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Abstract

Beyond pressure-sensitivity, plastic deformation of glassy polymers exhibits intrinsic softening followed by progressive
rehardening at large strains. This highly nonlinear stress–strain behavior is captured by a constitutive model introduced in
this work. In the first part of the paper, we focus on void growth and coalescence in an axisymmetric representative mate-
rial volume consisting of a single large void and a population of discrete microvoids. Our study shows that microvoid cav-
itation, enhanced by strain softening, accelerates the process of void coalescence resulting in brittle-like failure at lowered
stresses and strains. Pressure-sensitivity also reduces stress-carrying capacity as well as influences the strain for void coa-
lescence; plastic dilatancy effects are relatively milder. In the second part of the paper, we introduce a population of discrete
spherical voids within a three-dimensional computational model to study void growth and damage ahead of a crack front.
Our studies reveal a distinctive change in the deformed void shape from oblate to prolate when strain softening is followed
by high rehardening at large plastic strains. By contrast, an extended strain softening regime promotes oblacity and facil-
itates multiple void interaction and their cooperative growth over large distances ahead of the crack front. This multi-void
failure mechanism is exacerbated by pressure-sensitivity.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Various modifier particles are added to polymers to improve their mechanical properties, including fracture
toughness. In such polymer systems, large voids can originate by cavitation of rubber particles in polymer-rub-
ber blends or from decohesion of hard filler particles (Kim et al., 1996). In glassy and semicrystalline polymers,
microvoids nucleate in zones of intense shearing – this appears to be related to the evolution of free volume,
and possibly coalescence of free volume, in the strain softening regime (Hasan et al., 1993; Wright et al., 2003).
Another damage mechanism called crazing entails microvoids growing in a well confined zone of highly
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stretched material perpendicularly oriented to the maximum principal tensile stress (Kramer and Berger,
1990). At the same time, it has been observed that large voids are likely initiation sites for shear bands and
crazes, both of which involve the cooperative growth of many microvoids. In this work, we study the mechan-
ical response and failure modes of glassy polymeric materials using a computational model encompassing two
populations of cavities of different size-scales – large primary voids surrounded by many microvoids or
micropores.

Compared to glassy polymers and polymer-rubber blends, there is a better understanding of the roles of
primary voids and secondary microvoids on the mechanical response and fracture of metallic materials.
The influence of void size and distribution on void growth, interaction and coalescence has been studied exten-
sively for metals, e.g. Koplik and Needleman (1988) who employed a periodic array of identical voids. To gain
some understanding of the interaction between primary voids and secondary microvoids, Faleskog and Shih
(1997) introduced a representative material volume containing a single large void and a population of discrete
microvoids. They observed that final rupture was dominated by a succession of rapidly growing microvoids,
which involved the synergistic interaction between elasticity associated with high stress triaxiality and stiffness
softening caused by plastic yielding. Tvergaard (1998) studied the interaction of very small voids with larger
voids in metal matrix composites, and affirmed the importance of plastic flow localization in driving cavitation
instability of very small voids. Perrin and Leblond (2000) examined the void growth arising from two popu-
lations of cavities of different size-scales in ductile metals. They showed that the existence of secondary microv-
oids played a pivotal role in material failure soon after the initiation of void coalescence.

This work builds on ideas and results for metallic materials. We study how the growth of large primary
voids (e.g. those originating from cavitated rubber particles) and the cooperative growth of discrete microv-
oids affect the mechanical behavior and failure of glassy polymers and reinforced blends. In this regard, it is
well known that the deformation of polymers differs considerably from that of metals in several important
respects. A key feature peculiar to glassy polymers is the nonlinear stress–strain behavior that precedes the
peak yield stress, followed by post-yield strain softening. The latter can be attributed to the evolution of
the local free volume associated with certain metastable states. Beyond this regime, polymeric solids undergo
strain rehardening, which is related to chain alignment and stretching of the entangled polymer network.
Based on the physical ideas elucidated in Boyce et al. (1988) and Wu and Van der Giessen (1993), Anand
and Gurtin (2003) developed a continuum theory for elasto-viscoplastic deformation of amorphous solids
incorporating the local free-volume as an internal variable. Their model adopts the kinematic assumption that
plastic flow is incompressible and irrotational.

Beyond the softening–rehardening yield characteristics described above, experimental studies have shown
that plastic yielding of polymers is highly pressure-sensitive (e.g. Quinson et al., 1997). Some have observed
that certain polymers exhibit modest levels of plastic dilatancy (e.g. G’Sell et al., 2002; Utz et al., 2004). Using
a non-associated flow rule, Chew et al. (2006) conducted a numerical study of microvoid interaction in pres-
sure-sensitive dilatant materials under proportional straining. They showed that increasing pressure-sensitivity
severely reduces the materials’ stress carrying capacity, while multiple void interactions were responsible for
the sharp post-peak stress drop, triggering rapid failure.

This work explores how several distinctive characteristics of polymers – strain softening followed by rehar-
dening, pressure-sensitivity and plastic dilatancy – affect void growth, void interaction and subsequent coales-
cence. Section 2 describes the constitutive model used for the polymeric matrix. The numerical procedure for
the unit cell study is detailed in Section 3. Results for the single void cell study as well as the multiple void
interaction study are presented in Section 4. In Section 5, the focus is on the effects of strain softening–rehar-
dening and pressure-sensitivity on the damage evolution ahead of a crack. A short summary in Section 6 con-
cludes this paper.

2. Modeling of a polymeric material

Polymers have complex, manifold deformation regimes. After undergoing relatively small amounts of plas-
tic flow, they exhibit an intrinsic strain softening regime, followed by rehardening as straining progresses.
Moreover, plastic yielding is pressure-dependent and plastic flow can be non-volume preserving. With these
characteristics in mind, we present a simple phenomenological model for plastic flow in glassy polymers.
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2.1. Pressure-sensitivity and dilatancy

The pressure-dependent yielding of polymers can be described by a yield criterion based on a linear com-
bination of the mean stress rm and effective stress re (Jeong et al., 1994; Chowdhury and Narasimhan, 2000).
The pressure-dependent yield criterion is given by
re þ 3arm � r̂ ¼ 0 ð2:1Þ

where r̂ the flow stress of the subsequent yield surface. The pressure-sensitivity index a is related to the dif-
ferential tensile and compressive yield stresses, as later defined in (2.6). It is also related to the friction angle
wa by tanwa = 3a. In polymeric materials, the typical friction angle wa ranges between 0� and 23�.

