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Abstract

We consider the indeterminate Stieltjes moment problem associated with the Stieltjes–Wigert
polynomials. After a presentation of the well-known solutions, we study a transformationT of the
set of solutions. All the classical solutions turn out to be fixed under this transformation but this is
not the case for the so-called canonical solutions. Based on generating functions for the Stieltjes–
Wigert polynomials, expressions for the entire functionsA, B, C, and D from the Nevanlinna
parametrization are obtained. We describeT (n)(µ) for n ∈ N whenµ = µ0 is a particularN-extremal
solution and explain in detail what happens whenn → ∞.
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1. Introduction

T.J. Stieltjes was the first to give examples of indeterminate moment problems. In [18]
he pointed out that iff is an odd function satisfyingf (u+ 1/2)= ±f (u), then

∞∫
0

unu− loguf (logu) du= 0
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for all n ∈ Z. In particular,

∞∫
0

unu− logu sin(2π logu) du= 0, n ∈ Z,

so independent ofλ we have

∞∫
0

1√
π
unu− logu(1+ λsin(2π logu)

)
du = 1√

π

∞∫
0

unu− logu du = e(n+1)2/4.

In other words, forλ ∈ [−1,1] the densities

wλ(u) = 1√
π
u− logu(1+ λsin(2π logu)

)
, u > 0,

have the same moments.
More generally, one could consider the weight function1

w(x) = 1√
π
kx−k2 logx, x > 0, (1.1)

which has the moments

sn =
∞∫

0

xnw(x) dx = e(n+1)2/4k2
. (1.2)

Herek > 0 is a constant (andk = 1 corresponds to Stieltjes’ example). This was done by
Wigert in [20]. He succeeded in finding the orthonormal polynomials(Pn) corresponding
to w(x) using the general formula

Pn(x) = 1√
Dn−1Dn

∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1
...

...
...

sn−1 sn . . . s2n−1
1 x . . . xn

∣∣∣∣∣∣∣∣∣∣
, n � 1, (1.3)

where(sn) denotes the moment sequence andDn = det((si+j )0�i,j�n) denotes the Hankel

determinant. If we setq = e−1/2k2
, the moment sequence (1.2) has the formsn =

q−(n+1)2/2 and it is readily seen that all the determinants in (1.3) are of the Vandermonde
type. Following the notation of Gasper and Rahman [13] for basic hypergeometric series,
Wigert’s expressions are

Pn(x) = (−1)n
qn/2+1/4

√
(q;q)n

n∑
k=0

[
n

k

]
q

(−1)kqk2+k/2xk, (1.4)

1 Note thatw(x)/x is the density of the log-normal distribution with parameterσ2 = 1/2k2 > 0.
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cf. Szegö [19] and Chihara [9], where these polynomials are called the Stieltjes–Wigert
polynomials. Wigert also considered the behaviour ofPn(x) whenn → ∞ and proved that

(−1)nq−n/2Pn(x) → q1/4

√
(q;q)∞

∞∑
k=0

(−1)k
qk2+k/2

(q;q)k x
k for n → ∞. (1.5)

The convergence is uniform on compact subsets ofC.
Later, Chihara [10] pointed out that the weight functionw(x) satisfies the functional

equation

w(xq) = √
qxw(x), x > 0, (1.6)

and this observation led to the discovery of a family of discrete measures with the same
moments asw(x). The discrete version of the functional equation (1.6) is the following.
Suppose thatµ is a discrete measure. Thenc > 0 is a mass point ofµ exactly ifcq likewise
is a mass point ofµ andµ({cq})= cq

√
qµ({c}). This property is certainly satisfied by the

measures

µc = 1√
qM(c)

∞∑
n=−∞

cnqn+n2/2εcqn, c > 0, (1.7)

whereM(c) is some constant depending onc and εx denotes the Dirac measure at the
pointx. SettingM(c)= (−cq

√
q,−1/c

√
q, q;q)∞, it follows by the Jacobi triple product

identity [2, p. 497]

∞∑
n=−∞

(−1)nq(
n
2)xn = (x, q/x, q;q)∞, x �= 0, (1.8)

and the translation invariance of
∑∞

−∞ that eachµc has the momentsq−(n+1)2/2.
In [5] Askey and Roy presented a symmetricq-analogue of the usual beta integral.

With a andb instead ofqa+c andqb−c, their formula reads

∞∫
0

tc−1 (−at,−bq/t;q)∞
(−t,−q/t;q)∞ dt = (ab, qc, q1−c;q)∞

(q, aq−c, bqc;q)∞
π

sinπc
,

c > 0, |a|< qc, |b|< q−c. (1.9)

Whena = b = 0, (1.9) simplifies to

∞∫
0

tc−1

(−t,−q/t;q)∞ dt = (qc, q1−c;q)∞
(q;q)∞

π

sinπc
, c > 0,

and we have
∞∫

0

tn
tc−1

(−t,−q/t;q)∞ dt = q−cn−(n2) (q
c, q1−c;q)∞
(q;q)∞

π

sinπc
, c > 0.

(1.10)
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Settingc = 3/2, the right-hand side in (1.10) becomes

q−n−n2/2 (q
3/2, q−1/2;q)∞

(q;q)∞ (−π) = q−(n+1)2/2π(
√
q;q)2∞

(q;q)∞
so the weight function

w̃(x)= (q;q)∞
π(

√
q;q)2∞

√
x

(−x,−q/x;q)∞ , x > 0, (1.11)

has the momentsq−(n+1)2/2. This observation was made by Askey in [4] and introduces a
new weight function for the polynomials (1.4).

As a basic knowledge of the theory of the moment problem we shall refer to Akhiezer
[1]. Recall that the Nevanlinna parametrization gives a one-to-one correspondence between
the set of Pick functions (including∞) and the set of solutions to an indeterminate
Hamburger moment problem. Ifµϕ is the solution corresponding to the Pick functionϕ,
then the Stieltjes transform ofµϕ is given by∫

R

1

t − x
dµϕ(t) = −A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)
, x ∈ C \ R, (1.12)

whereA, B, C, andD are certain entire functions defined in terms of the orthonormal
polynomials(Pn) and(Qn) by

A(x)= x

∞∑
n=0

Qn(0)Qn(x), C(x) = 1+ x

∞∑
n=0

Pn(0)Qn(x),

B(x) = −1+ x

∞∑
n=0

Qn(0)Pn(x), D(x) = x

∞∑
n=0

Pn(0)Pn(x).

According to the Stieltjes–Perron inversion formula, the measureµϕ is uniquely deter-
mined by its Stieltjes transform.

The solutions corresponding to the Pick function being a real constant (or∞) are
called N -extremal and the solutions corresponding to the Pick function being a real
rational function are called canonical. To be precise, the solutions are calledn-canonical
or canonical of ordern if the Pick function is a real rational function of degreen.
Thus, canonical of order 0 is the same asN -extremal. It is well-known that canonical
solutions are discrete. Ifϕ = P/Q (assuming thatP andQ are polynomials with real
coefficients and no common zeros), thenµϕ is supported on the zeros of the entire function
B(x)P (x)−D(x)Q(x). In particular, theN -extremal solutionµt is supported on the zeros
of B(x)t −D(x) (or B(x) whent = ∞).

