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Abstract

We consider the indeterminate Stieltjes moment problem associated with the Stieltjes—Wigert
polynomials. After a presentation of the well-known solutions, we study a transforniatairithe
set of solutions. All the classical solutions turn out to be fixed under this transformation but this is
not the case for the so-called canonical solutions. Based on generating functions for the Stieltjes—
Wigert polynomials, expressions for the entire functiohsB, C, and D from the Nevanlinna
parametrization are obtained. We descti$® (u) for n € Nwhenpu = pq is a particulaV-extremal
solution and explain in detail what happens wher- co.
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1. Introduction

T.J. Stieltjes was the first to give examples of indeterminate moment problems. In [18]
he pointed out that iff is an odd function satisfying (« + 1/2) = £ f (u), then

o0
/u”uilog“f(logu) du=0
0
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forall n € Z. In particular,
)
/u"uilog“ sin2r logu)du =0, neZ,
0

so independent of we have

o0 oo
1. —logu ; 1 / —1 12/4
1+ xsin(2r lo du=—— | u"u=109% gy = (1 +D7/4,
O/ﬁuu ( (2 gu))u ﬁouu u=e

In other words, foi. € [—1, 1] the densities
1
wy () = ﬁbflog“(1+ Asin(2r Iogu)), u >0,

have the same moments.
More generally, one could consider the weight function

1
wx) = «/—Ekxszlogx, x>0, (1.2)
which has the moments
o0
Sy = / x"wx)dx = e(”+1)2/4k2. (1.2)

0

Herek > 0 is a constant (ank = 1 corresponds to Stieltjes’ example). This was done by
Wigert in [20]. He succeeded in finding the orthonormal polynomi&lg corresponding
to w(x) using the general formula

SO S1 ... Sp
1 1 §2 ... Sp4l
P(x)= ——— | : : o, o n>21l, 1.3
n (X) oD | : : > (1.3)
Sp—1 Sn ... S2m—1
1 x ... x"

where(s,) denotes the moment sequence @nd= det((s; 1 j)o<i, j<») denotes the Hankel
determinant. If we sey = e~Y/2  the moment sequence (1.2) has the fasm=

g~ "+D%/2 and it is readily seen that all the determinants in (1.3) are of the Vandermonde
type. Following the notation of Gasper and Rahman [13] for basic hypergeometric series,
Wigert's expressions are

n/2+1/4 n

_ n4 n k k%+k/2_k
Py(x)=(-1)"—= [ } (=1) , 1.4
g \/(q;q)n,;) ki, I * 4

1 Note thatw(x)/x is the density of the log-normal distribution with parametér= 1/2k2 > 0.
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cf. Szegb [19] and Chihara [9], where these polynomials are called the Stieltjies—Wigert
polynomials. Wigert also considered the behaviouPpfr) whenn — oo and proved that

k2+k/2
\/ Yoo (= Z (q Dk

The convergence is uniform on compact subsetS.of
Later, Chihara [10] pointed out that the weight functioxx) satisfies the functional
equation

w(xq) = /qxw(x), x>0, (1.6)

and this observation led to the discovery of a family of discrete measures with the same
moments asv(x). The discrete version of the functional equation (1.6) is the following.
Suppose that is a discrete measure. Thes- 0 is a mass point g exactly ifcq likewise

is a mass point oft andu.({cq}) = cq./qu({c}). This property is certainly satisfied by the
measures

k

(—=1)"g "2 Py (x) — <k forn — oo. (1.5)

1 C n n+n2
_ /2
He=—— c geqn, ¢>0, 1.7
NG n;oo 1 1 .7)
where M (c) is some constant depending erand ¢, denotes the Dirac measure at the
pointx. SettingM (¢) = (—cq /9, —1/c\/q.q: ). it follows by the Jacobi triple product
identity [2, p. 497]

> (-1"g@Dx" = (x.q/x.q: @)oo, x#£0, (1.8)

n=—0oo

and the translation invariance »*°_ that eachu. has the momentﬁ—("“)z/ 2
In [5] Askey and Roy presented a symmetgieanalogue of the usual beta integral.
With ¢ andb instead of*¢ andg®—¢, their formula reads

o0
/tc_l(—at,—bq/t;q)oo PG Y T )E
(=1, =4/t @)oo (q,aq=¢,bq%; q)oo SINTTC
c>0, |al <q° |bl<q™°. (1.9)

Whena = b =0, (1.9) simplifies to

! G54 P
= - , ¢>0,
) (=1, =q/1; 9)oo (q;9)o0  SinmC
and we have

o0

c—1 c ,1—c.
/t'1 ! dt Zq—cn—(g) (q »q 5 ‘I)oo -77 _ e>0.

(=t, =4/t @) ;9o sinwce

(1.10)
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Settinge = 3/2, the right-hand side in (1.10) becomes

—n—n?/2 (513/27 ‘]71/25 q) oo _ ,(n+1)2/277(«/a§ Q)go
q ———(—7m)=¢q —
(45 9)oo (4 @)oo
so the weight function
By = 4 Do vx x>0, (1.11)

(T DL (=X, —q/%; oo’

has the momentg—"+D%/2, This observation was made by Askey in [4] and introduces a
new weight function for the polynomials (1.4).

As a basic knowledge of the theory of the moment problem we shall refer to Akhiezer
[1]. Recall that the Nevanlinna parametrization gives a one-to-one correspondence between
the set of Pick functions (includingo) and the set of solutions to an indeterminate
Hamburger moment problem. Jf, is the solution corresponding to the Pick functipn
then the Stieltjes transform of,, is given by

1 _ AWeR) ~ CW)
/ xR e = D)
R

xeC\R, (1.12)

where A, B, C, and D are certain entire functions defined in terms of the orthonormal
polynomials(P,) and(Q,,) by

AX) =x)_0a(0)0,(x),  C)=1+x)  Pu(0)Qn(x),

n=0 n=0

(e.¢] o
B)==1+x) 0uOPyx),  Dx)=x) Pi(0)Pi(x).
n=0 n=0
According to the Stielties—Perron inversion formula, the meagyrés uniquely deter-
mined by its Stieltjes transform.

