated for idealized distributions containing 25 domains with

radius R of 20 nm for three different values of domain separation S: 100 nm

(open triangles), 200 nm (open squares), or 300 nm (open circles). (B) The

domain radius R* predicted by [H0MIN] (squares) as a function of the domain

separation. The domain radius and diameter are indicated by the dashed gray

lines at 20 nm and 40 nm, respectively. In both panels, data represent the

mean 5 SD for five independent point distributions containing 25 domains

of radius R ¼ 20 nm.
Biophysical Journal 97(4) 1095–1103
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radius even as the domain separation is varied (Fig. 3 B).

Thus, the minimum value of r that yields H0(r) ¼ �1,

divided by 2, accurately yields the domain radius indepen-

dent of the domain separation for the case of idealized

domains. For the remainder of this study, we will denote

the domain radius indicated by the minimum of H0(r) as

R* ¼ [H0MIN], where again the brackets indicate the value

of r that yields the minimum.

The finding that the domain radius is indicated where the

derivative of H(r) is �1 independent of accumulative effects

is intriguing given that radius of maximal aggregation

[HMAX], occurs when the derivative of H(r) is 0. To better

understand why the domain radius is predicted in this way,

we considered the L-function, which has a precise geometric

interpretation: for a given radius r, L(r) is the radius within

which the number of points would be distributed if the distri-

bution was completely random. Thus, the expected value of

L(r) for the Poisson distribution is r (Fig. 4 A, dotted line).

L(r) of a distribution in which points are aggregated within

domains of radius R and separation S is greater than that of

the Poisson distribution over the interval [0, S/2], indicating

clustering over that interval (Fig. 4 A, solid black line).

Importantly, L(r) is an increasing function of r as long as

the number of points found within a radius r is increasing

with r, and stops increasing when the density of points

outside a radius r is zero for all test points. In other words,

the derivative of L(r), L0(r), is always R0. L0(r) will be posi-

tive as long as the number of points found within a radius r is

increasing with r, and zero when the density of points outside

a radius r is zero (Fig. 4 B, solid black line). For the case

where points are fully aggregated within domains of radius

R, the distance between any two points within the same

domain will be less than or equal to the diameter 2R, and

the density of points outside domains will be zero until the

next domain is reached. Because the distance between

FIGURE 4 Using Ripley’s L-function and its derivative to identify

domain radius. (A) L(r) and (B) L0(r) for a random (Poisson) distribution

(dotted line), points entirely clustered within domains (black solid line), or

points clustered in domains in the presence of a monomer fraction (gray

solid line). The arrow indicates where the slope of L(r) is first 0 for the

entirely clustered distribution. Data represent the mean 5 SD for five inde-

pendent point distributions containing 25 domains of radius R ¼ 20 nm and

separation S ¼ 60 nm. To simulate a monomer fraction, nodes outside

domains were populated at a density of 1 � 10�3 probes nm�2.
Biophysical Journal 97(4) 1095–1103
domain boundaries is S � 2R (Fig. 1), L(r) has a zero slope

over the interval [2R, S � 2R] (Fig. 4 B). Thus, the domain

diameter is indicated when L0(r) is first zero (Fig. 4 B,

arrow). When L(r) has a derivative of 0, the derivative of

H(r) is �1 because H(r) and L(r) only differ by the term �r.

Effect of a monomer fraction in the case
of idealized domains

The geometric arguments above apply to idealized distribu-

tions in which points are distributed entirely within domains

and no monomer fraction is present. However, an important

feature of Ripley’s K is its application to distributions in

which there may be a number of points randomly distributed

outside domains. We therefore next tested how the presence

of a monomer fraction impacts the ability of H(r) and L0(r) to

predict domain radius. For this analysis, we considered the

effect of adding monomers to nodes outside domains at

a density of 1 � 10�3 probes/nm2. The relative abundance

of monomers outside domains to probes within domains is

shown in Fig. 1 B. For these point patterns in which the

density of probes outside domains was now nonzero, we

found that the position of the maximum of H(r) was unaf-

fected (Fig. 2 A), but that L0(r) did not go to zero (Fig. 4 B,

solid gray line). However, the value of r that minimizes L0(r)

still yields the domain radius (Fig. 4 B). Thus, both measures

seem to be relatively insensitive to the presence of a mono-

mer fraction under these conditions. We note that our point

patterns assume randomly placed monomers distributed at

a constant density outside domains. In irregular distributions

in which the monomer density fluctuates nonrandomly

outside domains, using this method to identify the domain

radius would be biased by this second level of aggregation/

ordering.