Considering a Stieltjes moment problem, of course not every Pick function gives rise to
a Stieltjes solution. In this connection the quantityα � 0 defined by

α = lim
n→∞

Pn(0)

Qn(0)
(1.13)

plays an important part. As Pedersen proved in [17], the measureµϕ corresponding to the
Pick functionϕ is supported within[0,∞) precisely ifϕ has an analytic continuation to



222 J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218–245

C \ [0,∞) such thatα � ϕ(x) � 0 for x < 0. In particular, the onlyN -extremal Stieltjes
solutions areµt with α � t � 0. Furthermore, it is well-known that the moment problem
is determinate in the sense of Stieltjes exactly ifα = 0.

This paper is organized as follows. In Section 2 we start by adjusting the normalization
in order to follow the normalization in Koekoek and Swarttouw [14]. Then we present
the well-known solutions to the moment problem and explain how to obtain them.
These solutions can also be found in Berg [6,7]. The functional equationf (xq) =
xf (x) is of great importance both in connection with absolutely continuous and discrete
solutions. A transformationT of the set of solutions is established and we classify
the absolutely continuous and discrete fixed points. These include all the well-known
absolutely continuous solutions and a wide class of the well-known discrete solutions.
However, some of the well-known discrete solutions are only fixed underT (2). A method
to construct continuous singular solutions to the moment problem concludes the section.
In Section 3 we introduce the Stieltjes–Wigert polynomials. These polynomials are
proportional to the orthonormal polynomials and converge uniformly on compact subsets
of C whenn → ∞. We show that the zeros of the Stieltjes–Wigert polynomials are very
well separated, that is, the ratio between two consecutive zeros is strictly greater thanq−2.
Based on generating functions for the Stieltjes–Wigert polynomials, expressions for the
four entire functions from the Nevanlinna parametrization are obtained in terms of their
power series expansions. Concerning the canonical solutions to the moment problem an
entire functionΦ becomes important. The zeros ofΦ turn out to be closely related to the
supports of certainN -extremal and canonical solutions. However, the zeros ofΦ cannot be
found explicitly but sinceΦ is proportional to the limit of the Stieltjes–Wigert polynomials
whenn → ∞, these zeros are very well separated. Moreover, in the end of the section we
get as a corollary that the ratio between two consecutive zeros ofΦ actually converges
to q−2. The canonical solutions are not fixed points of the transformationT defined in
Section 2. We describeT at the level of Pick functions and show thatT maps a canonical
solution into another canonical solution. For the particularN -extremal solutionµ0 we are
able to describeT (n)(µ0) for eachn ∈ N. There is a difference betweenn odd andn even.
We show that the limits ofT (2n+1)(µ0) andT (2n+2)(µ0) exist whenn → ∞ and coincide
with already known solutions to the moment problem.

2. The classical solutions

Let us start by adjusting the normalization in order to follow the standard reference,
Koekoek and Swarttouw [14]. So instead ofw(x) we consider the weight function

v(x) = w(x
√
q )

x
, x > 0,

that is, explicitly we have

v(x) = q1/8√
2π logq−1

1√
x
e

1
2
(logx)2

logq , x > 0. (2.1)
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Note thatv satisfies the functional equation

v(xq) = xv(x), x > 0 (2.2)

and is the density of a probability measurev on (0,∞) with the moments
∞∫

0

xnv(x) dx = q−(n+1
2 ). (2.3)

Using the same procedure as Wigert in [20], we find that the orthonormal polynomials(Pn)

associated with the moment sequence (2.3) are given by

Pn(x) = (−1)n
√

qn

(q;q)n
n∑

k=0

[
n

k

]
q

(−1)kqk2
xk, n � 0. (2.4)

We stress that

Pn(x) = (−1)n
√
qn(q;q)nSn(x;q),

whereSn(x;q) denotes the Stieltjes–Wigert polynomials given by

Sn(x;q)= 1

(q;q)n 1ϕ1

(
q−n

0
;q,−qn+1x

)
, n � 0,

see Koekoek and Swarttouw [14].
The functional equation (2.2) is important due to the following observation which is

also contained in Chihara’s paper [11].

Proposition 2.1. Let f be a positive measurable function defined on the interval(0,∞).
If f satisfies the functional equationf (xq)= xf (x) and

∞∫
0

f (x) dx = c ∈ (0,∞),

then the absolutely continuous measure with density1
c
f has the momentsq−(n+1

2 ).

Remark 2.2. The conditions in Proposition 2.1 are sufficient but not necessary.

Proof. Without loss of generality we can assume that
∫∞

0 f (x) dx = 1. For if this is
not the case, one can simply replacef by 1

c
f . If f satisfies the functional equation

xf (x) = f (xq), it is seen by induction thatf satisfies the functional equation

q(
n
2)xnf (x) = f

(
xqn

)
(2.5)

for eachn ∈ Z and, consequently,
∞∫

0

xnf (x) dx = q−(n2)
∞∫

0

f
(
xqn

)
dx = q−(n2)q−n

∞∫
0

f (x) dx = q−(n+1
2 ).

✷
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So the question is whether we know of any positive and integrable functions on(0,∞),
which satisfy the functional equation (2.2)—besidesv of course. At this point the functions
fc given by

fc(x) = xc−1

(−q1−cx,−qc/x;q)∞ , x > 0,

become relevant. They certainly satisfy the functional equation (2.2) and by the Askey–
Royq-beta integral (1.9), we have

∞∫
0

fc(x) dx = qc(c−1) (q
c, q1−c;q)∞
(q;q)∞

π

sinπc
.

Therefore, by Proposition 2.1 the absolutely continuous measuresvc with densities

vc(x) = qc(1−c) sinπc

π

(q;q)∞
(qc, q1−c;q)∞

xc−1

(−q1−cx,−qc/x;q)∞ , x > 0,

(2.6)

have the moments (2.3). Sincevc+1 = vc, it suffices to considervc for c ∈ (0,1].
As Askey stated in [3] (but only forc = 1), the densitiesvc(x) appear to be certain

(normalized) accumulation points of the weight function

v(α)(x)= xα

(−x;q)∞ , x > 0,

for the q-Laguerre polynomials whenα → ∞. It is well known, see [14], that the
q-Laguerre polynomials given by

L(α)
n (x;q)= (qα+1;q)n

(q;q)n 1ϕ1

(
q−n

qα+1;q,−qn+α+1x
)
, n � 0,

in a suitable way converge to the Stieltjes–Wigert polynomials whenα → ∞ and results
on convergence at the level of orthogonality measures can be worked out as well. For the
precise statements and computations, the reader is referred to [12].

If one should be tempted to look at the graphs of the densitiesv andvc for some fixed
value ofq , sayq = 1/2, the variation turns out to be surprisingly small. For a minute one
might be afraid that the measures are not different at all. However, the measures cannot
coincide becausevc can be considered as a meromorphic function inC \ {iβ | β � 0} with
simple poles at−qc+n for n ∈ Z, whereasv can be considered as a holomorphic function
in C \ {iβ | β � 0}.