The solutions corresponding to the Pick function being a real constardojoare
called N-extremal and the solutions corresponding to the Pick function being a real
rational function are called canonical. To be precise, the solutions are eatiadonical
or canonical of ordem if the Pick function is a real rational function of degree
Thus, canonical of order 0 is the same Msextremal. It is well-known that canonical
solutions are discrete. I = P/Q (assuming that? and Q are polynomials with real
coefficients and no common zeros), thenis supported on the zeros of the entire function
B(x)P(x)— D(x)Q(x). In particular, theV -extremal solutionu, is supported on the zeros
of B(x)t — D(x) (or B(x) whent = 00).

Considering a Stielties moment problem, of course not every Pick function gives rise to
a Stieltjes solution. In this connection the quantitg O defined by

_ im 2@
n—o0 Q,(0)

plays an important part. As Pedersen proved in [17], the meaguoerresponding to the
Pick functiong is supported withir[0, oco) precisely if¢ has an analytic continuation to

o (2.13)
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C\ [0, 00) such thatr < ¢(x) < 0 forx < 0. In particular, the only-extremal Stieltjes
solutions areu,; with o <t < 0. Furthermore, it is well-known that the moment problem
is determinate in the sense of Stieltjes exactly i 0.

This paper is organized as follows. In Section 2 we start by adjusting the normalization
in order to follow the normalization in Koekoek and Swarttouw [14]. Then we present
the well-known solutions to the moment problem and explain how to obtain them.
These solutions can also be found in Berg [6,7]. The functional equatiay) =
xf(x) is of great importance both in connection with absolutely continuous and discrete
solutions. A transformatior?” of the set of solutions is established and we classify
the absolutely continuous and discrete fixed points. These include all the well-known
absolutely continuous solutions and a wide class of the well-known discrete solutions.
However, some of the well-known discrete solutions are only fixed ufi¢lr A method
to construct continuous singular solutions to the moment problem concludes the section.
In Section 3 we introduce the Stieltjes—Wigert polynomials. These polynomials are
proportional to the orthonormal polynomials and converge uniformly on compact subsets
of C whenn — co. We show that the zeros of the Stieltjies—Wigert polynomials are very
well separated, that is, the ratio between two consecutive zeros is strictly greaterthan
Based on generating functions for the Stieltjes—Wigert polynomials, expressions for the
four entire functions from the Nevanlinna parametrization are obtained in terms of their
power series expansions. Concerning the canonical solutions to the moment problem an
entire function®d becomes important. The zeros®fturn out to be closely related to the
supports of certaitV -extremal and canonical solutions. However, the zer@s cdnnot be
found explicitly but sinced is proportional to the limit of the Stieltjes—Wigert polynomials
whenn — oo, these zeros are very well separated. Moreover, in the end of the section we
get as a corollary that the ratio between two consecutive zerds aftually converges
to ¢ 2. The canonical solutions are not fixed points of the transformafiatefined in
Section 2. We describE at the level of Pick functions and show tHatmaps a canonical
solution into another canonical solution. For the particdfagxtremal solutiontg we are
able to describ& ™ (ug) for eachn € N. There is a difference betweerndd and: even.

We show that the limits of @D (10) and 7?2 () exist whemm — oo and coincide
with already known solutions to the moment problem.

2. Theclassical solutions

Let us start by adjusting the normalization in order to follow the standard reference,
Koekoek and Swarttouw [14]. So insteadwofx) we consider the weight function

U(X)ZM’ x>0,

that is, explicitly we have

ql/8 1 1 0ogn?

v(x) = ——e2 Togg  x>0. (21)
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Note thatv satisfies the functional equation
v(xqg) =xv(x), x>0 (2.2)

and is the density of a probability measuwren (0, co) with the moments

o
n+1

/x"v(x) dx=q(2), (2.3)
0

Using the same procedure as Wigert in [20], we find that the orthonormal polynqjals
associated with the moment sequence (2.3) are given by

2| a" [ kK2 k
Pn =(-1 -1 , 20 2.4
(x)=(-1) @D kizo[kL( Yq¥x*, n (2.4)

We stress that
Py(x)= (_1)'1 q"(q; qQ)nSn(x; q),
wheresS;, (x; ¢) denotes the Stieltjes—Wigert polynomials given by

Sn(x;9)= 1¢1<q8n;q,—q"+lx), n >0,
(g5 @n

see Koekoek and Swarttouw [14].
The functional equation (2.2) is important due to the following observation which is
also contained in Chihara’s paper [11].

Proposition 2.1. Let f be a positive measurable function defined on the intef®@ato).
If f satisfies the functional equatigfixg) = xf(x) and

/f(x) dx =c € (0, 00),
0

then the absolutely continuous measure with dersjtyhas the momenis ('3,
Remark 2.2. The conditions in Proposition 2.1 are sufficient but not necessary.

Proof. Without loss of generality we can assume t[féf f(x)dx = 1. For if this is

not the case, one can simply replageby %f. If f satisfies the functional equation
xf(x) = f(xq), itis seen by induction thaf satisfies the functional equation

g@x" f(x) = f(xq") (2.5)
for eachn € Z and, consequently,

o]

/X"f(x)dx=q*(g)/f(xq")dx=q’(g)q’"/f(x)dx=q’(n31).
0

0 0

e ¢]

a
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So the question is whether we know of any positive and integrable functiong, o),
which satisfy the functional equation (2.2)—besided course. At this point the functions
fe given by

c—1
x>0,

fe(x) =

(=%, =q°/x: @)oo’
become relevant. They certainly satisfy the functional equation (2.2) and by the Askey—
Roy g-beta integral (1.9), we have

c(c=1) q°, qliCQ Qoo T
(q:9)oo  Sinmc’

/ fe()dx=¢q
0

Therefore, by Proposition 2.1 the absolutely continuous measurgsh densities

c1-oSiNTe (4@ xet

¢ ,1—c. _a1—cy _4C/y- ’ x>0’
T (G597 Qoo (=g X, —q°/X; @)oo

ve(x) =g¢q
(2.6)

have the moments (2.3). Sineg.1 = v, it suffices to consider, for ¢ € (0O, 1].
As Askey stated in [3] (but only for = 1), the densities.(x) appear to be certain
(normalized) accumulation points of the weight function

xO[

(=% @)oo
for the g-Laguerre polynomials when — oco. It is well known, see [14], that the
g-Laguerre polynomials given by

v @ (x) = x>0,

L(Oé)(x. )= Ll;q)” ( g, n+oz+1x) n>0
n s q) = (q;Q)n 191 qa+17('I7 q ) = U,
in a suitable way converge to the Stieltjes—Wigert polynomials whe# oo and results
on convergence at the level of orthogonality measures can be worked out as well. For the
precise statements and computations, the reader is referred to [12].