We assume the flow potential to take the form
U ¼ re þ 3brm ð2:2Þ
where b is the index for plastic dilatancy, which is related to the dilation angle wb by tanwb = 3b. The Druc-
ker–Prager yielding condition (2.1) together with the flow potential (2.2) can describe the pressure-sensitive
dilatant behavior of the material. The plastic part of the deformation rate dp is given by the flow rule
dp ¼ _�p oU
or

ð2:3Þ
where _�p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ep : ep

q
is the equivalent strain rate, in which ep is the deviatoric part of dp. The flow stress r̂ in

(2.1) is a function of the accumulated plastic strain �p ¼
R

_�p dt. For the case of b = a, the normals to the yield
surface (2.1) and the flow surface (2.2) in stress space coincide resulting in an associated plastic flow.

The utilization of an associated flow rule overstates the extent and role of plastic dilatancy (Subramanya
et al., 2006). A non-associated flow, with b < a, offers a more realistic description of plastic flow. In this paper
more attention is given to an associated flow rule. The behavior of polymers exhibiting low plastic dilatancy,
including vanishing dilatancy, will be taken up in a subsequent study.

2.2. Strain softening and rehardening

Glassy polymers display a true stress–strain curve exhibiting a maximum followed by a softening regime.
As deformation proceeds further, they exhibit rehardening (related to chain alignment). In order to describe
this post-yield behavior of polymers, we propose the flow stress model
r̂
r0

¼ 1þ �
p

�0

1

1þ nð�p=�0Þ2
þ �

p

g

 !
ð2:4Þ
where n dictates the maximum, also called the intrinsic yield point, and g parameterizes the softening–rehar-
dening shape of the stress–strain curve. The initial yield stress r0 (under shear) is related to the initial tensile
and compressive yield stresses rt

0 and rc
0, by
r0 ¼
ð1þ aÞrt

0 for tension

ð1� aÞrc
0 for compression

�
ð2:5Þ
The pressure-sensitivity index a in (2.1) can be determined by rt
0 and rc

0 as
a ¼ rc
0 � rt

0

rc
0 þ rt

0

: ð2:6Þ
A power-law (monotonically) hardening description of plastic flow is given by
r0

E
r̂
r0

� �1=N

� r̂
E
¼ �p ð2:7Þ
where N is the hardening exponent ranging from 0 to 1. Comparisons of model predictions based on (2.4) and
(2.7) allow us to draw on well-known results for metallic materials.



Fig. 1. Uniaxial true stress–strain relation for unvoided matrix. The intrinsic yield point and the rate of softening–rehardening are
controlled by the parametric setting of n = 1 and g = 10, 20, 40, 100. A monotonically hardening relation (power-law with N = 0.1) is
included for comparison.
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The elastic response of the polymer is assumed to be linear and isotropic, with Young’s modulus E and
Poisson’s ratio m. With this definition, the reference strain, �0, is given by r0/E.

To help our understanding of the flow stress model (2.4), we describe the uniaxial response of the matrix
(unvoided material) under the assumption of a = b = 0. Fig. 1 depicts the uniaxial stress–strain curves for sev-
eral g values with n = 1. When loaded beyond its initial yield stress r0, the material strain hardens and attains
a maximum – the intrinsic yield stress. The increase of the intrinsic yield stress over and above r0 can be
adjusted through the parameter n. As can be seen in Fig. 1, the parameter g is able to reproduce the three
phases of polymer yielding observed experimentally – initial hardening, strain softening and then rehardening
at large strains. Low g values (e.g. 10, 20, 40) simulate strain softening followed by high to moderate rehar-
dening; high g values (e.g. 100) simulate an extended strain softening regime followed by low rehardening. For
comparison, Fig. 1 also displays the stress–strain curve for a low monotonically hardening (N = 0.1) metal-
like material.

The strain softening–rehardening characteristic of polymers can induce initiation and growth of shear
bands. To illustrate this behavior, Fig. 2 contrasts the evolution of the accumulated plastic strain field �p

around an isolated void (see the axisymmetric model described in Section 3) for two polymers, g = 20, 100,
and a metal-like polymer, N = 0.1. The initial void size is given by f0 = 0.08 and stress triaxiality T = 2/3
(Rz = 4Rq); the material parameters are shown in Fig. 1 (in this work, we fix n = 1). These simulations employ
4-node quadrilateral elements.

Fig. 2a displays the propagation of multiple shear bands in the polymer with g = 20. At the early stage of
deformation Ee = 0.029, we can detect two incipient shear bands near the equator. At Ee = 0.056, a third band
forms away from the equator. At higher deformation levels, plastic deformation is localized to the three
inclined shear bands.

A similar trend is observed in Fig. 2b for the polymer described by g = 100. In this as well as in the previous
case, the major shear bands have inclined angles of about 60� from the equatorial plane. By contrast, the plas-
tic flow in a material with metal-like response (N = 0.1) is more diffused – see Fig. 2c.
2.3. Cavitation and void instability

We conclude this section with a cavitation study of a spherical cavity in a finitely deformed incompressible
solid subjected to internal pressure p and externally applied radial stress rA

r . Guo and Cheng (2003) have
shown that the radial equilibrium solution takes the form
rA
r þ p
r0

¼
Z �2

�1

Hð�Þd�
1� expð�3�=2Þ ; ð2:8Þ



Fig. 2. Spatial distribution of accumulated plastic strain �p for several levels of macro-effective strain Ee for initial porosity f0 = 0.08 and
stress triaxiality T = 2/3. (a) g = 20; (b) g = 100; (c) N = 0.1.
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where the uniaxial relationship between true stress and logarithmic strain of the material is described by
r/r0 = H(�). The lower and upper integration limits �1 and �2 in (2.8) are the two-end strains of the void, which
can be determined solely by the current and initial void volume fractions f and f0
�1 ¼
2