Let us now return to the functional equation (2.2) and suppose thatf1 andf2 are two
functions satisfying this equation. Iff2 is strictly positive, then the quotientg = f1/f2 is
well defined and it satisfies the simple functional equation

g(x) = g(xq), x > 0.

So the two functions differ at the most by a factor which in a certain sense is periodic—
what we shall callq-periodic. In other words, if we know one strictly positive solution
to the functional equation (2.2), we can get all the others by multiplying withq-periodic
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functions. Therefore, wheneverg is a positive, measurable andq-periodic function such
that

∞∫
0

v(x)g(x) dx = c ∈ (0,∞),

the absolutely continuous measure with density1
c
v(x)g(x), x > 0, has the moments (2.3).

This is exactly Stieltjes’ observation in full generality—he only considered the case
q = 1/2. Since the sine function is periodic with period 2π , it can be madeq-periodic
by changing the argument to 2π logx/logq. In order to get a positive function, just add
the constant 1 and obviously the function remains positive andq-periodic if the sine term
is multiplied by any constantλ between−1 and 1. It is easily verified that

∞∫
0

v(x)sin

(
2π

logx

logq

)
dx = 0

so forλ ∈ [−1,1], the densities

ṽλ(x) = v(x)

(
1+ λsin

(
2π

logx

logq

))
, x > 0, (2.7)

have the same moments. Note that eachṽλ(x) is a convex combination of the end points
ṽ−1(x) andṽ1(x), to be precise

ṽλ(x) = 1− λ

2
ṽ−1(x)+ 1+ λ

2
ṽ1(x).

After this, let us turn the attention to discrete solutions to the moment problem. Suppose
thatf is a strictly positive function satisfying the functional equation (2.2) and consider
for c > 0 the discrete measureλc supported on{cqn | n ∈ Z} and given by

λc
({
cqn

})= 1

f (c)L(c)
qnf

(
cqn

)
, n ∈ Z.

HereL(c) is a constant which ensures thatλc is a probability measure. Recall from (2.5)
that

f
(
cqn

)= q(
n
2)cnf (c), n ∈ Z,

so independent off , the measureλc is given by

λc = 1

L(c)

∞∑
n=−∞

(cq)nq(
n
2)εcqn . (2.8)

According to the Jacobi triple product identity (1.8), we haveL(c) = (−cq,−1/c, q;q)∞
and using the translation invariance of

∑∞
−∞, we see that

∞∫
0

xn dλc(x)= q−(n+1
2 ).
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Sinceλc/q = λc, it suffices to considerλc for c ∈ (q,1] and this perfectly agrees with the
fact that a function satisfying the functional equation (2.2) is uniquely determined by its
values on the interval(q,1].

The particular solutionλ1 is supported on the geometric progression{qn | n ∈ Z} and
one could ask if this is the only solution supported within this special set. The answer is in
the negative, see [6], where Berg pointed out that fors ∈ [−1,1], the measures

κs = 1

L(1)

∞∑
n=−∞

q(
n+1

2 )
(
1+ s(−1)n

)
εqn (2.9)

have the same moments. To justify this, one has to realize that

∞∑
n=−∞

(
qn
)k
q(

n+1
2 )(−1)n = 0

which is a consequence of the Jacobi triple product identity (1.8). The end pointsκ−1 and
κ1 are supported on{q2n+1 | n ∈ Z} and{q2n | n ∈ Z}, respectively, and we stress that each
κs can be thought of as a convex combination ofκ−1 andκ1, to be precise

κs = 1− s

2
κ−1 + 1+ s

2
κ1.

On the previous pages we have given a survey of the well-known solutions to the moment
problem. To learn even more about the structure of these solutions and to obtain further
insight, we shall now introduce a transformation of the setV of solutions. But first some
notation. Fora > 0, let τa denote the map given byτa(x) = ax and recall that the image
measureτa(µ) of a measureµ on [0,∞) underτa is defined by

τa(µ)(B) = µ
(
a−1B

)
for all Borel setsB ⊂ [0,∞).

Proposition 2.3. Suppose thatµ is a measure on[0,∞) with momentsq−(n+1
2 ). Then the

support ofν = τq(qx dµ(x)) is contained in[0,∞) andν has the momentsq−(n+1
2 ).

Proof. The proof is straightforward. The support ofν is certainly contained in[0,∞) and

∞∫
0

xn dν(x) =
∞∫

0

(qx)nqx dµ(x)= qn+1

∞∫
0

xn+1dµ(x)= q−(n+1
2 ).

✷
The above proposition gives rise to the following definition.

Definition 2.4. We denote byT :V �→ V the map given byT (µ) = τq(qx dµ(x)).

A probability measureµ is a fixed point ofT if and only if it satisfies the equation

τq−1(µ) = qx dµ(x). (2.10)
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Whenµ is absolutely continuous with density, sayf (x), this equation exactly corresponds
to the functional equationf (xq) = xf (x), x > 0 and whenµ is a discrete measure, the
equation tells us thatc > 0 is a mass point ofµ exactly whencq likewise is a mass point
of µ andµ({cq})= qcµ({c}). The latter property is satisfied by the measuresλc in (2.8).

As a matter of fact, we can classify all the absolutely continuous and all the discrete
fixed points ofT . Wheneverg is a positive, measurable andq-periodic function on(0,∞)

such that
∞∫

0

v(x)g(x) dx = 1,

the absolutely continuous measure with densityv(x)g(x), x > 0 is a fixed point ofT and
every absolutely continuous fixed point ofT has this form (for someg). The discrete fixed
points ofT are precisely the countable convex combinations of the measuresλc .

So nearly all the solutions presented till now are fixed points ofT . The only exception
is the measuresκs in (2.9) whens �= 0. For−1< s < 1, the support ofκs is the geometric
progression{qn | n ∈ Z} andT has at most one fixed point with this support. However, we
know thatκ0 = λ1 is a fixed point ofT . In general, it turns out thatT (κs) = κ−s so all the
measuresκs are fixed points ofT (2).

It is worth while dwelling somewhat on Eq. (2.10) since this is the full generalization of
the functional equation (2.2). Suppose thatµ is a finite measure on(0,∞) which satisfies
this equation or, equivalently,

µ(qB) = q

∫
B

x dµ(x)

for all Borel setsB ⊂ (0,∞). By induction, we have

τq−n(µ) = q(
n+1

2 )xn dµ(x), n ∈ Z,

and this means that
∞∫

0

xn dµ(x)= q−(n+1
2 )

∞∫
0

dτq−n(µ)(x).

So if µ is a probability measure, it surely has the moments (2.3). But furthermore, we see
thatµ is uniquely determined by its restrictionµ|(q,1] to the interval(q,1] or any other
interval of the form(qn+1, qn] for somen ∈ Z. For if µ|(q,1] = ν, then

µ|(qn+1,qn] = τqn

(
q(

n+1
2 )xn dν(x)

)
for eachn ∈ Z and

⋃∞
n=−∞(qn+1, qn] = (0,∞).