If one should be tempted to look at the graphs of the denasitesdv, for some fixed
value ofg, sayq = 1/2, the variation turns out to be surprisingly small. For a minute one
might be afraid that the measures are not different at all. However, the measures cannot
coincide because. can be considered as a meromorphic functio@ in{ig | 8 > 0} with
simple poles at-¢g“™" for n € Z, whereas can be considered as a holomorphic function
inC\ {iB | g >0}.

Let us now return to the functional equation (2.2) and supposefihand f, are two
functions satisfying this equation. J% is strictly positive, then the quotiegt= f1/f2 is
well defined and it satisfies the simple functional equation

gx)=g(xq), x>0.

So the two functions differ at the most by a factor which in a certain sense is periodic—
what we shall cally-periodic. In other words, if we know one strictly positive solution
to the functional equation (2.2), we can get all the others by multiplying ydfferiodic
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functions. Therefore, whenevegris a positive, measurable agdperiodic function such
that

8]

/ v(x)g(x)dx =c € (0, 00),
0

the absolutely continuous measure with den%ityx)g(x), x > 0, has the moments (2.3).
This is exactly Stielties’ observation in full generality—he only considered the case
g = 1/2. Since the sine function is periodic with periog 2t can be madey-periodic

by changing the argument tor20gx/logg. In order to get a positive function, just add
the constant 1 and obviously the function remains positivegapdriodic if the sine term

is multiplied by any constant between—1 and 1. It is easily verified that

o
|
/ v(x) Siﬂ(h%) dx=0
logg
0
so fori € [—1, 1], the densities
ﬁ,\(x)zv(x)(1+ksin<2nmﬂ>>, x>0, 2.7)
logg

have the same moments. Note that edglx) is a convex combination of the end points
7_1(x) andv1(x), to be precise

1+ A
500 =~ 5100 + 25100,

After this, let us turn the attention to discrete solutions to the moment problem. Suppose
that f is a strictly positive function satisfying the functional equation (2.2) and consider
for ¢ > 0 the discrete measuig supported oricqg” | n € Z} and given by

ny 1
e )= Fore

Here L(c) is a constant which ensures thatis a probability measure. Recall from (2.5)
that

q"f(cq"), nel.

flea")=q@Dc"f(o), nel,
so independent of , the measure. is given by

1 & n
_ E : )'aDe . n
Ae = L) n=7OO(CQ) q % Ecqn. (2.8)

According to the Jacobi triple product identity (1.8), we h#@ve) = (—cq, —1/¢, ¢; ¢) oo
and using the translation invariance)of™, , we see that

o

/x" dre(x) = qf(nzl).

0
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Sincei./qy = A¢, it suffices to considex. for ¢ € (¢, 1] and this perfectly agrees with the
fact that a function satisfying the functional equation (2.2) is uniquely determined by its
values on the interval, 1].
The particular solutioris is supported on the geometric progressfgf | n € Z} and
one could ask if this is the only solution supported within this special set. The answer is in
the negative, see [6], where Berg pointed out thakfef—1, 1], the measures
1

as n+1
“= m,,z,oo"( D (L+s(-1"ep (2.9)

have the same moments. To justify this, one has to realize that

s 1
> (@)q D=1 =0
n=-—00
which is a consequence of the Jacobi triple product identity (1.8). The end painénd
k1 are supported ofy?*+1 | n € Z} and{¢?" | n € Z}, respectively, and we stress that each
ks can be thought of as a convex combinatiorof andk1, to be precise
1-s 1+

7 1t

On the previous pages we have given a survey of the well-known solutions to the moment
problem. To learn even more about the structure of these solutions and to obtain further
insight, we shall now introduce a transformation of the 8eif solutions. But first some
notation. Fora > 0, let t, denote the map given by, (x) = ax and recall that the image
measure, (i) of a measurew on [0, oo) underz, is defined by

7 (1)(B) = p(a™'B)
for all Borel setsB C [0, o).

Ky = K1.

Proposition 2.3. Suppose that is a measure ofi0, co) with momentsf("ﬁl). Then the
n+1
support ofv = 7, (¢x du(x)) is contained in(0, o) andv has the momentg( 7).

Proof. The proofis straightforward. The supportiofs certainly contained ifi0, co) and

o o0 00
/x"dv(x) Z/(qx)"qxdu(x) =qn+l/x"+ldu(x) Zqi(nzl .
0 0 0

O
The above proposition gives rise to the following definition.
Definition 2.4. We denote byl : V — V the map given byl (1) = 7, (gx du(x)).

A probability measure is a fixed point ofT if and only if it satisfies the equation
T,-1(n) = gxdp(x). (2.10)
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Whenp is absolutely continuous with density, s@yx), this equation exactly corresponds
to the functional equatiorf (x¢g) = xf (x), x > 0 and whenu is a discrete measure, the
equation tells us that > 0 is a mass point oft exactly whercq likewise is a mass point
of wandu({cq}) = gcu({c}). The latter property is satisfied by the measwiem (2.8).

As a matter of fact, we can classify all the absolutely continuous and all the discrete
fixed points ofT . Whenevey is a positive, measurable apeperiodic function on0, co)
such that

o]

/ v(x)g(x)dx =1,
0

the absolutely continuous measure with density)g(x), x > 0 is a fixed point ofl’ and
every absolutely continuous fixed pointBthas this form (for some). The discrete fixed
points of 7 are precisely the countable convex combinations of the measures

So nearly all the solutions presented till now are fixed points.ofhe only exception
is the measures; in (2.9) whens # 0. For—1 < s < 1, the support ok, is the geometric
progressiorig” | n € Z} andT has at most one fixed point with this support. However, we
know thatxg = A1 is a fixed point ofT'. In general, it turns out th&ft («x;) = k_; so all the
measures; are fixed points of"@.

Itis worth while dwelling somewhat on Eg. (2.10) since this is the full generalization of
the functional equation (2.2). Suppose thas a finite measure o(D, co) which satisfies
this equation or, equivalently,

/L(qB)=q/xdu(x)
B
for all Borel setsB C (0, co). By induction, we have
n+1
-0 =q"2)x"dp(x), ne,

and this means that

f A dp() =q (%) f - (1) (x).
0 0

So if 1 is a probability measure, it surely has the moments (2.3). But furthermore, we see
that . is uniquely determined by its restrictiqn, 17 to the interval(g, 1] or any other
interval of the form(¢"*1, "] for somen € Z. For if tlg,1="v,then

n+1
Il (gn+1 gny = Tgn (q( 2 )x”dv(x))

for eachn € Z and| 2 (¢"*1, ¢"1= (0, 00).