3
ln

f0

f
1� f
1� f0

� �
; �2 ¼

2

3
ln

1� f
1� f0

� �
: ð2:9Þ
In the pressure-insensitive case, a = b = 0, the above radial solution is valid for the constitutive relations (2.4)
and (2.7) since their elastic–plastic response can be written in the uniaxial stress–strain form r/r0 = H(�). For
an elastic–plastic power-law hardening solid: H(�) = �/�0 if j�j < �0; otherwise H(�) = (j�j/�0)Nsign(�). For an



Table 1
Critical stresses for spherically symmetric void growth

Hardening Porosity, f0 Critical stress, rc/r0

r0/E = 0.01 0.04 0.10

g = 20 0 6.93 3.67 2.54
0.001 5.10 3.18 2.33
0.01 3.34 2.61 2.03
0.05 2.31 1.99 1.62

g = 40 0 5.54 3.34 2.43
0.001 4.27 2.98 2.26
0.01 3.16 2.53 1.99
0.05 2.29 1.98 1.61

g = 100 0 4.61 3.12 2.35
0.001 3.83 2.87 2.21
0.01 3.08 2.49 1.97
0.05 2.28 1.97 1.60

N = 0.1 0 4.22 2.90 2.14
0.001 3.80 2.70 2.01
0.01 3.05 2.31 1.77
0.05 2.12 1.74 1.39
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elastic–plastic, softening–rehardening solid, H(�) = �/�0 if j�j < �0, and H(�) for j�jP �0 can be determined
from (2.4) by inserting �p = � � r/E = � � H�0.

For any non-vanishing initial porosity, the right-hand side of (2.8) has a peak value designated by rc/r0.
That is, rc ¼ maxf ðrA

r þ pÞ for a given f0. This is the critical stress for unstable void growth. In the limiting
case of f0 = 0, rc is the so-called cavitation stress (Huang et al., 1991). Using the procedure outlined in
Guo and Cheng (2003), we compute the cavitation and critical stresses for void growth in both types of solids.
The values of rc/r0 for r0/E = 0.01, 0.04, 0.1; f0 = 0, 0.001, 0.01, 0.05 are given in Table 1 for several g values
and also for N = 0.1. It can be seen that the critical stresses for porous materials, f0 = 0.001, 0.01, 0.05, are
considerably lower than those for the void free material, f0 = 0. For the case of g = 20, the cavitation stress
for the material with large yield strain, r0/E = 0.1, is only about one third of that for r0/E = 0.01. Most poly-
mers can sustain relatively large elastic strains before plastic yielding (compared to metals) and hence the cav-
itation stresses are significantly lower (Steenbrink and Van der Giessen, 1997a; Tvergaard, 1999).

3. Cell model and numerical implementation

In order to reproduce the experimentally observed failure behaviors of the dimple fracture in a low carbon
steel and void sheet formation in AISI 4320 steel, Faleskog and Shih (1997) developed a plane strain cell model
accounting for several modes of coalescence assisted by microvoid cavitation. The cell volume they employed
contains one centrally-positioned large void and a number of discrete microvoids. All voids, modeled as
cylindrical holes, are present from the very beginning of straining. Such an approach was also adopted by
Chew et al. (2006) to study the multiple void interactions in pressure-sensitive solids.

Micrographs of modified polypropylenes (PP) obtained by Kim et al. (1996) showed that larger voids, orig-
inating from cavitation in rubber modified PPs or decohesion of alumina particles in PPs, are initiation sites
for shear bands and crazes. Micrographs in G’Sell et al. (2002) revealed shear bands and crazes being formed
in the shoulder of the neck in polyethylene terephtalate test samples. Motivated by the above studies, we adopt
an axisymmetric geometry which accommodates two possible modes of void coalescence, akin to those oper-
ative in cup-cone fracture under axisymmetric tension (Tvergaard and Needleman, 1984).

3.1. Axisymmetric model

The representative material volume (RMV) consists of a periodic assemblage of hexagonal unit cells. Each
unit cell has a large spherical void of radius r0 at its center. To facilitate axisymmetric calculations, the
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hexagonal cells can be approximated as cylindrical cells, each having an initial height 2L0 and radius R0. The
initial porosity of the large spherical void is given by
a

c

Fig. 3.
of revo
f0 ¼
2

3

r3
0

R2
0L0

:

Roller boundary conditions are applied along the symmetry planes of the quarter geometry of the cell volume
to be analyzed (see example mesh in Fig. 3a). A cylindrical coordinate system with orthonormal frame
{eq,e/,ez} is adopted.

The contributions of secondary microvoids to the coalescence aspect of ductile fracture are studied via unit-
cells that contain two populations of cavities of different size-scales. Similar to the single void cell in Fig. 3a,
the larger cavity is located at the center of the cell, while the secondary microvoids are placed along the lig-
ament (Fig. 3b) and along the diagonal of the cell (Fig. 3c). These are likely locations of cooperative microvoid
b

Finite element meshes for three axisymmetric unit-cells where cylindrical coordinate system (z,q) is used, with z denoting the axis
lution, and q the radial direction: (a) single void cell; (b) unit-cell with ligament microvoids; (c) unit-cell with diagonal microvoids.
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growth resulting in the formation of crazes and shear bands which eventually link together the primary voids.
Due to axial symmetry, each microvoid forms a ring torus within the cell. The microvoids are uniformly dis-
tributed with equal void spacing on the defined plane from the larger void. The radius of each microvoid is
fixed at rm

0 ¼ 0:005L0.
In reality, unconnected cavitation sites are formed around the main cavity. Here the ring-like modeling of

the secondary microvoids can be viewed as an idealized collective description of cavitation sites around the
revolution axis of the axisymmetric geometry. A more realistic geometry, modeling discrete unconnected cav-
itation sites around the main cavity, is computationally challenging. It is a possible topic for future study.

The finite element mesh employs six-noded axisymmetric triangular elements. The computations are per-
formed within the finite strain setting using the general purpose finite element program ABAQUS Version
6.5.1 (Hibbit et al., 2005). Computations are carried out under a prescribed stress triaxiality, using the numer-
ical procedure presented in the section below.