On the other hand, suppose thatν is any finite measure on(q,1]. Then there is exactly
one way to extendν to a finite measureµ on(0,∞) such thatµ satisfies Eq. (2.10). Simply
define

µ|(qn+1,qn] = τqn

(
q(

n+1
2 )xn dν(x)

)
, n ∈ Z,
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that is,

µ
(
qnB

)= q(
n+1

2 )
∫
B

xn dν(x)

for all Borel setsB ⊂ (q,1]. In this way,

τq−1(µ|(qn+1,qn]) = qx dµ|(qn,qn−1](x), n ∈ Z,

so the measureµ satisfies the desired equation and it is a finite measure since

µ
(
(0,∞)

)=
∞∑

n=−∞
q(

n+1
2 )

∫
(q,1]

xn dν(x)

� ν
(
(q,1])(1/q

∞∑
n=0

q(
n
2) +

∞∑
n=0

q(
n+1

2 )

)
< ∞.

Starting from a finite measureν on the interval(q,1], we can thus construct a solution to
the moment problem by, if necessary, normalizing the extensionµ. The solution obtained
from ν is of the same type asν. So if ν is a continuous singular measure, we end up with
a continuous singular solution to the moment problem.

Similar observations was made by Pakes in [15]. Using a slightly different notation, he
proved that a measureµ is solution to (2.10) if and only ifµ has the form

µ = K

∞∑
n=−∞

τqn

(
q(

n+1
2 )xn dν(x)

)
,

whereK is some constant andν is a finite measure supported within the interval(q,1].

3. The N -extremal solutions and canonical solutions

The orthonormal polynomials(Pn) associated with the moment sequence (2.3) are given
explicitly in (2.4). Recall that the polynomials(Qn) of the second kind are defined by

Qn(x) =
∫

Pn(x)− Pn(y)

x − y
dµ(y), n � 0,

where µ is any measure with the momentssn ( = q−(n+1
2 ) in our case). Obviously,

Q0(x) = 0 and whenPn(x) =∑n
k=0 ckx

k , we have

Qn(x) =
n−1∑
m=0

(
n∑

k=m+1

cksk−m−1

)
xm, n � 1.

Consequently, the polynomials(Qn) of the second kind associated with the moment
sequence (2.3) are given by

Qn(x) = (−1)n
√

qn

(q;q)n
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k

)
xm,

n � 1. (3.1)
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Remark 3.1. The inner sum
∑n

k=m+1

[
n
k

]
q
(−1)kq(

k
2)+(m+1)k is the tail in the finite version

of theq-binomial theorem [2, p. 490]
n∑

k=0

[
n

k

]
q

(−1)kq(
k
2)xk = (x;q)n. (3.2)

Therefore, we could also write this sum as(
qm+1;q)

n
−

m∑
k=0

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k.

From time to time we shall be dealing with the Stieltjes–Wigert polynomials of the first
and second kind given by

Sn(x;q)= 1

(q;q)n
n∑

k=0

[
n

k

]
q

(−1)kqk2
xk, n � 0,

and

S̃n(x;q)= 1

(q;q)n
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k

)
xm,

n � 1,

that is,Pn(x) = (−1)n
√
qn(q;q)nSn(x;q) andQn(x)= (−1)n

√
qn(q;q)n S̃n(x;q).

It is essential thatSn(x;q) and S̃n(x;q) converge uniformly on compact subsets of
C whenn → ∞. In fact, Sn(x;q) → Φ(x)/(q;q)∞ and S̃n(x;q) → Ψ (x)/(q;q)∞ for
n → ∞, whereΦ andΨ denote the entire functions

Φ(x) =
∞∑
k=0

(−1)k
qk2

(q;q)k x
k (3.3)

and

Ψ (x) =
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k

)
xm. (3.4)

From the general theory of orthogonal polynomials it is well known thatSn(x;q) hasn
simple positive zeros and that the polynomialsSn−1(x;q) andSn(x;q) have no common
zeros. Moreover, the zeros ofSn−1(x;q) andSn(x;q) interlace, that is,Sn−1(x;q) has
exactly one zero between two consecutive zeros ofSn(x;q).

Since the Stieltjes–Wigert polynomials are orthogonal with respect to the discrete
measuresλc in (2.8), it follows thatSn(x;q) has at most one zero in the open interval
(cq, c) for eachc > 0. In other words, then zeros ofSn(x;q), say 0< xn,1 < · · · < xn,n,
are separated and this was mentioned by Chihara in [10]. Using the identity

Sn−1(x;q)= (
1− qn

)
Sn(x;q)+ xqnSn−1(xq;q), (3.5)

which can be verified by direct computations, Chihara proved in [11] that

xn,m < xn−1,m < qxn,m+1.
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So in a sense, themth zero ofSn−1(x;q) lies in the first part of the interval from themth
to the(m+ 1)th zero ofSn(x;q) and we have

xn,m+1

xn,m
> q−1. (3.6)

Referring to (3.6), we say that the zeros ofSn(x;q) are well separated. Using the identity

Sn(x;q)= (
1+ xqn+1)Sn(xq;q)− qxSn

(
xq2;q), (3.7)

which can also be verified by direct computations, we shall give a refinement of the
separation property (3.6). Assume thatSn(x;q) > 0 for xn,m < x < xn,m+1. The case
Sn(x;q)< 0 can be handled in a completely similar way. Sincexn,m < qxn,m+1 < xn,m+1,
this in particular means thatSn(qxn,m+1;q) > 0. The open interval(qxn,m, xn,m) contains
no zero ofSn(x;q) and, consequently,Sn(x;q) < 0 for qxn,m < x < xn,m. Suppose now
thatq2xn,m+1 � xn,m. Sinceqxn,m < q2xn,m+1, this results inSn(q2xn,m+1;q)� 0 which
clearly contradicts the identity (3.7). Therefore, we haveq2xn,m+1 > xn,m or, equivalently,

xn,m+1

xn,m
> q−2 (3.8)

and we say that the zeros ofSn(x;q) are very well separated.

Remark 3.2. One should not expect to find a stronger separation property than (3.8) after
looking at the zeros ofS2(x;q). For instance,x2,2/x2,1 < q−3 whenq = 1/2.

In some sense, to solve an indeterminate moment problem means to find the four entire
functionsA, B, C, andD from the Nevanlinna parametrization. Based on generating
functions for the Stieltjes–Wigert polynomials, we shall give expressions for these
functions. The generating function forSn(x;q) is also stated in Koekoek and Swarttouw
[14].

Proposition 3.3. For γ ∈ C and|t| < 1, we have

∞∑
n=0

(γ ;q)ntnSn(x;q)= (γ t;q)∞
(t;q)∞

∞∑
n=0

(−1)n
(γ ;q)n

(γ t, q;q)n q
n2
(xt)n,

∞∑
n=0

(γ ;q)ntnS̃n(x;q)= (γ t;q)∞
(t;q)∞

∞∑
n=0

q−(n+1
2 )

×
( ∞∑

k=n+1

(−1)k
(γ ;q)k

(γ t, q;q)k q
(k2)+(n+1)ktk

)
xn.

In particular, withγ = 0 andt = q we have

∞∑
n=0

qnSn(x;q)= 1

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

∞∑
n=0

qnS̃n(x;q)= 1

(q;q)∞
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k

)
xn,
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and withγ = t = q we have

∞∑
n=0

(q;q)nqnSn(x;q)=
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n+1
xn,

∞∑
n=0

(q;q)nqnS̃n(x;q)=
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k+1

)
xn.

