
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
J. Differential Equations 245 (2008) 1775–1800

www.elsevier.com/locate/jde

Random attractors for quasi-continuous
random dynamical systems and applications
to stochastic reaction–diffusion equations ✩

Yangrong Li a,b,∗, Boling Guo b

a School of Mathematics and Statistics, Southwest China University, Chongqing 400715, China
b Center for Nonlinear Study, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Received 4 December 2006; revised 17 June 2008

Available online 25 July 2008

Abstract
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1. Introduction

Random attractors for random dynamical systems (RDS) were first introduced by Crauel and
Flandoli [8] and Schmalfuss [19], with notable developments given in [2–9,11,12,17] and in the
references there among many others. They are compact invariant random sets attracting all the
orbits. To apply it to the certain stochastic partial differential equations (SPDE), one must rely
on some sufficient or necessary and sufficient conditions for the existence of random attractors.
For example, it is well known that there exists a random attractor if there is a compact absorbing
random set (see [7,8]), while Crauel [6] has proved that there exists a random attractor if and
only if there exists a compact attracting set.

As we know, the above general results have a basic assumption that the RDS is norm-to-norm
continuous in some Banach spaces. However, there are some important RDS which are not norm-
to-norm continuous. For example, consider the following stochastic reaction–diffusion equations
(see [16,22])

du − (
�u − f (u)

)
dt = dW(t) (1.1)

where f is a polynomial of odd degree 2p − 1 and W(t) is a Wiener process, the further as-
sumptions and details will be placed in Section 6. Even in the deterministic case of Eq. (1.1), the
norm-to-norm continuity of the solutions semigroup in Lq(D) (q �= 2) or in H 1

0 (D) is unknown
as pointed out by Robinson [18] and Zhong et al. [25], the norm-to-weak continuity of the semi-
group in whole space Lq(D) (q �= 2) is also not clear as pointed out by Zhong et al. [25], they
have only proved the norm-to-weak continuity on some bounded sets of Lq(D).

To overcome the continuity difficulty, we introduce in present paper the so-called quasi-
continuity of a RDS. The quasi-continuity is weaker than all continuities mentioned above and
thus is easier to check in practice. In fact, we will see that the RDS is always quasi-continuous
in Lq(D) (q > 2) if it is (norm-to-norm or norm-to-weak) continuous in L2(D) (see Proposi-
tion 3.3).

We then establish a criterion of the existence of random attractors for the quasi-continuous
RDS (see Theorem 4.1). Such a criterion in the deterministic case for the (norm-to-norm or
norm-to-weak) continuous semigroup has been established by Zhong et al. [25] and Ma et al.
[13], in which a very useful tool of the Kuratowski measure of non-compactness and the related
notion of omega-compactness were involved. Of course, these notions have been used by other
papers in the continuous cases when the phase space is the Hilbert space L2(D) (see [3,20,21,
23,24]). Recently, Kloeden and Langa [11] gave a generalization of the Ma et al. method to the
RDS. In present paper, by using the above tool, we generalize their results to the quasi-continuous
RDS case. Some difficulty arose in proving the compactness, but it is shown that an ergodicity
argument can solve the problem.

In comparison with the criterion of random attractors obtained by Crauel [6] (as mentioned
above), our criterion has the weaker continuity assumption and uses omega-compactness instead
of the ordinary compactness. In particular, we can apply it to the wider range when the phase
space is the Banach space Lq(D) for q > 2 rather than the Hilbert space L2(D).

It is well known that many RDS generated by the concrete SPDEs possess a random attractor
in the Hilbert space L2(D). Under the assumption of this fact, we will give in this paper a
criterion for the existence of random attractors in Lq(D) for q > 2 (see Theorem 5.3).

Our theoretical result can be applied to the stochastic reaction–diffusion equation (1.1) when
the phase space is Lq(D) for any q > 2. It is well known that the RDS generated by the above
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equation possesses a random attractor in L2(D) (see [4,6–9,12] for different noise assumptions).
We will prove that the RDS has a random attractor in Lq(D) for any q > 2 under some bounded
noise assumptions (see Theorem 6.7). It is worth pointing out that, even in the non-random case,
it seems to be the best result that there is an attractor in Lq(D) for q = 4p − 2 and thus for all
2 � q � 4p − 2 (see [25]).

We also prove that the random attractor for Eq. (1.1) has finite fractal dimensions in Lq(D)

(Theorem 6.9). We emphasize here that the fractal dimension is defined by the Lq -norm rather
than the L2-norm, and thus the same set may enjoy different fractal dimensions under different
Lq -norms. A relationship of fractal dimensions under different Lq -norms will be given. This
subject seems not to be discussed upon now even in the deterministic case.