On the other hand, suppose thds any finite measure ofy, 1]. Then there is exactly
one way to extend to a finite measurg on (0, co) such thaj satisfies Eq. (2.10). Simply
define

n+1
I/L|(qn+1!qn] = Tq” (q( 2 ).xn dv(x)), ne Z,
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that is,
n+1
wu(q"B)=q(2) /x” dv(x)
B

for all Borel setsB C (g, 1]. In this way,

Tq—l(ul(q”‘*'l,q"]) =qgx d[/Ll(qn)qn—l] (x), ne Z,
so the measurg satisfies the desired equation and it is a finite measure since

n((0.00))= 3 ¢ / X" dv(x)

=T (g.1]
<v((g, 1) (1/q Zq(g) + Zq("§1)> < o0,
n=0 n=0

Starting from a finite measuneon the intervalg, 1], we can thus construct a solution to
the moment problem by, if necessary, normalizing the extensidrhe solution obtained
from v is of the same type as So if v is a continuous singular measure, we end up with
a continuous singular solution to the moment problem.

Similar observations was made by Pakes in [15]. Using a slightly different notation, he
proved that a measugeis solution to (2.10) if and only if. has the form

W=k 3 O aveo)

whereK is some constant andis a finite measure supported within the intergal1].

3. The N-extremal solutionsand canonical solutions

The orthonormal polynomiald,) associated with the moment sequence (2.3) are given
explicitly in (2.4). Recall that the polynomial®),,) of the second kind are defined by

Pn _Pn
Qn(x)Z/M
X =y

du(y), n=0,
where 1« is any measure with the moments (= ¢—('3) in our case). Obviously,
Qo(x) =0 and whenP, (x) = >}_y ckxk, we have

n—1 n
On(x) = Z( > CkSk—m—l)xm, nzLl

m=0 \ k=m+1
Consequently, the polynomialg?,) of the second kind associated with the moment
sequence (2.3) are given by

n—1 n

o » ql’l _(m+1l n _ k (k)+(m+l)k m

0n(x) = (—1)" | — Zq(z(ZH(l)qz )x,
CHN m=0 k=m+1 k q

n>1 (3.1)




J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218-245 229

Remark 3.1. The inner sunﬁZ:mH[Z]q(—1)kq(15)+(’”+1)k is the tail in the finite version
of theg-binomial theorem [2, p. 490]

n

Z[Z} (~DrgOxk = (x: @) (3.2)
q

k=0
Therefore, we could also write this sum as

m

(4" q), ~ Z[ﬂ (— 1) g @ +Om D,
q

k=0

From time to time we shall be dealing with the Stieltjes—Wigert polynomials of the first
and second kind given by

n

1
Sn (X gt >0,
(x;9)= @ q)nZ[ L( ) n
and
§n(x;q)— q)n Zq (m+1< Z [Z} (_1)kq(§)+(m+1>k)xm
m=0 k=m+1 q
n>=1,

that iSaPn(x) = (_1)11\/ 61”(61; Q)nSiz,gx; Q) andQn(x) = (_1)11\/ CI”(Q; Q)n Sn (x5 Q)-

It is essential thafs, (x; ¢) and S, (x; ¢) converge uniformly on compact subsets of
C whenn — oo. In fact, S, (x; g) > @(x)/(q; ¢)s @and gn(x; q) = Y (x)/(q; q)co for
n — 00, where@ andy denote the entire functions

a>(x)—2( nf—— (q q)k (3.3)

and

m+ &) +m+Dk
xv(x)—Zq*( ( S opt )x'". (3.4)

k=m+1 (t] Q)k

From the general theory of orthogonal polynomials it is well known thk; ¢) hasn
simple positive zeros and that the polynomisisi(x; ¢) andS, (x; ¢) have no common
zeros. Moreover, the zeros 6f_1(x; ¢g) and S, (x; ¢) interlace, that isS,_1(x; ¢) has
exactly one zero between two consecutive zeras, ¢f; ¢).

Since the Stielties—Wigert polynomials are orthogonal with respect to the discrete
measures.. in (2.8), it follows thatS, (x; g) has at most one zero in the open interval
(cq, c¢) for eachc > 0. In other words, the zeros ofS, (x; g), say O< x,1 <+ < Xp.n,
are separated and this was mentioned by Chihara in [10]. Using the identity

Sn—1(x;9) = (1—¢")Su(x; @) + xq" Sp—1(xq: q), (3.5)
which can be verified by direct computations, Chihara proved in [11] that

Xnom < Xn—1m < 4Xn,m+1.
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So in a sense, thath zero ofS,_1(x; ¢) lies in the first part of the interval from theth
to the m 4 1)th zero ofS, (x; ¢) and we have

Xn,m+l > q_l. (3.6)
Xn,m
Referring to (3.6), we say that the zeros%f{x; ¢) are well separated. Using the identity
Sn(x; @) = (1+x¢"™) S, (xq: q) — gxSu(xq% q), (3.7)

which can also be verified by direct computations, we shall give a refinement of the
separation property (3.6). Assume thi(x; g) > O for x,, , < x < X m+1. The case
Sn(x; g¢) < 0 can be handled in a completely similar way. SiRgg, < gxn.m+1 < Xn.m+1,

this in particular means that, (gx,.m+1; ¢) > 0. The open intervalg x, ,, x».m) CONtaiNs

no zero ofS, (x; ¢) and, consequently, (x; g) < O for gx, » < x < x,.m. SUPPOSE NOW
thatqzxn,erl < Xpm- SiNCeGXym < qzx,,,erl, this results inSn(qzxn,erl; q) <0 which
clearly contradicts the identity (3.7). Therefore, we h@%ﬁn,mﬂ > Xp,m OF, equivalently,

Xnmt1 > q_z (3.8)

Xn,m

and we say that the zeros 8f(x; ¢) are very well separated.

Remark 3.2. One should not expect to find a stronger separation property than (3.8) after
looking at the zeros af2(x; ¢). For instancexs 2/x2.1 < q_3 wheng =1/2.