3.2. Numerical procedure

For axisymmetric unit-cell studies, the macroscopic deformation gradient is given by
�F ¼ kqðeq � eq þ e/ � e/Þ þ kzez � ez ð3:1Þ
where kq and kz are the principal stretches in the radial and axial directions, respectively. Eq. (3.1) specifies the
macroscopic principal strains (Eq,Ez) and one effective strain measure Ee:
Eq ¼ ln kq; Ez ¼ ln kz; Ee ¼
2

3
jEz � Eqj: ð3:2Þ
The work-conjugate stresses to (Eq,Ez) are the macroscopic Cauchy principal stresses (Rq,Rz). The macroscop-
ic effective stress Re and macroscopic mean stress Rm are given by Re = jRz � Rqj and Rm ¼ 1

3
ðRz þ 2RqÞ, which

define the stress triaxiality T = Rm/Re.
On the remote surfaces of q = R0 and z = L0, we impose the respective displacements
uq ¼ ðkq � 1Þq; uz ¼ ðkz � 1Þz: ð3:3Þ
In rate forms, we have
_uq ¼ _Eqðuq þ qÞ; _uz ¼ _Ezðuz þ zÞ; ð3:4Þ
where _Eq ¼ _kq=kq and _Ez ¼ _kz=kz are the macro principal strain rates. A prescribed stress triaxiality T is
accomplished by keeping the stress ratio
u ¼ Rq=Rz ð3:5Þ
fixed during the analysis, where T = (1 + 2u)/(3(1 � u)) for axially dominant loading with Rz > Rq. This
requirement on the stress ratio can be realized in a multipoint constraint of the displacement rates on the outer
boundary.

The implementation of the above procedure is outlined in Appendix A. This procedure can also be applied
to axisymmetric cells with a curved cell boundary such as spherical cells. Its small strain version has been used
to compute the macroscopic yield surfaces for a thick spherical shell with pressure-sensitive matrices (Guo
et al., in preparation).
4. Cell-model results

The properties of the polymeric material are specified by r0/E = 0.01, m = 0.4 with the softening–reharden-
ing parameter g ranging from 10 to 100. The monotonically hardening power-law relation with N = 0.1
describes a metal-like stress–strain response. In this cell study we take R0 = L0.



Fig. 4. Typical void coalescence behaviors for a single void cell. (a) Comparing macroscopic effective stress–strain response for softening–
rehardening and monotonically hardening matrices. Active plastic zones for g = 100 in the current deformed configuration: (b) just before
coalescence; (c) just after coalescence.
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Void coalescence in porous ductile solids was studied numerically by Koplik and Needleman (1988). As a
validation study, we first check this phenomenon for both hardening laws (2.4) and (2.7) in the case of
a = b = 0. Fig. 4a shows the macroscopic effective stress Re versus effective strain Ee response for the single
void cell under constant stress triaxiality T = 2/3 for g = 100 (solid line) and N = 0.1 (dotted line). Observe
that for the metal-like material, N = 0.1, the macroscopic effective stress Re increases gradually with effective
strain Ee until a peak stress is reached. Beyond this point, Re decreases smoothly as the rate of strain hardening
is unable to compensate for the faster rate of (geometric) softening associated with void growth.

At effective strain Ee = 0.95, the sudden drop in the macroscopic effective stress indicates the onset of void
coalescence. At this point (where rapid loss of Re commences), the variation of the principal stretch in the radi-
al direction kq with the effective strain Ee ceases to decrease. This marks the sudden shift in the macroscopic
response of the cell to a uniaxial straining in the direction of the axis of symmetry. Following Koplik and Nee-
dleman (1988), the effective strain at this point is referred to as the critical effective strain Ec for the onset of
void coalescence. The polymer characterized by g = 100 exhibits a similar behavior at the onset of coalescence
even though the Re–Ee curve displays a softening–rehardening behavior.

To corroborate the onset of void coalescence, the plastic states corresponding to the open circles labeled (b) and
(c) in Fig. 4a are plotted in Fig. 4b and c, respectively. The active plastic zones, identified at the Gauss points, are
shown in the current deformed configuration. One can see that the entire cell is fully-plastic prior to coalescence,
Ee = 1.01. At a slightly larger effective strain, Ee = 1.03, the plastic deformation is localized around the ligament
while the rest of the cell undergoes elastic unloading. This behavior is typical of the onset of void coalescence.
4.1. Single void results

Fig. 5 shows the single void response of a monotonically hardening material under three stress triaxiality
levels T = 2/3, 1 and 2. Effects of pressure-sensitivity and plastic dilatancy on void coalescence are examined



Fig. 5. Single void results for a monotonically hardening matrix with initial porosity f0 = 0.01: (a) macro-effective stress–strain response
under associated plastic flow and (b) non-associated plastic flow encompassing high and low dilatancy materials.
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separately in Fig. 5a and b for the two cases: high dilatancy plastic flow a = b, and lower dilatancy plastic flow
b < a.

In Fig. 5a, curves for pressure-insensitive plastic deformation (a = b = 0) provide comparison curves for
pressure-sensitive plastic behavior, wa = wb = 10�, 20�. Observe that under a given stress triaxiality, the peak
levels of the macroscopic effective stress Re decrease proportionately with the increase of pressure-sensitivity
and dilatancy. The corresponding effective strains at coalescence (indicated by open circles) also decrease,
particularly for the lower stress triaxiality, T = 2/3. Pressure-sensitivity and plastic dilatancy lower the stress
carrying capacity of the cell, contributing to more brittle-like behavior.