2. Preliminaries

In this section, we first recall some basic notions of the theory of random dynamical systems
(RDS) (see [1,6–9]). We then review briefly the Kuratowski measure of non-compactness (see
[10]), which is a useful tool to study the attractor (see [13,20,21,23–25]).

2.1. Random attractors

Throughout this paper, X is a separable Banach space equipped with the norm ‖ · ‖ and the
Borel σ -algebra B(X). (Ω,F ,P ) is a complete probability space and {θt : Ω → Ω, t ∈ R}
a group of measure preserving transformations of Ω . We assume that θt is ergodic.

Definition 2.1. A random dynamical system (RDS) ϕ on X over (Ω,F ,P , θt ) is a measurable
map

ϕ : R
+ × Ω × X → X, (t,ω, x) �→ ϕ(t,ω)x

such that P -a.s. ϕ(0,ω) = id on X and the cocycle property holds, that is,

ϕ(t + s,ω) = ϕ(t, θsω)ϕ(s,ω), s, t ∈ R
+. (2.1)

A random set {K(ω)}ω∈Ω is a family of subsets indexed by ω such that for every x ∈ X

the mapping ω �→ dist(x,K(ω)) is measurable with respect to F , where we denote dist(·,·) the
Hausdorff semi-distance in X

dist(A,B) = sup
a∈A

inf
b∈B

‖a − b‖, A,B ⊂ X. (2.2)

A random set A(ω) is said to be an attracting set if A(ω) attracts all deterministic bounded
sets B ⊂ X, that is,

lim
t→∞ dist

(
ϕ(t, θ−tω)B,A(ω)

) = 0, P -a.s. ω ∈ Ω. (2.3)

A random set A(ω) is said to be an absorbing set if for every deterministic bounded sets
B ⊂ X there exists a time tB(ω) such that

ϕ(t, θ−tω)B ⊂ A(ω), t � tB(ω), P -a.s. ω ∈ Ω. (2.4)
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Definition 2.2. A random set A(ω) is said to be a random attractor for the RDS ϕ if A(ω) is
compact, attracting (as (2.3)) and invariant, that is,

ϕ(t,ω)A(ω) = A(θtω), ∀t � 0, P -a.s. ω ∈ Ω. (2.5)

The following result on the existence of random attractors can be found in [6–8].

Theorem 2.3. A continuous RDS possesses a random attractor if there exists a compact absorb-
ing set, while a continuous RDS possesses a random attractor if and only if there exists a compact
attracting set.

2.2. The Kuratowski measure of non-compactness

Definition 2.4. Let B be a bounded set in a Banach space X. The Kuratowski measure of non-
compactness κ(B) of B is defined by

κ(B) = inf{d > 0 | B admits a finite cover by sets of diameter � d}. (2.6)

We define κ(B) = ∞ if B is unbounded. The properties of κ(B), which we need to use in this
paper, are given in the following lemma (see [9], the conclusion (v) due to Zhong et al. [25]).

Lemma 2.5. (i) κ(B) = 0 iff B is compact, where B is the norm closure of B .
(ii) κ(coB) = κ(B), where coB is the closed convex hull of B .
(iii) κ(B1 ∪ B2) � max{κ(B1), κ(B2)} and κ(B1 + B2) � κ(B1) + κ(B2).
(iv) For a decreasing family {Bt }t>r of nonempty, closed and bounded sets, if κ(Bt ) → 0 as

t → ∞, then
⋂

Bt is a nonempty, compact set.
(v) κ(B) = κ(BWS), where BWS is the weakly sequential closure of B defined by

BWS = {x ∈ X | ∃xn ∈ B, such that xn ⇀ x} (2.7)

where ⇀ means the weak convergence.

3. Norm-to-weak continuity and quasi-continuity

Definition 3.1. A RDS ϕ on a Banach space X is said to be norm-to-weak continuous if P -a.s.
ω ∈ Ω , ϕ(tn,ω)xn ⇀ ϕ(t,ω)x whenever (tn, xn) → (t, x) in R

+ × X, where ⇀ means weak
convergence. A RDS ϕ is called to be quasi-continuous if P -a.s. ω ∈ Ω , ϕ(tn,ω)xn ⇀ ϕ(t,ω)x

whenever {(tn, xn)} is a sequence in R
+ × X such that {ϕ(tn,ω)xn} is bounded and (tn, xn) →

(t, x) as n → ∞.

Both kinds of continuity above are weaker than the usual one. In fact we have: Norm (resp.
weak) continuity ⇒ norm-to-weak continuity ⇒ quasi-continuity.