Comparing the predictions of the maximum of H(r)
and the minimum of H 0(r)

Our analysis of idealized domains indicates that the

maximum of H(r) and minimum of H0(r) have different

dependencies on domain separation. In particular, the

maximum of H(r) yields the radius of maximal aggregation,

which depends on the domain separation, whereas the

minimum of H0(r) yields the domain radius independent of

the domain separation. We therefore considered the possi-

bility that the ratio of [HMAX] and [H0MIN] could provide

information regarding the domain separation. To test this,

we calculated the ratio [HMAX]/[H0MIN] versus the domain

separation for domain separations ranging from 4R (80 nm)

to 20R (400 nm) (Fig. 5). Under these conditions, the ratio

[HMAX]/[H0MIN] increased monotonically from ~1 to ~2.

To determine if this ratio was dependent on the domain

radius, we carried out a similar calculation for three different

domain radii (20, 30, and 40 nm). The ratio [HMAX]/

[HupMIN] versus domain separation was the same for three

different domain radii when the domain separation was
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normalized by the domain radius (Fig. 5). This suggests that

the parameter [HMAX]/[HupMIN] can be used to measure

domain separation, an additional defining feature of a given

particle distribution.

Application to experimentally measured domains:
K-ras nanoclusters

The above results apply to idealized distributions in which

points are distributed randomly within idealized domains.

However, an important application of Ripley’s K is the anal-

ysis of experimentally determined distributions in which

there may be significant sources of noise. For example, Rip-

ley’s K-analysis has been used recently to analyze experi-

mental measurements of the distribution of the protein Ras

FIGURE 5 Ratio [HMAX]/[H0MIN] increases monotonically with the

domain separation. The ratio [HMAX]/[H0MIN] versus the separation S is

the same for three different domain radii if the domain separation is normal-

ized by the domain radius R. The domain radii are 20 nm, 30 nm, and 40 nm

for the three plots shown, indistinguishable within error. Data represent the

mean 5 SD for five independent point distributions containing 25 domains

of radius R ¼ 20 nm.
on the plasma membrane by immunoelectron microscopy

(2,17). Previous analyses using [HMAX] as a reporter of

domain radius indicated that Ras associates with nanoclus-

ters that have a constant size (~16 nm) and coexist with

randomly arrayed monomeric protein. The ratio of clustered

to monomeric protein was found to be constant over a multi-

log range of expression, suggesting that the fraction of clus-

tered molecules is maintained by an active process (3,17). On

average, each nanocluster contained 3.2 gold particles, and

the monomer population was ~56%.

To evaluate the use of H(r) and H0(r) in estimating the

radius of experimentally determined Ras nanoclusters, we

estimated the nanocluster radius for an immunogold point

pattern of K-ras proteins on intact plasma membrane sheets

from data published previously (17). The experimentally

determined point pattern used is shown in Fig. 6 A. In this

measurement, the labeled K-ras density was 625 gold

particles per mm2. Using [HMAX], the K-ras nanocluster

radius was estimated as 16 nm, whereas the K-ras nanocluster

radius was estimated as 14 nm from [H0MIN]. Thus, the two

measures yield similar, but not identical estimates of the

K-ras nanocluster radius for this experimentally measured

particle distribution.

Next, we asked if the values of domain radius reported by

[HMAX] and [H0MIN] varied as a function of the density of

K-ras particles under conditions similar to those observed

experimentally assuming that the domain radius did not

vary. To evaluate this, we used a Monte Carlo model that

generates immunogold point patterns analogous to labeling

K-ras proteins on plasma membrane sheets (see Methods).

These patterns contain two types of noise not present in

our idealized model (Fig. 1). First, there is a constant mono-

mer fraction (56% of K-ras proteins are distributed randomly

outside nanoclusters regardless of the overall particle

density). Second, the separations between domains are

random (domains may not overlap but they may approach

arbitrarily close).