In Fig. 5b, the pressure-sensitivity is fixed at wa = 20�. This value is representative of a typical polymer such
as PMMA (Quinson et al., 1997). The cases, wb = 0� and 10�, represent non-dilatant and moderately dilatant
plastic flow. To facilitate comparison, the curves for wb = 20� (associated plastic flow) are included. The effect
of plastic dilatancy on Re is small prior to reaching the peak stress level. However plastic dilatancy has some
influence on the critical effective strain for coalescence, Ec, especially at low stress triaxiality (see open circles
for T = 2/3 in Fig. 5b). Putting aside the highest stress triaxiality case (where the trend is unclear), the value of
Ec decreases with decreasing plastic dilatancy; Ec is lowest for non-dilatant plastic flow. This phenomenon
could be attributed to the competition between matrix strain hardening and porosity induced softening. It
could be argued that high plastic dilatancy of the matrix suppresses void growth thereby retarding void coa-
lescence. Relative to the comparison curves, wa = wb = 20�, low levels of plastic dilatancy leads to lower values
of Ec as well as slight reduction in the stress carrying capacity. While the results in Fig. 5b indicate that plastic
dilatancy effects are small relative to pressure-sensitivity effects, it suggests that ductility and fracture analyses
based on an associated flow (plastic dilatancy is commensurate with pressure-sensitivity) could be slightly non-
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conservative. Void growth and coalescence under low dilatancy plastic flow will be taken up in a subsequent
work. In the remaining sections, attention will be directed to associated plastic flow (b = a).

For the two stress–strain laws (2.4) and (2.7), it is of interest to compare their single void cell’s response
under several prescribed stress triaxialities. To this end, we choose g = 20 for the softening–rehardening
material and N = 0.1 for the monotonically hardening material. Fig. 6a compares the macroscopic effective
stress–strain curves for three triaxiality levels, T = 2/3, 1 and 2 (wa = wb = 0�). Related to the progressive
rehardening that follows strain softening, both Ec and the peak Re for g = 20 are significantly larger than their
counterparts for N = 0.1 (compare the open circles with triangles in Fig. 6a). For T = 1, the critical effective
strain for coalescence for g = 20 is about 3 times larger than that for N = 0.1. For both material types, Ec

decreases as the triaxiality increases.
Fig. 6b plots the evolution of void volume fraction f. It is of interest that f at the onset of coalescence,

denoted by fc, displays opposite trends for the two material types. As the stress triaxialities decrease from
T = 2 to T = 2/3, the critical f values increase slightly for the metal-like polymer, N = 0.1. By contrast the
fc values for the polymer with g = 20 decrease considerably. A closer examination of the void evolution plots
indicate that initial void growth is larger for g = 20. As the straining continues, the N = 0.1 case grows faster,
reaching coalescence earlier. The opposite trends appear to be related to the different post-yield characteristics
of the two types of materials (see Fig. 1). We’ll revisit these aspects in a subsequent section.

4.2. Microvoid-assisted void growth and coalescence

In this section, we study how microvoid cavitation along the ligament (Fig. 3b) and the diagonal (Fig. 3c) of
the cell can assist the onset of coalescence. Results for the single void cell are also included for the purpose of
comparison. The initial porosity of the primary void is set to f0 = 0.001 for all the three cells.
Fig. 6. Comparison of single void behavior for two types of stress–strain laws with wa = wb = 0� and f0 = 0.05: (a) macro-effective stress–
strain response and (b) void volume fraction vs. macro-effective strain.
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4.2.1. Monotonically hardening material

First, we direct attention to the behavior of pressure-insensitive monotonically hardening materials. Fig. 7a
shows the effect of microvoid interacting with the primary void. Under low stress triaxiality T = 1, the presence
of ligament microvoids dramatically reduces the strain levels at onset of coalescence (compared to the single
void cell). It is noteworthy that even at modest effective strain levels, the stress triaxiality near the ligament
microvoids is high enough to induce cavitation, facilitating the coalescence process. At higher strain levels,
the local stress triaxiality near the diagonal microvoids reaches levels sufficient to trigger microvoid cavitation,
which assists shear banding. Under high stress triaxiality loading, T = 2, we observe that void coalescence for
all three RMVs occur at much lower values of Ec; these values also fall within a narrower range of strains.

The simulations displayed in Fig. 7a suggest that ligament microvoids significantly accelerates the onset of
coalescence under all stress triaxiality levels. This being the more critical case, we will use the unit-cell with
ligament microvoids to study the effects of pressure-sensitivity a on the macroscopic stress–strain response
under three stress triaxialities.

Fig. 7b shows the effective stress–strain response for the multi-void cell (containing a primary void and sev-
eral ligament microvoids) under three different stress triaxiality levels and for three levels of pressure-sensitiv-
ity. Observe that an increase in pressure-sensitivity consistently lowers Re across all triaxiality levels. We
further note that a has some influence on the effective strain at the onset of coalescence, indicated by open
circles in Fig. 7b. At low triaxiality level, T = 1, an increase in a from 0� to 20� can cause a noticeable reduc-
tion in Ec; this trend is reversed under high stress triaxiality level, T = 2.

Fig. 8 displays the deformed geometries for all the three unit-cells at the onset of coalescence, corresponding
to the three cases in Fig. 7a for T = 1, with wa = 0�. In the absence of microvoids (see Fig. 8a), the cell deforms
Fig. 7. Microvoid effects on coalescence in monotonically hardening matrix with initial porosity f0 = 0.001: (a) pressure-insensitive
yielding and (b) pressure-sensitive yielding.



Fig. 8. Deformed meshes for monotonically hardening matrix, N = 0.1, near onset of coalescence: (a) single void cell; (b) multiple void cell
with ligament microvoids and (c) multiple void cell with diagonal microvoids.
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to a very large strain level, before the onset of failure via internal necking. When microvoids are present at the
ligament (see Fig. 8b), the microvoid closest to the main cavity experiences cavitation instability and grows to
several times its initial void size. The next closest microvoid then undergoes rapid void growth, which in turn
drives the cavitation of its neighboring microvoid. This synergistic void growth process causes the cell to fail at
much lower strain levels. For the cell containing diagonal microvoids (see Fig. 8c), the build up of stress tri-
axiality in the region diagonally midway between the two large voids causes the microvoids there to grow. This
in turn drives up the triaxiality level between the newly enlarged microvoid and the main cavity, causing an in-
between microvoid to cavitate. This sequence of events leads to void-by-void link-up. The above phenomena
are discussed in greater detail by Faleskog and Shih (1997).