In some sense, to solve an indeterminate moment problem means to find the four entire
functions A, B, C, and D from the Nevanlinna parametrization. Based on generating
functions for the Stieltjes—Wigert polynomials, we shall give expressions for these
functions. The generating function f8) (x; ¢) is also stated in Koekoek and Swarttouw
[14].

Proposition 3.3. For y € C and|¢| < 1, we have

Z(V D" S (x5 q) = (ytqq)oo Z 1y LDy,

= G vt.q:9)n
~ t; o0 _(n
Z(V;q)nt”Sn(x;q)=(y_7q)Zq %)
n=0 (3 @)oo n=0
Z (kW Dk v Dk MOSIEN W
Ml Lk
In particular, withy = 0 andz = ¢ we have
00 1 qn(n-',-l)
nSn : — _1\" n’
X_:q () (4: @)oo ,;,( b @ Dn
E)+m+2)k
Sn (n+1) 1 kq n
Zq )= (g; q) ,Z kin;rl( @aox )
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and withy =t = g we have

n(n+1)

. n 4 n
nq" Sn = ’
Z(‘l D Sn (¥ 9) = Z( Vo
()+(n+2)k
n Sn - ( qi '
Z(q Dnq"Sn(x; q) = Zq <k§1( o (¢ @rt1 )x

Remark 3.4. The inner sumz,‘j‘;nﬂ(—l)"q(§)+(”+2)k/(q;q)k is the tail in Euler's
formula [2, p. 490]

o g®
Z(—l)"( o= Do (3.9)
n=0 4:9)n

So this sum can also be written as

) +n+2k
n+2 Z(_ ) q

Concerning the inner su@,fin+1(—l)kq(§)+(”+2)k/(q; ¢)k+1, We can say almost the
same.

(g5 Qxk

Proof. The point of the proof is to interchange the order of summation and use-the
binomial theorem [2, p. 488]

) @ Do _ @5 Doe g (3.10)

S CER ) LI R I
Absolute convergence assures that we can change the summation. Hence

n k2

D Wi at"Suxi )= (vi@nt" Z(—l)k%xk

n=0 ) k 5 (45 D5 @n—k

k q k ()/ Q)n M
(g; q)k =@ Dn—k

k(V i k2 k k (V‘] qn P
(g; q)k Z (@:q)n

> (=
k=0

> (=
k=0
and similarly

D W at"Su(x; 9)

n=0

n m+1)k
_Z(V @nt" Zq_(m;l)< Z (_1)kw)xm

fr o) (@5 DK(q; @In—k
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ad n ) +m+Dk
_ (m+1 : ntn _1kq— "
(g)+(in+l)k 00 .
- "3 k4 Vi Dn )\ om
Zq (k;—l( ! (CHL ;(q;Q)nfkt *
= 3 -("3h S 1k(V ‘J)k (k)+(m+1)kk (Vq q)nn o

By theg-binomial theorem (3.10), we have

i e Dn o _ 19" D)o

= (@ Dn (t; 9)oo

so it foIIows that

Z(y D" S q) = (qu)“’ Z _pp D2y

"= ¢ (vt. q; 9k
and
Z(V; q)ntns:n()ﬁ q)= M Zq—(’"‘z*'l)
n=0 (t; @)oo 0
( Z (— )k( v Dk q(’é)+(m+l)ktk)xm.
k=m+1 Y145 @k
O

The special cases from Proposition 3.3 leads to the following result.

Theorem 3.5. The four entire functiond, B, C, and D from the Nevanlinna parametriza-
tion are given by

00 ., 00 &) +nk
A :_nX_c:Jq . (kgl(_l)kq(qz; q)k>xn
e B
B z_g:)( Dng(nq)l: ' (q;);)oo i(_ )n?;(n;)l:xn’
o),
P=1 ;);)oo i(_ )C(]q(;)l)x
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Proof. From (2.4) we see that
qn
(45 9)n
and using the finite version of thebinomial theorem (3.2), we get from (3.1) that
Qn(o)z((Q§Q)n_1)Pn(o)~ (3.12)

Recalling that P,(x) = (=1)"v/q"(q; @)nSn(x; q) and Qu(x) = (=1)"/q"(g; q)n %
Sy (x; g), we thus obtain

Py (0) = (=1)" (3.11)

Dx)=xY PO Py(x)=x)_q"Sy(x:q)

n=0 n=0
0 n(n+1)

= Sy,
(@ Do L (@:q)n

B(x) =—=14x)_ Qu(Q)P,(x) =—1+x Y ((g;9)n — 1)q"Sn(x; q)
n=0 n=0
n(n+1)

Z( s WPl

nn-1)

__Z(_ )nq

x" = D(x),

C(x) =1+xZPn(0>Qn(x)=1+x2q"§n(x;q)

n=0 n=0
E)+n+2)k
1 kq n
@ Q)oog:q (anil( ) (4: @ )
(2)+(n+l)k
( ) kq n
RCE ‘I)oozq i (Z( b (@ D ) '

A(x) —xZQn(O)Qn(x)—xZ (@3 @)n — 1)g" Su(x: q)

n=0
4 ) +n+2k
=1+ -("3Y) kq x"tl_c
X—:q (an;Fl( (@ D+ "
+nk
:-Zq ("H)( Z (- 1)" (q >x"—C(x).

In the computations of andA, we have used Euler’s formula (3.9) in the last steps.
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The expressions fod and B are more complicated than the expressionsdoand D.
However, we obviously have

1
qn(n ) o

(q; Q)n

B(x) +D(x) == (-1)"
n=0

and

© n+1 q(2)+llk
AX) +Cx) ==Y ¢ () Z( Dk X",
n=0 k=n+1 CHX
The quantityx in (1.13) is explicitly given by

1 1
a= lim (3.13)
=00 (¢ @ — 1 (@3 Qoo —
sinceQ,,(0) = ((¢; 9)» — 1) P,(0), see (3.12). Due to the fact that(g; g)co < 1, thisin
particular means that < —1. Realizing that-1/a = 1 — (¢; ¢)x, Simple computations
give that

1 > q"
B(x) — —D(x)=— (=D"—x"
(24 n;() (q 9n
and
1 © % G)+n+1)k
A= ZCw ==Y ¢ (% ( > o |y
o = el (45 9k
In the light of Theorem 3.5, we have thus established the power series expansions of the
entire functions”, D, A+ C, B+ D, A— 1C, andB — 1 D. One should note that