Remark 3.4. The inner sum
∑∞

k=n+1(−1)kq(
k
2)+(n+2)k/(q;q)k is the tail in Euler’s

formula [2, p. 490]

∞∑
n=0

(−1)n
q(

n
2)

(q;q)n x
n = (x;q)∞. (3.9)

So this sum can also be written as(
qn+2;q)∞ −

n∑
k=0

(−1)k
q(

k
2)+(n+2)k

(q;q)k .

Concerning the inner sum
∑∞

k=n+1(−1)kq(
k
2)+(n+2)k/(q;q)k+1, we can say almost the

same.

Proof. The point of the proof is to interchange the order of summation and use theq-
binomial theorem [2, p. 488]

∞∑
n=0

(a;q)n
(q;q)n x

n = (ax;q)∞
(x;q)∞ , |x|< 1. (3.10)

Absolute convergence assures that we can change the summation. Hence

∞∑
n=0

(γ ;q)ntnSn(x;q)=
∞∑
n=0

(γ ;q)ntn
n∑

k=0

(−1)k
qk2

(q;q)k(q;q)n−k

xk

=
∞∑
k=0

(−1)k
qk2

(q;q)k x
k

∞∑
n=k

(γ ;q)n
(q;q)n−k

tn

=
∞∑
k=0

(−1)k
(γ ;q)k
(q;q)k q

k2
tkxk

∞∑
n=0

(γ qk;q)n
(q;q)n tn

and similarly

∞∑
n=0

(γ ;q)ntnS̃n(x;q)

=
∞∑
n=0

(γ ;q)ntn
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k(q;q)n−k

)
xm
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=
∞∑

m=0

q−(m+1
2 )

( ∞∑
n=m+1

(γ ;q)ntn
n∑

k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k(q;q)n−k

)
xm

=
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k
∞∑
n=k

(γ ;q)n
(q;q)n−k

tn

)
xm

=
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
(γ ;q)k
(q;q)k q

(k2)+(m+1)ktk
∞∑
n=0

(γ qk;q)n
(q;q)n tn

)
xm.

By theq-binomial theorem (3.10), we have
∞∑
n=0

(γ qk;q)n
(q;q)n tn = (γ tqk;q)∞

(t;q)∞
so it follows that

∞∑
n=0

(γ ;q)ntnSn(x;q)= (γ t;q)∞
(t;q)∞

∞∑
k=0

(−1)k
(γ ;q)k

(γ t, q;q)k q
k2
(xt)k

and
∞∑
n=0

(γ ;q)ntnS̃n(x;q)= (γ t;q)∞
(t;q)∞

∞∑
m=0

q−(m+1
2 )

×
( ∞∑

k=m+1

(−1)k
(γ ;q)k

(γ t, q;q)k q
(k2)+(m+1)ktk

)
xm.

✷
The special cases from Proposition 3.3 leads to the following result.

Theorem 3.5. The four entire functionsA, B, C, andD from the Nevanlinna parametriza-
tion are given by

A(x) = −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn

− 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

B(x) = −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n − x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

C(x) = 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

D(x) = x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n.



J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218–245 233

Proof. From (2.4) we see that

Pn(0) = (−1)n
√

qn

(q;q)n (3.11)

and using the finite version of theq-binomial theorem (3.2), we get from (3.1) that

Qn(0) = (
(q;q)n − 1

)
Pn(0). (3.12)

Recalling thatPn(x) = (−1)n
√
qn(q;q)nSn(x;q) and Qn(x) = (−1)n

√
qn(q;q)n ×

S̃n(x;q), we thus obtain

D(x) = x

∞∑
n=0

Pn(0)Pn(x)= x

∞∑
n=0

qnSn(x;q)

= x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

B(x) = −1+ x

∞∑
n=0

Qn(0)Pn(x) = −1+ x

∞∑
n=0

(
(q;q)n − 1

)
qnSn(x;q)

= −1−
∞∑
n=0

(−1)n+1 qn(n+1)

(q;q)n+1
xn+1 −D(x)

= −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n −D(x),

C(x) = 1+ x

∞∑
n=0

Pn(0)Qn(x) = 1+ x

∞∑
n=0

qnS̃n(x;q)

= 1+ x

(q;q)∞
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k

)
xn

= 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

A(x) = x

∞∑
n=0

Qn(0)Qn(x)= x

∞∑
n=0

(
(q;q)n − 1

)
qnS̃n(x;q)

= 1+
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k+1

)
xn+1 −C(x)

= −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn −C(x).

In the computations ofC andA, we have used Euler’s formula (3.9) in the last steps.✷
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The expressions forA andB are more complicated than the expressions forC andD.
However, we obviously have

B(x) +D(x) = −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n

and

A(x)+C(x) = −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn.

The quantityα in (1.13) is explicitly given by

α = lim
n→∞

1

(q;q)n − 1
= 1

(q;q)∞ − 1
(3.13)

sinceQn(0) = ((q;q)n − 1)Pn(0), see (3.12). Due to the fact that 0< (q;q)∞ < 1, this in
particular means thatα < −1. Realizing that−1/α = 1 − (q;q)∞, simple computations
give that

B(x) − 1

α
D(x) = −

∞∑
n=0

(−1)n
qn2

(q;q)n x
n

and

A(x)− 1

α
C(x) = −

∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn.

In the light of Theorem 3.5, we have thus established the power series expansions of the
entire functionsC, D, A+C, B +D, A − 1

α
C, andB − 1

α
D. One should note that

D(x) = x

(q;q)∞Φ(xq), B(x)+D(x) = −Φ(x/q) and

B(x) − 1

α
D(x) = −Φ(x),

whereas

A(x)− 1

α
C(x) = −Ψ (x),

cf. (3.3) and (3.4). In particular, we have

lim
n→∞

S̃n(x;q)
Sn(x;q) = Ψ (x)

Φ(x)
= A(x)− 1

α
C(x)

B(x)− 1
α
D(x)

= A(x)α −C(x)

B(x)α −D(x)

for x ∈ C \ [0,∞). (3.14)

We will now focus on the canonical solutions to the moment problem and especially on
theN -extremal solutions. Since a canonical solution is discrete and supported on the zeros
of an entire function, these solutions cannot be convex combinations of the measuresλc
in (2.8). For 0 is an accumulation point of the set{cqn | n ∈ Z} and the zeros of an entire
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function cannot have an accumulation point without the function being identically zero.
Compare with [10], where Chihara made it clear that the measuresλc are notN -extremal.
Consequently, the canonical solutions are not fixed points of the transformationT in
Definition 2.4.

Recall that the onlyN -extremal solutions supported within[0,∞) areµt whenα �
t � 0. In our case, three of these solutions are leaping to the eye, namelyµt when
t ∈ {0,−1, α}. In order to find these solutions explicitly, one needs to know the zeros ofΦ

sinceµ0 is supported on the zeros ofΦ(xq) (plus 0),µα is supported on the zeros ofΦ(x)

andµ−1 is supported on the zeros ofΦ(x/q). However, the zeros ofΦ cannot be found
explicitly.