4.2.2. Strain softening and rehardening

With respect to the present unit cell geometry and loading, it appears that ligament microvoids has a more
critical role in triggering coalescence. Hence we use the unit-cell with ligament microvoids to study the soft-
ening–rehardening effect (represented by g) on microvoid-assisted void growth and coalescence under low
stress triaxiality, T = 1.

Fig. 9a focusses attention on the pressure-insensitive case, wa = 0�. For g ranging from 10 to 100, the lig-
ament microvoid results (solid line) are plotted against the corresponding single void results (dotted line). It
can be seen that the cavitated microvoids along the ligament greatly reduces the critical strain Ec for void coa-
lescence, indicated by the open circles. The reduction is larger with increasing values of g. For g = 100, the
critical strain Ec for the multiple void cell is only about one-fifth of that for the single void cell.

Fig. 9b displays the added effect of pressure-sensitivity, wa = 0�, 10�, 20�, for g = 20, 40 and 100. A careful
study of the plots shows that pressure-sensitivity effects on ductility can be beneficial or detrimental. For poly-
mers with sufficiently high rehardening, g = 20 and 40, the critical strain Ec for coalescence increases monoton-
ically as wa increases from 0� to 20�. However, an opposite effect is observed for a low rehardening material,
g = 100. The latter behavior is similar to that seen in Fig. 7b for a low monotonically hardening solid, N = 0.1.

Fig. 10 shows the deformed meshes near the onset of coalescence for rehardening levels g = 20, 40, 100,
with wa = 0�. Void shapes for secondary microvoids are more prolate as g decreases, indicating that high
rehardening reduces void interaction effects. Void shapes for the primary voids also show a similar trend with



Fig. 9. Microvoid effects on coalescence for a softening–rehardening matrix with f0 = 0.001: (a) g = 10, 20, 40, 100; pressure-insensitive
yielding and (b) g = 20, 40, 100; pressure-sensitive yielding.
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respect to g. Fig. 10a, however, deserves a further comment. The stress–strain curve for g = 100 (see Fig. 1)
encompasses an extended softening regime followed by low rate of rehardening. A related effect is that the
primary void deforms mainly around the neighborhood of the equator. The deformed void shape resembles
to some extent the simulation by Steenbrink and Van der Giessen (1997b) (see Fig. 6 therein) using a more
elaborate constitutive model for polymers. In this regard, it is noted that void shapes for low monotonically
hardening solid, N = 0.1, are also more oblate (see Fig. 8b).

It is noteworthy that the primary void as well as the microvoids shown in both Figs. 8b and 10a (for similar
RMVs) develop oblate shapes, notwithstanding the low stress triaxiality loading. These shapes suggests that
cooperative growth and interaction between voids control the stress bearing capacity and ductility for the
cases considered in this section.

5. Void interaction ahead of a crack

To study the growth and interaction of voids ahead of a crack, the fracture process zone has been modeled by a
single row of discrete voids (Tvergaard and Hutchinson, 2002; Kim et al., 2003). This discrete model can be moti-
vated by the computational cell approach proposed by Xia and Shih (1995a,b) and Xia et al. (1995). They sim-
plified the ductile fracture process by placing a single row of void-containing elements ahead of the crack tip; this
layer of computational cells was deemed to be representative of the fracture process zone. The behavior of the
void-containing elements was governed by the constitutive laws of Gurson (1977). The computational cell
approach was recently used to model the vapor pressure assisted void growth and rupture of electronic packages
via an extended Gurson model (Cheng and Guo, 2003; Chew et al., 2005; Guo and Cheng, 2002, 2003).



Fig. 10. Deformed meshes of the unit-cell with ligament microvoids for softening–rehardening matrix near onset of coalescence: (a)
g = 100, Ee = 0.20; (b) g = 40, Ee = 0.48; and (c) g = 20, Ee = 0.65.

Fig. 11. (a) Slice of a cracked body showing periodic distribution of 3-D discrete voids ahead of the crack front. (b) Close-up view of
initial mesh and discrete voids (f0 = 0.01). A single row of 23 initially spherical voids, with spacing D, is placed ahead of the crack front.
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5.1. 3-D discrete void model

We examine the multiple void interaction and growth ahead of a Mode I crack, paying particular attention
to polymers exhibiting strain softening and rehardening (see Fig. 1). Fig. 11 displays the three-dimensional
finite element model of a slice of a cracked body. A planar array of voids is placed on the ligament of the
crack – discrete spherical voids with periodicity D by D in the X1–X3 plane,

By taking advantage of symmetry with respect to the crack plane, only the upper half of the slice needs to be
modeled. Moreover, the deformation in the specimen thickness direction is assumed to be periodically
symmetric with periodicity D. As such, only one-half of the (periodic) distance in the X3-direction is modeled.
Fig. 11a shows the upper half of the sliced body of thickness D/2. With respect to the slice being displayed,
the ligament is modeled by a single row of cubic cells whose edges are subjected to plane strain conditions –
displacement component u3 = 0 at the planes X3 = 0 and X3 = �D/2. A close-up view of the ligament
comprising cubic cells is provided in Fig. 11b.

The crack tip has a small initial root radius r0, with the distance between the crack tip and nearest void fixed
at D. Previous studies have shown the influence of r0 to be negligible should the ratio of r0/D be small. Here,
we fix r0 as 0.04D. In summary, the slice encompasses a ligament which comprises 23 discrete cubic cells each
containing a spherical void.