D(x) =

~  ®(xg), B(x)+D(x) =-d(/q) and
(q:q)oo

B(x) — 1D()C) =—&(x),
o
whereas
Ax) — EC(x) ==Y (x),
o
cf. (3.3) and (3.4). In particular, we have
im ) W) AW - 5C0)  A@e — Ck)

n>00 S, (x5q)  P()  B(x) - iD(x) B()a— D)
forx e C\ [0, 00). (3.14)

We will now focus on the canonical solutions to the moment problem and especially on
the N-extremal solutions. Since a canonical solution is discrete and supported on the zeros
of an entire function, these solutions cannot be convex combinations of the measures
in (2.8). For 0 is an accumulation point of the $e4” | n € Z} and the zeros of an entire
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function cannot have an accumulation point without the function being identically zero.
Compare with [10], where Chihara made it clear that the meaguyrage notN -extremal.
Consequently, the canonical solutions are not fixed points of the transforniation
Definition 2.4.

Recall that the onlyV-extremal solutions supported withff, co) are i, whena <
t < 0. In our case, three of these solutions are leaping to the eye, namehlhen
t € {0, —1, «}. In order to find these solutions explicitly, one needs to know the zer@s of
sincepo is supported on the zeros @f(xq) (plus 0),u, is supported on the zeros &f(x)
andu_1 is supported on the zeros &f(x/q). However, the zeros ab cannot be found
explicitly.

Since the zeros o, (x; ¢) in a certain sense converge to the zero®ofve are able to
show that the zeros @b are very well separated. For eamhe N, the sequencéx, ) is
decreasing im and thus convergent, say ,, — x, for n — oco. SinceS, (x; g) converge
uniformly to @ (x)/(q; ¢)s ON compact subsets @, the limit pointsx,, are zeros of
@ and since? (0) = 1, we haver; > 0. Recalling that the zeros 6, (x; ¢) are very well
separated, the points, are surely well separated, at the worgt.1 /x,, > ¢ —2. According
to Rouché’s theorem, the pointg, are the only zeros ob. For if x,, <y < x,41, then
the closed ball with center atand radius: < min(y — x,,,, x,+1 — ¥) contains no zero of
Sy (x; q) for n sufficiently large. Due to the uniform convergence, this is also the case for
@ and, in particulary is not a zero ofp. It is easy to see from (3.7) by lettimg— oo that

D(x)=D(xq) — qx@(xqz) (3.15)

and with a similar argumentation as f8¢(x; g), it therefore follows that the zeros df
are very well separated, that is,1/x,, > q_z.

It is straightforward to see tha® is a g-analogue of the exponential function and an
entire function of order 0. The latter implies th&t B, C, and D from Theorem 3.5 also
are entire functions of order 0 since these functions are known to have the same order, see
[8].

To underline the fact thab is a very interesting and complicated function, we point out
that

% " = 5n+l 5n4+4\—1
P = - 0(‘] @ }:[ (1 i )
and
n(n—i—l) S
O(—q) = Z ( l—[ 511+2 (1_q5n+3)—1‘
=0 q;q)n

These are the famous Rogers—Ramanujan identities, cf. [2, p. 565].

We shall now make the preparations for describing the transformatiahthe level
of Pick functions. Ifu is a measure ofD, co) with moments (2.3), then the moments of
n=gqgxdu(x)are

oo (08}

/ X" dji(x) =¢ / M dp(x) =g (2, (3.16)

0 0
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The key is to look at the connection between the moment problems associated with the
moment sequences (2.3) and (3.16). Supposeithiata probability measure oD, co)
satisfying Eq. (2.10). Since has the moments (2.3), we know that

/ Py (x) Py (x) dpe(x) = 8un
0

and, equivalently,

]

f P69 Pa(29) d, (1) (¥) = Sy
0

This means that the orthonormal polynomiaf) associated with the moment sequence
(3.16) are gi\ien by, (x) = P,(xq). Moreover, the polynomial&Q,,) of the second kind
are given byQ, (x) = ¢ 0, (xq) since

o]

_B [ Puxq) — P,
/ P sy = [ FEL=IE gy
, , x—y/q

[ Pa(xq) — Pa(y)
= — - °d .
/ g —y n(y)

In this way, we see that the entire functions from the Nevanlinna parametrization for the
two moment problems are related by

A) =x)_ 0u(0)0n(x) =q%c Y 04(0)Qu(xq) = qA(xq),

n=0 n=0

B(x) =—14x)  0,(0)P,(x) =—1+qx Y 0,(0)P,(xq) = B(xq),
n=0 n=0

Co)=1+x) Pu(00,(x) =14gx ) P.(0)Qu(xq) = Clxq),

n=0 n=0

D(x)=x) PO Py(x)=x Y P(0) Pa(xq) = D(xq)/q.

n=0 n=0

On the other hand, a general result given by Pedersen in [16, Proposition 6.3] tells us that

A(x) A(x)
Bx) | _ B(x)
co [=MO e |

D(x) D(x)
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whereM (x) denotes the matrix
gx(1-D'(0)) —q(1-D'(0) —-L-1-D'0)—-q L11-D(0)+1
0 1-D'(0) 0 ~la-p)-12
xD'(0) —D'(0) —ip'(0)+1 ipo-1
1y 1y 1
. 0 ED(O) 0 —q—aD(O)+q_x
and sinceD’(0) = 1/(q; q), We have
x(¢:9)00—1) 1 _ (@)=Y (¢:9)o—D | 1
A(xq) (4 9o 1+ (qiq)oc (g3 9)oo 1 (oé(q;q))oc 1)+ o
B(xq) f— 0 1- (4;9) 0 0 - gig?‘;o)oc X
X X 1 1
ggcg @ Do _(qiq)oo “agow T 1 a(q;ql)oc - ;1
0 (@9 0 @ e T x
A(x)
B(x)
| cw
D(x)
This can also be written as
A(xq) + B(xq)
B(xq)
C(xq)+ D(xq)
D(xq)
x((¢:9)00—1) _x((¢:9)oo=1)
[CHAES 0 L a(q:q) 00 1 « )0 N A(x)
_ 1 _9:q)c—1) 1
= S 1- o= xO a(q39)o0 x g(x)
@D 0 Ta@ow T 1 0 (x)
0 _1 0 __1 1 D(x)
(¢:9) 00 a(g;q)oo ' X
or
A(xq)+ C(xq)
B(xq) + D(xq)
C(xq)
D(xq) .
x -1 —% x A(x)
0 1 0 T B(x)
= X 1 x 1 1
@D _(ql:,q)oo “a@ow T 1 oz(q:,ql)oo - ;1 gixi
X
0 @ Do 0 “a@ow T
or even