We generated 500 immunogold point patterns incorpo-

rating these two sources of noise for each of nine different

pattern densities chosen to correspond to the range of particle

densities that were measured experimentally. All domains in

the patterns have a fixed radius of 16 nm, which is thus the
FIGURE 6 Nanocluster radius for Monte Carlo simula-

tions of K-ras nanoclusters as a function of pattern density.

(A) Example of an experimentally derived point pattern

with an immunogold density of 625 mm�2. Data are repre-

sentative of those collected for K-ras in Plowman et al.

(17). Scale bar ¼ 100 nm. (B and C) Radii calculated for

500 simulated point patterns mimicking K-ras nanoclus-

ters. The dashed line shows the actual domain radius

(16 nm) whereas the solid line shows the mean and SD

of Ripley’s calculations for (B) the radius calculated using

the max value of H(r), or (C) the radius calculated using the

min value of H0(r). Histograms (insets) show the distribu-

tion of individual simulation predictions when the gold

pattern density is 400 particles/mm2.

Biophysical Journal 97(4) 1095–1103
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correct radius to report. For each pattern we calculated

[HMAX] (Fig. 6 B) and [H0MIN] (Fig. 6 C). Both measures

predict the domain radius within the mean standard deviation

(SD); however, as shown in the histogram of individual

predictions (insets), individual results vary widely and

predictions for a single point pattern can be several orders

of magnitude larger than the domain radius. Nevertheless,

both methods perform relatively well on average in esti-

mating domain radius of nanoclustered patterns, so that

increased reliability may be gained as multiple point patterns

are evaluated.

Unexpectedly, both [HMAX] and [H0MIN] showed little

dependence on particle density. The absence of a strong

dependence of [HMAX] on pattern density was particularly

surprising considering the results obtained from our initial

simulations (Fig. 2 C), which predicted that [HMAX] should

increase as the average separation between clusters in-

creases. Instead, the ratio of the radii predicted by [HMAX]

and [H0MIN] did not vary systematically with the particle

density, but was essentially constant, with a mean value of

1.25 and a SD of 0.05. According to Fig. 5, the estimated

domain separation should correspond to 5.5R 5 0.5, or

88 5 8 nm, for this value of [HMAX]/[H0MIN]. However, it

is clear from direct inspection of the point patterns that the

domain separations systematically vary with the point

density, decreasing from ~85 nm to 50 nm as the particle

density increases from 400 to 1200 particles per mm2.

Thus, the results of our Monte Carlo simulations indicate

that domain separation cannot be predicted using the ratio

of [HMAX] to [H0MIN] because the ratio does not vary with

the domain separation in this noisier scenario.

Systematic evaluation of the two noise sources
in experimentally derived data

To understand why the behavior of [HMAX] seemed to be

independent of accumulative effects for the case of simulated

K-ras nanoclusters, we next systematically evaluated the

individual contributions of the two sources of noise to these

data, the presence of a monomer fraction and random domain

positions. Although our previous analysis suggested that the

monomer fraction should not be a major source of noise

(Figs. 2 A and 4 B), we wanted to verify this for biologically

relevant distributions. In addition, when domain separations

vary randomly, some domain separations may be smaller

than 4R. When this occurs, the distance between domains

(from edge to edge) may be less than the domain diameter

and points at the edge of a domain are just as close to points

in another domain as they are to points within their own

domain. We define this as domain interaction.

We evaluated the performance of Ripley’s K with or

without these two sources of noise independently in Fig. 7.

For this analysis, we generated point distributions in the

same way as in the simulations in Fig. 6, B and C, except

that in this case we systematically varied the domain radius
Biophysical Journal 97(4) 1095–1103
FIGURE 7 Analysis of the contribution of monomer fraction and domain

interaction to estimates of K-ras domain radius obtained from [HMAX] or

[H0MIN]. Simulated point patterns were generated as in Fig. 6 except that

the domain radius was systematically varied from 6 nm to 16 or 20 while

holding the particle density constant at 612 particles per 1000 nm �
1000 nm. The domain radius was calculated using the max value of H(r)

(A panels) or using the minimum values of H0(r) (B panels). Monte Carlo

point patterns were generated with both noise sources (Ai and Bi), with

domain interaction but no monomer fraction (Aii and Bii), with a monomer

fraction but without domain interaction (Aiii and Biii) and without either

a monomer fraction or domain interaction (Aiv and Biv). The dotted line

shows the actual domain radius, whereas the solid line with error bars shows

the mean radius and SD of 500 point patterns.
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while holding the particle density constant at 625 particles

per 1000 nm � 1000 nm. The number of particles per

domain and ratio of clusters/monomers was identical to those

used in Fig. 6. These simulations thus contain a monomer

fraction and have varied domain separations, similar to the

known sources of noise in the experimentally based (17)

distributions analyzed in Fig. 6. For each case studied, we

calculated both [HMAX] and [H0MIN] and compared these to

the actual domain size (Fig. 7, dotted lines).