The unit-cell has dimensions D · D · D, and contains a discrete spherical void of initial radius R0. The ini-
tial void volume fraction is defined by f0 ¼ 4

3
pR3

0=D3. The macroscopic stress of each unit-cell is computed
from
Rij ¼
1

V

Z
V

rij dV ð5:1Þ
where rij represents the local Cauchy stress within a voided cell, and V is the cell volume in the current de-
formed configuration. The macroscopic mean stress is given by Rm = Rkk/3. The current void volume fraction
is calculated from f = Vf/V where Vf represents the current deformed void volume obtained by numerical
integration.
5.2. Small-scale yielding

The boundary layer configuration for small scale yielding is depicted in Fig. 11a. Along the remote circular
boundary of the slice, R = 4000D, we apply the asymptotic (in-plane) displacement field
u1ðR; hÞ ¼ KI
1þm

E

ffiffiffiffi
R
2p

q
ð3� 4m� cos hÞ cos h

2

u2ðR; hÞ ¼ KI
1þm

E

ffiffiffiffi
R
2p

q
ð3� 4m� cos hÞ sin h

2

ð5:2Þ
where R2 ¼ X 2
1 þ X 2

2 and h = tan�1(X2/X1) for points on the remote boundary. The mode I stress intensity fac-
tor KI is related to the J-integral by
J ¼ 1� m2

E
K2

I : ð5:3Þ
At various stages of the loading, the value of the J-integral is calculated on a number of contours around the
crack using the domain integral method (Moran and Shih, 1987). The domain integral value was found to be
in good agreement with the value given by (5.3) for the prescribed amplitude KI. This consistency check as-
sures that small-scale yielding conditions are satisfied.
5.3. Results and discussion

From dimensional considerations, the spatial distribution X1/D of the field quantities Rm/r0 and f depends
on the following dimensionless geometric-material parameters:



Fig. 12
r0/E =
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J
r0D

;
r0

E
; m; a; b; n; g ðor NÞ; f 0 ð5:4Þ
The material parameters are assigned these values: r0/E = 0.01, m = 0.4, n = 1 and b = a. Our parametric
study focusses on two values of the rehardening parameter g and two levels of pressure-sensitivity a.

Tvergaard and Hutchinson (2002) introduced a population of discrete cylindrical voids ahead of a plane
strain crack to study two mechanisms of crack initiation and growth: (i) void by void growth mechanism
and (ii) multiple void interaction-growth mechanism. The transition between these two mechanisms is primar-
ily governed by the initial void porosity. At low porosities, f0 less than about 0.001, the nearest void interacts
with the crack tip resulting in void by void advance of the tip. The second mechanism, operative for large
holes, involves the simultaneous interaction and growth of multiple voids ahead of the crack tip. The above
observations were supported by a more detailed 3-D model in which spherical voids were placed ahead of a
crack front (Kim et al., 2003). Compared to metals, modified polymers could be regarded as highly porous
solids, e.g. cavitated rubber blends, with f0 greater than about 0.01. The studies reported in this section employ
two representative initial porosities, f0 = 0.01, 0.05.

Attention is first directed to the evolving damage process zone for f0 = 0.01 with plastic flow taken to be
pressure-insensitive, a = 0. To facilitate comparisons of damage mechanism evolution in different material
types, the applied load J is monotonically increased until the near-tip void (the void adjacent to the crack)
reaches the current void volume fraction ftip = 0.2. This requirement can also be considered as the fracture
initiation criterion.

Fig. 12 shows the spatial distribution of porosity f and mean stress Rm/r0 in the damage process zone for
three materials: N = 0.1, and g = 40, 100. Multiple void interactions are observed in all three cases, encom-
. Distribution of porosity f and mean stress Rm/r0 in the damage process zone when the void closest to the tip reaches porosity 0.2;
0.01, m = 0.4, a = 0, f0 = 0.01.
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passing a zone of 7 discrete voids. While the porosity distributions for the three materials differ only slightly,
the stress distributions display larger variations. Within the damage process zone, the stress distribution for
N = 0.1 is closer to that for g = 100; beyond the process zone it is closer to that for g = 40. In connection with
the fracture initiation criterion, the critical load for g = 40 is largest, with J/(r0D) = 0.95.

Fig. 13 displays the deformed meshes associated with the critical loads in Fig. 12, for N = 0.1, and g = 40
and 100. Though the near tip porosities have identical values (ftip = 0.2), the three near-tip voids deform in
different patterns. For the g = 40 material, the deformed void shape is prolate relative to the symmetry
plane-(X1,X3). For g = 100, the deformed void shape is highly oblate. The deformed void shape for
N = 0.1 exhibits highly non-uniform distortion, though it more closely resembles that for g = 100.

A close examination of the crack tips reveals different crack tip profiles. The smoothly blunted crack tip in
Fig. 13a, for the monotonically hardening material, N = 0.1, agrees what had been widely reported in numer-
ical studies for metals. For the strain softening–rehardening solids, g = 40, 100, the profiles in Fig. 13b and c
suggest the initiation of superblunting – the early stage of circumferential cold-draw near the crack tip. This
feature could be significant since superblunting along plane strain predominant crack tip segment was exper-
imentally reported for modified polyproplene and numerically simulated using continuum damage mechanics
models (Yang et al., 1993; Guo and Yang, 1993).

The results for f0 = 0.05 are taken up next. Fig. 14 compares pressure-sensitivity effects, wa = 10�, on the
damage distribution ahead of the crack for three levels of strain rehardening: g = 20, 40, 100. The results
for wa = 0� (solid line) are included for comparison purposes. Results show that a moderate level of pres-
sure-sensitivity, wa = 10�, significantly increases the extent of the damage zone involving multiple void growth
and interaction. In this case, the process zone engulfs at least two additional voids. Also note that under the
same load of J/(r0D) = 0.35, voiding activity ahead of the crack becomes increasingly stronger as g increases.

Fig. 15 shows the deformed voids ahead of the crack tip for g = 20, 100. As could be expected, void growth
is more extensive for the g = 100 material. In particular, the voiding pattern – the enlarged size and the oblate
shape of the voids – indicates high level of void growth and interaction extending over many voids ahead of
Fig. 13. Deformed meshes when the void closest to the tip reaches porosity 0.2. (a) N = 0.1 and J/(r0D) = 0.76; (b) g = 40 and
J/(r0D) = 0.95 and (c) g = 100 and J/(r0D) = 0.55.



Fig. 14. Distribution of porosity f and mean stress Rm/r0 in the damage process zone for three softening–rehardening levels under applied
load J/(r0D) = 0.35; r0/E = 0.01, m = 0.4, f0 = 0.05.
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the crack tip. Such a multiple void interaction-growth mechanism determines the material’s fracture resis-
tance. This could also be inferred by using a void coalescence criterion based on the void reaching a critical
size (as employed in relation to Fig. 12), or coalescence criterion based on the ligament between voids being
reduced to a certain fraction of the initial void spacing as proposed by Tvergaard and Hutchinson (2002) –
compare their Fig. 6b with Fig. 15d.