Since the zeros ofSn(x;q) in a certain sense converge to the zeros ofΦ, we are able to
show that the zeros ofΦ are very well separated. For eachm ∈ N, the sequence(xn,m) is
decreasing inn and thus convergent, sayxn,m → xm for n → ∞. SinceSn(x;q) converge
uniformly to Φ(x)/(q;q)∞ on compact subsets ofC, the limit pointsxm are zeros of
Φ and sinceΦ(0) = 1, we havex1 > 0. Recalling that the zeros ofSn(x;q) are very well
separated, the pointsxm are surely well separated, at the worstxm+1/xm � q−2. According
to Rouché’s theorem, the pointsxm are the only zeros ofΦ. For if xm < y < xm+1, then
the closed ball with center aty and radiusr < min(y − xm,xm+1 − y) contains no zero of
Sn(x;q) for n sufficiently large. Due to the uniform convergence, this is also the case for
Φ and, in particular,y is not a zero ofΦ. It is easy to see from (3.7) by lettingn → ∞ that

Φ(x) = Φ(xq)− qxΦ
(
xq2) (3.15)

and with a similar argumentation as forSn(x;q), it therefore follows that the zeros ofΦ
are very well separated, that is,xm+1/xm > q−2.

It is straightforward to see thatΦ is a q-analogue of the exponential function and an
entire function of order 0. The latter implies thatA, B, C, andD from Theorem 3.5 also
are entire functions of order 0 since these functions are known to have the same order, see
[8].

To underline the fact thatΦ is a very interesting and complicated function, we point out
that

Φ(−1) =
∞∑
n=0

qn2

(q;q)n =
∞∏
n=0

(
1− q5n+1)−1(1− q5n+4)−1

and

Φ(−q) =
∞∑
n=0

qn(n+1)

(q;q)n =
∞∏
n=0

(
1− q5n+2)−1(

1− q5n+3)−1
.

These are the famous Rogers–Ramanujan identities, cf. [2, p. 565].
We shall now make the preparations for describing the transformationT at the level

of Pick functions. Ifµ is a measure on[0,∞) with moments (2.3), then the moments of
µ̃ = qx dµ(x) are

∞∫
0

xn dµ̃(x) = q

∞∫
0

xn+1dµ(x)= q−(n+1
2 )−n. (3.16)
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The key is to look at the connection between the moment problems associated with the
moment sequences (2.3) and (3.16). Suppose thatµ is a probability measure on(0,∞)

satisfying Eq. (2.10). Sinceµ has the moments (2.3), we know that

∞∫
0

Pm(x)Pn(x) dµ(x)= δmn

and, equivalently,

∞∫
0

Pm(xq)Pn(xq) dτq−1(µ)(x) = δmn.

This means that the orthonormal polynomials(P̃n) associated with the moment sequence
(3.16) are given bỹPn(x) = Pn(xq). Moreover, the polynomials(Q̃n) of the second kind
are given byQ̃n(x)= qQn(xq) since

∞∫
0

P̃n(x)− P̃n(y)

x − y
dτq−1(µ)(y)=

∞∫
0

Pn(xq)− Pn(y)

x − y/q
dµ(y)

= q

∞∫
0

Pn(xq)− Pn(y)

xq − y
dµ(y).

In this way, we see that the entire functions from the Nevanlinna parametrization for the
two moment problems are related by

Ã(x) = x

∞∑
n=0

Q̃n(0)Q̃n(x)= q2x

∞∑
n=0

Qn(0)Qn(xq)= qA(xq),

B̃(x) = −1+ x

∞∑
n=0

Q̃n(0)P̃n(x) = −1+ qx

∞∑
n=0

Qn(0)Pn(xq)= B(xq),

C̃(x) = 1+ x

∞∑
n=0

P̃n(0)Q̃n(x) = 1+ qx

∞∑
n=0

Pn(0)Qn(xq)= C(xq),

D̃(x)= x

∞∑
n=0

P̃n(0)P̃n(x)= x

∞∑
n=0

Pn(0)Pn(xq)= D(xq)/q.

On the other hand, a general result given by Pedersen in [16, Proposition 6.3] tells us that
Ã(x)

B̃(x)

C̃(x)

D̃(x)

= M(x)


A(x)

B(x)

C(x)

D(x)

 ,
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whereM(x) denotes the matrix
qx(1−D′(0)) −q(1−D′(0)) − qx

α
(1−D′(0))− q

q
α
(1−D′(0))+ q

x

0 1−D′(0) 0 − 1
α
(1−D′(0))− 1

x

xD′(0) −D′(0) − x
α
D′(0)+ 1 1

α
D′(0)− 1

x

0 1
q
D′(0) 0 − 1

qα
D′(0)+ 1

qx


and sinceD′(0)= 1/(q;q)∞, we have

A(xq)

B(xq)

C(xq)

D(xq)

=


x((q;q)∞−1)

(q;q)∞ −1+ 1
(q;q)∞ − x((q;q)∞−1)

α(q;q)∞ − 1 ((q;q)∞−1)
α(q;q)∞ + 1

x

0 1− 1
(q;q)∞ 0 − ((q;q)∞−1)

α(q;q)∞ − 1
x

x
(q;q)∞ − 1

(q;q)∞ − x
α(q;q)∞ + 1 1

α(q;q)∞ − 1
x

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x



×


A(x)

B(x)

C(x)

D(x)

 .

This can also be written as
A(xq)+B(xq)

B(xq)

C(xq)+D(xq)

D(xq)



=


x((q;q)∞−1)

(q;q)∞ 0 − x((q;q)∞−1)
α(q;q)∞ − 1 0

0 1− 1
(q;q)∞ 0 − ((q;q)∞−1)

α(q;q)∞ − 1
x

x
(q;q)∞ 0 − x

α(q;q)∞ + 1 0

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x




A(x)

B(x)

C(x)

D(x)


or 

A(xq)+C(xq)

B(xq)+D(xq)

C(xq)

D(xq)



=


x −1 − x

α
1
α

0 1 0 − 1
α

x
(q;q)∞ − 1

(q;q)∞ − x
α(q;q)∞ + 1 1

α(q;q)∞ − 1
x

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x




A(x)

B(x)

C(x)

D(x)


or even

A(xq)+B(xq)+C(xq)+D(xq)

B(xq)+D(xq)

C(xq)+D(xq)

D(xq)



=


x 0 − x

α
0

0 1 0 − 1
α

x
(q;q)∞ 0 − x

α(q;q)∞ + 1 0

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x




A(x)

B(x)

C(x)

D(x)

 .



238 J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218–245

The last expression is equivalent to(
B(xq)+D(xq)

D(xq)

)
=
(

1 − 1
α

1
(q;q)∞ − 1

α(q;q)∞ + 1
x

)(
B(x)

D(x)

)
(3.17)

and (
A(xq)+B(xq)+C(xq)+D(xq)

C(xq)+D(xq)

)
= x

(
1 − 1

α
1

(q;q)∞ − 1
α(q;q)∞ + 1

x

)(
A(x)

C(x)

)
. (3.18)

We are now ready to describe the transformationT at the level of Pick functions.