We first calculated the predicted radii in the presence of

both sources of noise (Fig. 7, Ai and Bi). The predicted

domain radius was consistent with the actual domain radius

within error for both [HMAX] and [H0MIN]. However, the

noise did not allow a precise prediction of the domain radius

because the SD was very large. Thus in the presence of both

a monomer fraction and varied domain separation, the two

measures perform equally well and are not distinguishable.

We next evaluated the contribution of domain interaction

to the noise in the domain radius prediction. To examine this,

the monomer fraction was removed from the Monte Carlo-

generated point patterns by deleting all points outside

domains. We found that when only domain interactions are

present, the predictions of both [HMAX] and [H0MIN] were

still very noisy (Fig. 7, Aii and Bii). In fact, the predictions

from [H0MIN] were even noisier (i.e., the error was larger)

under these conditions than in the presence of both domain

interaction and a monomer fraction (compare Fig. 7, Bi
and Bii). This indicates that domain interaction is a significant

source of noise for both measures. Geometrically, this can be

understood as occurring because domains that approach

within a distance of 4R are interpreted by both measures as

a single domain.

We next tested how the monomer fraction contributes to

the variation in the measurements of domain radius by

removing interacting domains (Fig. 7, Aiii and Biii). To re-

move domain interaction, we required that the domain sepa-

ration be at least 4R (rather than 2R when domains just

cannot overlap). Because the domains must be spaced further

apart to eliminate domain interaction, it is more difficult to

generate point patterns that satisfy these constraints at high point

densities. We thus only evaluated domain sizes from 6 nm to 16

nm. The results of this analysis show that both measures are

fairly robust to the effects of the monomer fraction because

much of the error in their predictions is removed (Fig. 7, Aiii
and Biii). For some values of the domain radius, the confidence

interval of [HMAX] was narrower than that of [H0MIN], indicating

that [HMAX] is a more reliable measure in these cases.

Finally, we removed both domain interactions and the

monomer fraction from the simulated K-ras data (Fig. 7,

Aiv and Biv). Without either type of noise present, the results

were largely consistent with that of our idealized scenario:

[H0MIN] yielded the correct domain radius, whereas the

radius predicted by [HMAX] was somewhat larger (Fig. 7,

Aiv and Biv). Note that the [H0MIN] prediction typically

underestimates the domain radius, but never overestimates
it. This is due to the density of only 3.2 particles per domain,

as in some point realizations there may be no points at the

very edge of the domain.

These findings suggest that the reason that Fig. 6, B and C,

look similar, and there is no strong dependence of [HMAX] on

density for experimentally based domains, is because they

are skewed from their ideal value by domain-domain interac-

tion, and to a lesser extent, the monomer fraction. When this

noise is subtracted by taking away the monomer fraction and

domain-domain interaction, the results are consistent with

our theoretical results.

The effect of varying the monomer fraction

An interesting feature of the distribution of K-ras observed in

Prior et al. (2) and Plowman et al. (17) is that the ratio of

clustered to monomeric protein was found to be constant

over a multilog range of expression. Above, we considered

the effect of the monomeric protein on the ability of

[HMAX] and [H0MIN] to predict the domain radius when the

ratio of monomers to domain probes is 56:44, as observed

in this experiment. In a general context however, the ratio

of monomers to domain probes may vary with the density

of probes and, moreover, it is unlikely that this ratio will

be known a priori. To further investigate the effect of a mono-

mer fraction on the Ripley’s K-statistic, we studied the effect

of increasing the monomer fraction while the number of

probes within domains was held constant. In particular, we

looked at the radii predicted by [HMAX] and [H0MIN] as the

monomer fraction was increased systematically from 20%

to 80%. Statistically significant aggregation (with 99% confi-

dence) was identified if the extent of aggregation measured

by the maximum value of H(r) is greater than the maximum

value of H(r) measured for 100 random point distributions of

the same point density.