Some insights into pressure-sensitivity effects on void growth patterns can be obtained from the deformed
finite element meshes in Fig. 15. Comparing Fig. 15a with Fig. 15b for g = 20, we observe no qualitative dif-
ference between the damage patterns. The same can be said between Fig. 15c and Fig. 15d for g = 100. Thus
pressure-sensitivity exert no significant effect on the deformed void pattern. This trend could be expected since
pressure-sensitivity relates to hydrostatic stress effect on void expansion, and not on shape change.
6. Concluding remarks

This paper focuses on the void growth and interaction in polymeric solids. The proposed constitutive model
captures several key characteristics of plastic flow in polymers, such as strain softening and rehardening, pres-
sure-sensitivity and plastic dilatancy. The study consists of two parts.

In the first part, we study multiple void interaction and its effect on void growth and coalescence under con-
stant stress triaxiality using a representative axisymmetric unit-cell. Our study suggests that certain aspects of
damage and failure of glassy polymers can be interpreted in terms of its post-yield characteristics – strain soft-
ening and the rate of progressive rehardening. An extended strain softening regime enhances void growth rates
with the voids becoming more oblate. Both contribute to reduced ductility (see Fig. 10a). When strain soften-



Fig. 15. Deformed meshes at J/(r0D) = 0.35 for f0 = 0.05: (a) g = 20, wa = 0�; (b) g = 20, wa = 10�; (c) g = 100, wa = 0� and (d) g = 100,
wa = 10�.

1806 L. Cheng, T.F. Guo / International Journal of Solids and Structures 44 (2007) 1787–1808
ing is followed by high rate of rehardening, the voids become more prolate. This reduces susceptibility to inter-
nal necking thereby enhancing ductility (see Fig. 10c). The effective strain at onset of coalescence is strongly
affected by pressure-sensitivity and to a lesser extent by plastic dilatancy.

In the second part, we introduce a periodic planar array of discrete spherical voids ahead of a three-dimen-
sional crack front. The small-scale yielding computational model is employed to study the softening–reharden-
ing effects on the damage distribution and the evolution of void shapes near the crack front. Our studies
indicate that the void interaction effects are greatly reduced in polymers exhibiting high rates of rehardening.
On the other hand, voids in polymers with an extended strain softening regime behave differently. The voids
become more oblate and a higher level of cooperative void growth and interaction is observed which results in
a larger damage zone. This voiding pattern suggests that multiple void growth and interaction determine the
fracture resistance of polymers. These tendencies are exacerbated by pressure sensitivity – see Figs. 14 and 15d.

Glassy polymers and polymer-rubber blends exhibit viscoplastic behavior. The phenomenological model
proposed in this work can be extended to account for viscoplasticity. This is the subject for a future study.
Such a study could facilitate direct comparison with more elaborate constitutive models by Boyce et al.
(1988), Wu and Van der Giessen (1993) and Anand and Gurtin (2003).
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Appendix A. Procedure for the multipoint constraint

The total work-rate V R : _E of the axisymmetric cell can be cast into the dot product of a pair of two dimen-
sional generalized force and displacement rate vectors (Pi) = (2VRq,VRz) and ð _QiÞ ¼ ð _Eq; _EzÞ. That is to define
P � _Q ¼ V R : _E ðA:1Þ
where V is the current cell volume. The ratio of the current to initial cell volumes is V =V 0 ¼ det �F ¼ k2
qkz. This

newly defined work-rate P � _Q appears to be invariant under rotations in the vector plane. The symmetry
group of (A.1) has a connected piece – the special orthogonal group SO(2). Let R denote this circle group,
which has the matrix representation
R ¼
cos x � sin x

sin x cos x

� �
with 0 6 x < 2p ðA:2Þ
where x is the angle of rotation.
To construct the multipoint constraint equations, it is necessary to introduce one single isolated ‘‘ghost’’

node into the finite element model. Such an extra node has the ghost degrees of freedom q1 and q2 with the
respective work-conjugate forces p1 and p2. Assume there exists work-rate equivalence between the ghost node
and the entire axisymmetric cell:
p � _q ¼ P � _Q ðA:3Þ
It follows immediately that:
p ¼ RP; _q ¼ R _Q ðA:4Þ
Hence, the work-conjugate pair ðp; _qÞ appears as an equivalent class of ðP; _QÞ. Both are linked through the
single parameter group SO(2). To uniquely determine the orthogonal rotation R, we further specify the
boundary condition on the ghost node: p1 = 0. In other words, the nodal force conjugate to q1 is set to zero.
This solves the angle of rotation
x ¼ tan�1ð2uÞ ðA:5Þ
where u is the fixed stress ratio in (3.5). The orthogonal matrix (A.2) then becomes
R ¼
1ffiffiffiffiffiffiffiffiffiffi

1þ4u2
p � 2uffiffiffiffiffiffiffiffiffiffi

1þ4u2
p

2uffiffiffiffiffiffiffiffiffiffi
1þ4u2
p 1ffiffiffiffiffiffiffiffiffiffi

1þ4u2
p

0
B@

1
CA ðA:6Þ
By the inverse transformation of (A.4)2, the deformation rates _Q can be expressed in terms of the ghost dis-
placement rates _q. In component form,
_Eq ¼
_q1 þ 2u _q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4u2
p ; _Ez ¼

�2u _q1 þ _q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4u2

p : ðA:7Þ
Substituting (A.7) into (3.4) completes the construct of the multipoint constraint equations. The ghost node is
coupled to the nodes on the outer surface of the unit cell.

Under the condition of p1 = 0, the work-rate equivalence (A.3) implies
V Rz ¼
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4u2
p ðA:8Þ
by use of (A.1) and (A.7). As a result, the macroscopic stress Rz can be computed directly from the reaction
force p2 of the ghost node.

Loading under a fixed stress ratio has been achieved by imposing the boundary condition p1 = 0 and taking
q2 to be the proportional loading parameter. This procedure was implemented into ABAQUS (Hibbit et al.,
2005) via the MPC user subroutine.
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