Theorem 3.6. Suppose thatµ ∈ V and letϕ be the Pick function corresponding toµ. Then
ν = τq(qx dµ(x)) ∈ V and the Pick functionψ corresponding toν is given by

ψ(x) =
x

(q;q)∞
(
1− ϕ(x/q)

α

)+ qϕ(x/q)

x
(q;q)∞ ((q;q)∞ − 1)

(
1− ϕ(x/q)

α

)− qϕ(x/q)
.

Proof. The conclusion of Proposition 2.3 is thatν ∈ V . Since

∞∫
0

1

qx − t
dν(t) =

∞∫
0

1

qx − qt
qt dµ(t) =

∞∫
0

t

x − t
dµ(t)

= −1+ x

∞∫
0

1

x − t
dµ(t),

we have to show that

A(xq)ψ(xq)−C(xq)

B(xq)ψ(xq)−D(xq)
= −1+ x

A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)

and this is done by direct computations. With

ζ(x) = x

(q;q)∞
(

1− ϕ(x)

α

)
+ ϕ(x) and η(x) = x

(
1− ϕ(x)

α

)
,

we have

A(xq)ψ(xq)−C(xq)

B(xq)ψ(xq)−D(xq)
= ζ(x)A(xq)+ (ζ(x)− η(x))C(xq)

ζ(x)B(xq)+ (ζ(x)− η(x))D(xq)

and by (3.18) and (3.17), it follows that

ζ(x)(A(xq)+C(xq))− η(x)C(xq)

ζ(x)(B(xq)+D(xq))− η(x)D(xq)

= −1+
ζ(x)x

(
A(x)− 1

α
C(x)

)− η(x)x
( 1
(q;q)∞A(x)+ ( 1

x
− 1

α(q;q)∞
)
C(x)

)
ζ(x)(B(xq)+D(xq))− η(x)D(xq)
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= −1+ ζ(x)x
(
A(x)− 1

α
C(x)

)− η(x)x
( 1
(q;q)∞A(x)+ ( 1

x
− 1

α(q;q)∞
)
C(x)

)
ζ(x)

(
B(x) − 1

α
D(x)

)− η(x)
( 1
(q;q)∞B(x) + ( 1

x
− 1

α(q;q)∞
)
D(x)

)
= −1+ xϕ(x)A(x)− (

x
ϕ(x)
α

+ x
(
1− ϕ(x)

α

))
C(x)

ϕ(x)B(x)− (ϕ(x)
α

+ (
1− ϕ(x)

α

))
D(x)

= −1+ x
A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)
.

✷
Let us list some consequences of Theorem 3.6. First of all, we see thatT maps aN -
extremal solution into anotherN -extremal solution or into a canonical solution of order 1.
In general,T maps a canonical solution of ordern into another canonical solution of order
� n+ 1.

It is straightforward to verify thatT (µ0) = µα andT (µα) = µ−1. Actually, we can
describeT (n)(µ0) for eachn ∈ N.

Theorem 3.7. Let T : V �→ V denote the map given byT (µ) = τq(qx dµ(x)). For
n = 0,1, . . . , we have

T (2n+1)(µ0) = µRn and T (2n+2)(µ0) = µR̃n
,

whereRn andR̃n are real rational functions of order� n given by

Rn(x) =
∑n

k=0(−1)n−k
[2n−k

k

]
q
q(n−k)2xk∑n

k=0(−1)n−k
(
(q;q)∞

[2n−k−1
k−1

]
q
q(n−k+1)2−1 − [2n−k

k

]
q
q(n−k)2

)
xk

and

R̃n(x)=
(

n∑
k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)xk

)
/(

n∑
k=0

(−1)n−k

(
(q;q)∞

[
2n− k

k − 1

]
q

q(n−k+1)(n−k+2)−1

−
[

2n− k + 1

k

]
q

q(n−k)(n−k+1)
)
xk

)
.

Proof. The proof is by induction. Start by noting thatR0(x) = α and R̃0(x) = −1.
Suppose next thatT (2n+1)(µ0) = µRn for somen > 0 and letT (2n+2)(µ0) = T (µRn) =
µψ , whereψ is a certain Pick function. The real rational functionRn has the form

Rn(x) = Sn(x)

(q;q)∞Tn(x)− Sn(x)

with

Sn(x) =
n∑

k=0

(−1)n−k

[
2n− k

k

]
q

q(n−k)2xk
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and

Tn(x)=
n∑

k=0

(−1)n−k

[
2n− k − 1

k − 1

]
q

q(n−k+1)2−1xk.

So according to Theorem 3.6, we have

ψ(x) =
x

(q;q)∞
(
1− Rn(x/q)

α

)+ qRn(x/q)

x
(q;q)∞ ((q;q)∞ − 1)

(
1− Rn(x/q)

α

)− qRn(x/q)

= x(Tn(x/q)− Sn(x/q))+ qSn(x/q)

x((q;q)∞ − 1)(Tn(x/q)− Sn(x/q))− qSn(x/q)

= Un(x)

(q;q)∞Vn(x)−Un(x)
,

where

Vn(x) = Un(x)− qSn(x/q)= x
(
Tn(x/q)− Sn(x/q)

)
.

By collecting the terms, it follows that

Vn(x)=
n∑

k=0

(−1)n−k

([
2n− k − 1

k − 1

]
q

q(n−k+1)2−1

−
[

2n− k

k

]
q

q(n−k)2
)
q−kxk+1

=
n−1∑
k=0

(−1)n−k

[
2n− k − 1

k

]
q

q(n−k)2−k

×
(
q2(n−k) 1− qk

1− q2(n−k)
− 1− q2n−k

1− q2(n−k)

)
xk+1

=
n−1∑
k=0

(−1)n−k+1
[

2n− k − 1

k

]
q

q(n−k)2−kxk+1

=
n∑

k=1

(−1)n−k

[
2n− k

k − 1

]
q

q(n−k+1)2−k+1xk

and

Un(x)=
n∑

k=0

(−1)n−k

([
2n− k

k − 1

]
q

q(n−k+1)2 +
[

2n− k

k

]
q

q(n−k)2
)
q−k+1xk

=
n∑

k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)
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×
(
qn−2k+2 1− qk

1− q2n−k+1 + q−n+1 1− q2(n−k)+1

1− q2n−k+1

)
xk

= q−n+1
n∑

k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)xk.

Hence

ψ(x) = qn−1Un(x)

qn−1(q;q)∞Vn(x)− qn−1Un(x)
= R̃n(x)

and this means thatT (µRn) = µR̃n
. In a similar way, one can prove thatT (µR̃n

) = µRn+1

and this completes the proof.✷
An interesting question is what may happen whenn → ∞. In the light of Theorem 3.7, one
should not expectT (n)(µ0) to converge. More likelyT (2n+1)(µ0) andT (2n+2)(µ0) would
converge and if so, the limit points would be fixed points ofT (2) and possibly fit into the
measuresκs from (2.9). Since

Sn(x) =
n∑

k=0

(−1)n−k

[
2n− k

k

]
q

q(n−k)2xk =
n∑

j=0

(−1)j
[
n + j

n − j

]
q

qj2
xn−j

and

Tn(x)=
n∑

k=0

(−1)n−k

[
2n− k − 1

k − 1

]
q

q(n−k+1)2−1xk

=
n∑

j=0

(−1)j
[
n+ j − 1

n− j − 1

]
q

q(j+1)2−1xn−j ,

we see thatx−nSn(x)→ S(x) andx−nTn(x) → T (x) for n → ∞, where

S(x) =
∞∑
j=0

(−1)j
qj2

(q;q)2j (1/x)
j and

T (x) =
∞∑
j=0

(−1)j
q(j+1)2−1

(q;q)2j (1/x)j .