By this criterion, we found that at very high monomer

fractions, it became increasingly difficult for the statistic to

identify aggregation. As the monomer fraction was increased

in our simulations, statistically significant aggregation was

identified in fewer and fewer point patterns (the fraction is

indicated above each data point in Fig. 8, A and B). For

monomer fractions of 0.8 and 0.9, the percentage of patterns

with statistically significant aggregation was 50% and 16%,

respectively. We therefore used Ripley’s K-statistic to

predict a domain radius only in point patterns where statisti-

cally significant aggregation was observed. Thus, the mean

and SD of the radii predicted by [HMAX] and [H0MIN] shown

in Fig. 8, A and B, are restricted to the subset of point patterns

in which aggregation was observed.

For the patterns where aggregation was detected, we

found that although the SD of the radius predicted by

[HMAX] and [H0MIN] increased with the monomer fraction,

the mean predicted radius was not altered significantly by

the noise of monomers until the monomer fraction exceeded

80%. This is consistent with our previous result (Fig. 7) that
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FIGURE 8 Ripley’s-K predictions as the monomer frac-

tion is varied. Ripley’s calculations of domain radii for 500

simulated point patterns with a particle density of 400 parti-

cles/mm2, 3.2 particles per domain, domain radius of

16 nm, and varied ratio of monomers to domain particles.

(A) Radius calculated using the max value of H(r). (B)

Radius calculated using the min value of H0(r). The dashed

line shows the actual domain radius (16 nm) whereas the

solid line shows the calculated radius. The number associ-

ated with each data point indicates the fraction of patterns

in which aggregation was identified.
the monomer fraction contributed only partially to the exper-

imental noise of the statistics.

DISCUSSION

In this study, we evaluated the use of Ripley’s K to quanti-

tatively measure domain size under both idealized and exper-

imental conditions. We first analyzed Ripley’s K in idealized

conditions to delimit the theoretical potential of Ripley’s K

under best-case scenarios. For the first time, to our knowl-

edge, we describe the relationship between the radius of

maximal aggregation [HMAX] and the domain radius, and

found that [HMAX] increases systematically and regularly

with the domain separation. Thus, the ratio of [HMAX] and

the actual domain radius is a predictor of the domain separa-

tion. On the basis of our theoretical results, we propose what

we believe is a new measure, the radius that minimizes the

derivative of H, for finding the domain radius in a separa-

tion-independent manner. The minimum of the derivative

of H(r) geometrically corresponds to the domain boundary

because the density of particles outside domains is less

than that of the domain interior.

We next applied Ripley’s K-analysis to experimentally

derived data for K-ras nanoclusters to study the effects of

noise such as a monomer fraction and interdomain interac-

tions on quantitative analysis of domain size. Our noise anal-

ysis indicates that the predictive values of Ripley’s K

measures are affected profoundly by domain interaction

that occurs whenever domains are within one domain width

of each other. This is a significant finding because domains

are likely to randomly approach at distances that will result

in domain interaction even at low domain densities. For

example, significant domain interaction occurred in our test

case even though the average domain separation was four-

fold greater than the minimum domain separation at which

interaction occurs (e.g., for domain interaction when the

domain radius is 6 nm). Because [HMAX] is somewhat

more robust to the effect of domain interaction, [HMAX]

may be the preferred measure for experimental data sets,

keeping in mind that [HMAX] tends to slightly overestimate
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the domain radius in cases of low domain density. At very

low domain density, [H0MIN] would provide a more accurate

measure. For both measures, several patterns should be

analyzed because individual results may vary widely

whereas the mean remains more or less trustworthy.

Our findings illustrate the utility of examining simple

limiting cases and carrying out systematic noise analyses

to discern the underlying limits of analytical tools like Rip-

ley’s K. Predicting or extrapolating theoretical results in

the presence of noise is complicated by the fact that sources

of noise are exceptionally case-dependent; each environ-

mental scenario will have a unique combination of noise

effects. Previous work has taken advantage of simulations

that mimic actual experimental data (17). Here, Monte Carlo

models enabled us to switch sources of noise off and on and

look at their effects independently. We therefore propose

conducting Monte Carlo simulations for each experimental

situation under study to evaluate the performance of the

statistic used in that context.
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