A(xq)+ B(xg) + C(xq) + D(xq)
B(xq) + D(xq)
C(xq)+ D(xq)

D(xq)
x 0 “a 0 Ax)
| o 1 0 -1 B(x)
| @os (1) “agos 1 10 S\
0 0 —sans T D(x)

(¢:9) o0
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The last expression is equivalent to

Bxq)+D(xq)\ _( 1 -1 B(x)
(" ™)=( 3 g +%>(D<x>> 547

@D (@9

and

<A(xq) + B(xq) + C(xq) + D(Xé]))
C(xq) + D(xq)
1 -1 Ax)
:x( . K 1)( ) (3.18)
@O~ a@ow T Cx)
We are now ready to describe the transformatfioat the level of Pick functions.

Theorem 3.6. Suppose that € V and lety be the Pick function corresponding to Then
v=r1,(gxdpu(x)) € V and the Pick functiony corresponding to is given by

¥ (x) (q‘;)c;_)oc (1- %) +qex/q)
X)=

T (@ Do — D(1— L2 — g (x/q)

Proof. The conclusion of Proposition 2.3 is that V. Since

]

o0 o0
1 1 t
/ dv(t) = / gt du(t) = / ' an
gx —t gx —qt x—t
0 0

0

!
:—1+x/—du(t),
X —1
0

we have to show that
Axq)y(xq) — Clxq) 1 Ax)p(x) — C(x)

Bauq)¥(xg) —D(xq)  Bog(k) - D)
and this is done by direct computations. With

£(x) = — (1—*”(x)>+go(x> and n(X)=x(1—w>,
(q; 9)oo o o

we have
AGQ¥(g) —Clrq) _ t(@)AGg) + (E() = n(x)C(xq)
B(xq)¥(xq) — D(xq) ~ ¢(x)B(xq) + (£(x) = n(x)) D(xq)
and by (3.18) and (3.17), it follows that
£ ()(A(xq) + C(xq)) — n(x)C(xq)
£(0)(B(xq) + D(xq)) — n(x)D(xq)
. £ (AM) = 2CW) = N (Gz AW + (3 — =) CO))

(¢:9) 0 a(g;9) oo
¢((x)(B(xq) + D(xq)) — n(x)D(xq)
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£ (A — 3CW) = @ (GzA® + (3 = a@2) C™))
£()(B(x) = D)) = 1) (5= B®) + (5 — 5792) D))
XQ)AX) — (x 22 4 x(1— £9))C(x)
pB@) — (%2 + (1- %2)) D(x)

AX)pkx) —Cx)
B(x)p(x) — D(x)’

=—1+x

d

Let us list some consequences of Theorem 3.6. First of all, we sed thaaps aN-
extremal solution into anothey¥-extremal solution or into a canonical solution of order 1.
In generalT maps a canonical solution of ordeinto another canonical solution of order
<n-+1.

It is straightforward to verify thaf (o) = uq and T (uy) = n—1. Actually, we can
describel’ ™ (o) for eachn € N.

Theorem 3.7. Let T : V — V denote the map given by (u) = 7,(qxdu(x)). For
n=0,1,..., we have

T@ D (o) =pg, and T (uo)=pp ,
whereR,, and ﬁ,, are real rational functions of ordeg n given by
i o(—1>"—"[2"{ K100
_ 2_ 2n—k 12
Yhoo(=D" (a5 oo P AV [ 2] g%k

Rn(x) =

and

n
>3 gl2n—k+1 e
Ry(x) = (Z(—l)n k|: ' :| q(n k)(n k+1)xk>
q

k=0

—k _ _ _
B |:2n —kk + 1} q(nk)(nk+1)>xk>_
q

Proof. The proof is by induction. Start by noting th&y(x) = « and Eo(x) = —

Suppose next that @+ () = g, for somen > 0 and let7T@*? (ug) = T (ug,) =

wy, Wherey is a certain Pick function. The real rational functiBp has the form
Sn(x)

Rn =
O = G DoTn ) — S ()

with

Sn<x)=2(—1>"k[2”k_ k} gk
q

k=0
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and

- a2 —k-1 12
Tn(x) — Z(_l)n k|: k B 1 } q(n k+1) 1xk.
k=0 q

So according to Theorem 3.6, we have

Y(x) s (1= 2542) +qRux/g)
X)=

= (@5 @)oo — D(1— BEL) — R, (x/q)
B x(Tn(x/q) — Sp(x/q)) + qSu(x/q)
X5 Doo — V(Tn(x/q) — Su(x/q)) — q Su(x/q)
_ Uy (x)
(G5 Do Va(x) — Up(x)’

where

Vi (x) = Up(x) — qSu(x/q) Zx(Tn(x/‘I) - Sn(x/Q))~

By collecting the terms, it follows that
n
2n—k—1 2
_ _1yn—k (n—k+1)%-1

Va(x) =) (=) ([ 1 } q"

k=0 q

2n—k 2
_ [ } g=h >quk+l
k q

n—1
Z 2n—k—1 2
— (_1)n—k[ k } q(n—k) —k
q

k=0

k 2n—k
o (g2 1=a"  1-gq okl
q 1—q20=b — 1_ 4208

n—1
_ Z(_l)nk+l|:2n —k— 1} g Pk kL
k=0 k q

_ Xn:(_l)n—k 2n =k k12 kerd k
k—1
k=1 g

and

n
2n—k 2 2n — k 2
Uy(x)= Z(_l)nk([ 1 Lq(nkﬂ) + |: . Lq(nk) )q”lxk

k=0

n
_ Z(_l)n—k[zn —k+ 1] g —k+D
k=0 k q
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k 2(n—k)+1
x n—2k+2 1—g¢ + —n+1 1—9¢ o+ %k
q 1_ g2+l 1_ g2—k+1

n
2n—k+1
— —n+1 -1 n—k (n—k)(n—k+1) _k
a7 "y (1) [ X } q xk
k=0 q
Hence
n—1
Un(x)
Y0 = g
q (G5 Qoo Va(x) — g Un(x)
and this means thalt(ug,) = g, - In a similar way, one can prove tha(u g ) = wr,
and this completes the proofo