Seeing thatT (x) = S(x/q2), we thus find that

Rn(x) → R∞(x) = S(x)

(q;q)∞S(x/q2)− S(x)
for n → ∞

and similarly

R̃n(x) → R̃∞(x) = S̃(x)

q(q;q)∞S̃(x/q2)− S̃(x)
for n → ∞,

where

S̃(x)=
∞∑
j=0

(−1)j
qj (j+1)

(q;q)2j+1
(1/x)j .
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Since the above convergence is uniform on compact subsets ofC \ {0}, it follows thatR∞
andR̃∞ are Pick functions corresponding to solutions to the moment problem. In order to
find the solutionsµR∞ andµR̃∞ explicitly, we need the following result containing useful
information about the supports of the measuresT (n)(µ0).

Theorem 3.8. Let T : V �→ V denote the map given byT (µ) = τq(qx dµ(x)). For each
n ∈ N, the canonical solutionT (n)(µ0) is supported on the zeros ofΦ(x/qn−1).

Proof. The proof is by induction. Start by noting thatT (µ0) = µα and recall thatµα is
supported on the zeros ofΦ(x). As a matter of fact, by (3.14) we have

∞∫
0

1

x − t
dµα(t) = Ψ (x)

Φ(x)
.

Suppose next that
∞∫

0

1

x − t
dT (n)(µ0)(t) = Ψn(x)

Φ(x/qn−1)

for some entire functionΨn(x) having no common zeros withΦ(x/qn−1). With σ =
T (n)(µ0), we then have

∞∫
0

1

x − t
dT (n+1)(µ0)(t) =

∞∫
0

1

x − t
dT (σ )(t) =

∞∫
0

1

x − qt
qt dσ (t)

= −1+ x

q

∞∫
0

1

x/q − t
dσ (t) = −1+ x

q

Ψn(x/q)

Φ(x/qn)

=
x
q
Ψn(x/q)−Φ(x/qn)

Φ(x/qn)
.

SinceΦ(x/qn−1) andΨn(x) are without common zeros, neitherΦ(x/qn) and

Ψn+1(x) = x

q
Ψn

(
x

q

)
−Φ

(
x

qn

)
have common zeros. For ifΨn+1(y) = Φ(y/qn) = 0 for somey > 0, thenΨn(z) =
Φ(z/qn−1) = 0 with z = y/q . Consequently,T (n+1)(µ0) is supported on the zeros of
Φ(x/qn) and this proves the assertion.✷
SinceR∞ andR̃∞ are meromorphic functions inC \ {0}, the solutionsµR∞ andµR̃∞ are
discrete and supported on the zeros of

B(x)R∞(x)−D(x) and B(x)R̃∞(x)−D(x),

respectively. Being a discrete fixed point ofT (2) means thatc > 0 is a mass point of, say
µ, exactly ifcq2 likewise is a mass point ofµ andµ({cq2}) = q3c2µ({c}). Recalling that
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the zeros ofΦ are very well separated, Theorem 3.7 implies that ifc andc′ belong to the
support ofµR∞ (or µR̃∞ ) andc > c′, thenc/c′ � q−2. Consequently, the supports ofµR∞
andµR̃∞ have the form{

cq2n | n ∈ Z
}

and
{
c̃q2n | n ∈ Z

}
for somec, c̃ > 0. It is a natural conclusion that there may be a connection with the
measuresκ−1 andκ1. To show thatc = q , it suffices to prove that

B(q)R∞(q)−D(q) = 0 (3.19)

and multiplying withS(q)− (q;q)∞S(1/q) �= 0, it comes to prove that

0= D(q)
(
(q;q)∞S(1/q)− S(q)

)−B(q)S(q)

= qΦ
(
q2)S(1/q)−D(q)S(q)+ (

Φ(1)+D(q)
)
S(q)

= Φ(1)S(q)+ qΦ
(
q2)S(1/q).

At this point, the identity

(−aq;q2)
∞

∞∑
n=0

qn(n+1)

(−aq, q2;q2)n
an = (−aq2;q2)

∞
∞∑
n=0

qn2

(−aq2, q2;q2)n
an

=
∞∑
n=0

qn2

(q;q)n a
n (3.20)

due to Rogers [19] becomes useful. See also [2]. Witha = −1 anda = −1/q in (3.20), we
get

Φ(1) = (
q;q2)

∞S(1/q) and Φ(1/q) = (
q;q2)

∞S(q)

which means that

Φ(1)S(q)+ qΦ
(
q2)S(1/q)= S(1/q)

((
q;q2)

∞S(q)+ qΦ
(
q2))

= S(1/q)
(
Φ(1/q)+ qΦ

(
q2)).

According to (3.15), we have

Φ(1/q)+ qΦ
(
q2)= Φ(1/q)+Φ(q)−Φ(1) = 0

and this proves (3.19). Consequently,µR∞ is supported on{q2n+1 | n ∈ Z} and being a
fixed point ofT (2), it must coincide withκ−1. In a similar way, we can prove that

B(1)R̃∞(1)−D(1) = 0 (3.21)

which implies thatc̃ = 1 andµR̃∞ = κ1. To sum up, we have established the following
result.

Theorem 3.9. LetR∞ andR̃∞ denote the Pick functions

R∞(x) =
∑∞

j=0(−1)j qj2

(q;q)2j (1/x)
j

(q;q)∞∑∞
j=0(−1)j qj(j+2)

(q;q)2j (1/x)
j −∑∞

j=0(−1)j qj2

(q;q)2j (1/x)
j
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and

R̃∞(x) =
∑∞

j=0(−1)j qj(j+1)

(q;q)2j+1
(1/x)j

q(q;q)∞∑∞
j=0(−1)j qj(j+3)

(q;q)2j+1
(1/x)j −∑∞

j=0(−1)j qj(j+1)

(q;q)2j+1
(1/x)j

.

The measuresµR∞ andµR̃∞ are explicitly given by

µR∞ = (q;q2)∞
(q2;q2)∞

∞∑
n=−∞

q(
2n+2

2 )εq2n+1

and

µR̃∞ = (q;q2)∞
(q2;q2)∞

∞∑
n=−∞

q(
2n+1

2 )εq2n .

Theorem 3.9 really brings the Nevanlinna parametrization into focus. As we have seen,
finding theN -extremal solutions explicitly is out of reach and it is hardly possible to find
the Pick functions corresponding to, for instance, the solutionsvc in (2.6). But forκ−1 and
κ1 we can determine the corresponding Pick function explicitly.

As a corollary, we can say somewhat about the asymptotic behaviour of the very well
separated zeros ofΦ.

Corollary 3.10. Let0< x1 < · · · < xm < xm+1 < · · · denote the zeros ofΦ. Whenm → ∞,
we havexm+1/xm → q−2.
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