= R,(x)

An interesting question is what may happen whes oo. In the light of Theorem 3.7, one
should not expect ™ (110) to converge. More likely @+ (10) and T?*+2) (110) would
converge and if so, the limit points would be fixed pointsé® and possibly fit into the
measuresg; from (2.9). Since

S0 =3 a2 ] (=t —Z( 1)'[ fj ] ¢/ 5"
q

k=0 L
and

n -

J2n—-k-1 _ 2

Tn(x) — Z(_l)n k k B 1 } q(I’l k+1) 1xk
k=0 - 9

n .
=3 v [” +i- 1} UL )
par; n—j—1],

we see that ™S, (x) — S(x) andx"T,,(x) — T (x) for n — oo, where
2

()]

(j+1)2-1
jq

T(x)—Z( Y o (1/x)7.
2j

S(x)—Z( 1’

(1/x)/ and

Seeing thaT(x) = S(x/q?), we thus find that
S(x)

Ry(x) = Roo(x) = @ DoS/ad —50) forn — oo
and similarly
Ro) > Roor) = S0 for n — oo,

9(q; Q)oeS(x/q?) — S(x)
where

S(x)—Z( 1)

qJ(J+1) )
= (1/x).
(q (I)21+1
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Since the above convergence is uniform on compact subséts ¢}, it follows that Roo
and R, are Pick functions corresponding to solutions to the moment problem. In order to
find the solutiongcr,, andu g explicitly, we need the following result containing useful

information about the supports of the measufé&s ().

Theorem 3.8. LetT : V — V denote the map given W(u) = 7,(gx du(x)). For each
n € N, the canonical solutio ™ (110) is supported on the zeros &f(x /¢"~1).

Proof. The proof is by induction. Start by noting th&i o) = u, and recall thap, is
supported on the zeros df(x). As a matter of fact, by (3.14) we have

X —1
0

D (x)
Suppose next that

W (x)

f 1 dT™ (o) (t) = ————"—
x—t D (x/q"1)
0

for some entire function?, (x) having no common zeros witth (x/¢"~1). With o =
T™ (up), we then have

[ 1 o ! [ 1

/—dT" (uo)(t)=/—dT(0)(t)=/ gt do (1)
x—t x—t x —qt

0 0 0

0

x/q—t q P(x/q")
g/ —P(x/q")
B (x/q")

Since® (x/¢"~1) andy, (x) are without common zeros, neith@i(x /¢") and

X X X
Upy1(x) = _q/n(_) - Q§<—n>
q q q

have common zeros. For i¥,.1(y) = ®(y/q") = 0 for somey > 0, then¥,(z) =
@ (z/q" 1) =0 with z = y/gq. Consequently? "+ (110) is supported on the zeros of
@ (x/q") and this proves the assertiona

SinceRs andﬁoo are meromorphic functions i@ \ {0}, the solutiongug,, andugoo are
discrete and supported on the zeros of
B(x)Roo(x) — D(x) and B(x)Reo(x) — D(x),

respectively. Being a discrete fixed pointBf? means that > 0 is a mass point of, say
w, exactly ifcg? likewise is a mass point gf andu({cg?}) = ¢3c?u({c}). Recalling that
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the zeros ofp are very well separated, Theorem 3.7 implies thatahdc’ belong to the
support ofug,, (or ug, )ande > ¢, thenc/c’ > ¢~2. Consequently, the supportsok,,
andug  have the form

{c‘q2"|nEZ} and {Eq2"|neZ}

for somec, ¢ > 0. It is a natural conclusion that there may be a connection with the
measures_1 andxj. To show that = ¢, it suffices to prove that

B(q)R(q) — D(q) =0 (3.19)
and multiplying withS(g) — (¢; ¢)0oS(1/q) # 0, it comes to prove that
0=D(q)((q: 9)oS(1/q) — S(q)) — B(q)S(q)
=q9(4°)S(1/q) — D(9)S(q) + (®(1) + D(q)) S(q)
=>(DS(9) +9®(4%)SL/g).
At this point, the identity

2 o q" "t 2 2w q"
—aq; q s ——d" = (~aq%q Tz
( )oongc:](_aq’qZ;QZ)n ( )Oor;)(—aqz,qz;qz)n
00 n
_ (3.20)
(t] ‘I)n

due to Rogers [19] becomes useful. See also [2]. With—1 anda = —1/4 in (3.20), we
get

o) =(q:9%,51/q) and @(1/q)=(q:4°)_S(q)
which means that
P(D)S(q) +q9®(q%)SQ/q) = SA/q)((4: 4%) .S @) +q® (7))
=51/q)(®(1/q) +q®(¢?)).
According to (3.15), we have
®(1/q) +qP(¢%) = P(1/q) + () — P(1) =0

and this proves (3.19). Consequenily., is supported orfg?**1 | n € Z} and being a
fixed point of 7@, it must coincide withc_1. In a similar way, we can prove that

B(1)Rs(1) — D(1) =0 (3.21)
which implies thatc = 1 andug = k1. To sum up, we have established the following
result.

Theorem 3.9. Let R and ﬁoo denote the Pick functions

Z/ o(— 1)j (q q)z (1/x)1

ql(H— )

.2 .
(@ oo 320(— 1 Bz (1/x)] = 52 o(— 1 = (/%))

Roo(x) =
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and
q](]+ )

5 Z/ o1/ (g:9)2; +1(1/x)j
Roo(x) = q/U+3 q/ U+ ’
(g q)o"zl o=/ (q 9)2j +1(1/ 07 = Z o(=1/ (q 9)2j +1(1/x)j

The measuregg,, andu g  are explicitly given by

(45490 12
M T P Y oo

n=—oo

and

(@: 4D o 2041
Hre = (4% D0 Z (e

n=—0oo

Theorem 3.9 really brings the Nevanlinna parametrization into focus. As we have seen,
finding the N -extremal solutions explicitly is out of reach and it is hardly possible to find
the Pick functions corresponding to, for instance, the solutipms (2.6). But forx_1 and
k1 we can determine the corresponding Pick function explicitly.

As a corollary, we can say somewhat about the asymptotic behaviour of the very well
separated zeros df.

Corollary 3.10.LetO < x1 < - -+ < x; < Xp+1 < - - - denote the zeros df. Wherm — oo,
we havex,,1/x, — g 2.
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