As pointed out in Section 1, it is difficult to verify that the RDS is continuous (or weak contin-
uous) in stronger norm spaces than L2(D), e.g. Lq(D) for q > 2. The following results present
some easy-to-check criteria for norm-to-weak continuity and quasi-continuity in the stronger
norm space.

Let X,Y be two Banach spaces with the dual spaces X∗, Y ∗, respectively, and assume also
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(i) the embedding i : X → Y is densely continuous;
(ii) the adjoint operator i∗ : Y ∗ → X∗ is dense, i.e. i∗(Y ∗) is dense in X∗.

We remark here that i∗ : Y ∗ → X∗ is always injective and continuous if the assumption (i)
holds (comparing this fact to the assumptions given in [25]). Indeed, if i∗(y∗) = 0 for y∗ ∈ Y ∗,
then obviously 〈i(X), y∗〉 = 0. Since i(X) is dense in Y , it follows from the Hahn–Banach the-
orem that y∗ = 0. Thus, i∗ is injective. The continuity of the linear operator i∗ follows from the
continuity of i. We also note that the assumption (ii) holds if X,Y satisfy the assumption (i) and,
in addition, X is reflexive.

Proposition 3.2. Let X,Y satisfy the assumptions above, and let ϕ be a RDS on X, Y respectively.
Suppose ϕ is continuous in Y , then ϕ is norm-to-weak continuous in X if and only if for P -a.s.
ω ∈ Ω , ϕ(·,ω)· maps compact subsets of R

+ × X into bounded sets of X.

Proof. It is the same as in the non-random case (see [25, Theorem 3.2]). �
It is also difficult to verify the norm-to-weak continuity by using the above proposition.

However, we will see from the following result that the quasi-continuity holds automatically
in stronger norm spaces.

Proposition 3.3. Let X,Y satisfy the assumptions (i) and (ii) above. Let ϕ be a RDS on X, Y

respectively. If ϕ is continuous or norm-to-weak continuous in Y , then ϕ is quasi-continuous
in X.

Proof. We work for every fixed ω ∈ Ω0 with P(Ω0) = 1. Assume ϕ is continuous or norm-to-
weak continuous in Y , then ϕ is quasi-continuous in Y . We must show that ϕ is quasi-continuous
in X. To do this, we take (tn, xn) ∈ R

+ ×X such that {ϕ(tn,ω)xn} is bounded in X and (tn, xn) →
(t, x). We need to show that ϕ(tn,ω)xn ⇀ ϕ(t,ω)x, i.e.

〈
ϕ(tn,ω)xn − ϕ(t,ω)x, x∗〉

X
→ 0, as n → ∞ for every x∗ ∈ X∗. (3.1)

Indeed, let M be the positive constant such that

∥∥ϕ(tn,ω)xn − ϕ(t,ω)x
∥∥

X
� M. (3.2)

For any ε > 0 and x∗ ∈ X∗, by the assumption (ii) we can choose y∗ ∈ Y ∗ such that

∥∥i∗(y∗) − x∗∥∥
X∗ <

ε

2M
. (3.3)

Since ϕ is norm or norm-to-weak continuous in Y , there exists N > 0 such that for all n � N ,

∣∣〈i(ϕ(tn,ω)xn − ϕ(t,ω)x
)
, y∗〉

Y

∣∣ <
ε

2
,

which, together with (3.1)–(3.2), implies that
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∣∣〈ϕ(tn,ω)xn − ϕ(t,ω)x, x∗〉
X

∣∣
�

∣∣〈ϕ(tn,ω)xn − ϕ(t,ω)x, i∗(y∗) − x∗〉
X

∣∣ + ∣∣〈i(ϕ(tn,ω)xn − ϕ(t,ω)x
)
, y∗〉

Y

∣∣
� M · ε

2M
+ ε

2
= ε.

Therefore (3.3) holds and thus ϕ is quasi-continuous in X. �
Remark 3.4. For the concrete SPDEs, one can choose Y = L2(D), X = Lq(D) (q > 2) or
Hm

0 (D), and conclude that ϕ is quasi-continuous in Lq(D) or Hm
0 (D) if ϕ is continuous in

L2(D).

4. Random attractors for the quasi-continuous RDS

In this section, we present an existence criterion of random attractors.

Theorem 4.1. Suppose ϕ(t,ω) be a quasi-continuous RDS on a separable Banach space X over
an ergodic system (Ω,F ,P ; θt ). Then ϕ possesses a random attractor if and only if

(i) ϕ has a bounded absorbing set B(ω); and
(ii) ϕ is omega-limit compact, that is, for every bounded non-random set B ⊂ X, we have

lim
T →+∞κ

( ⋃
t�T

ϕ(t, θ−tω)B

)
= 0, P -a.s. ω ∈ Ω. (4.1)

Under the assumptions in Theorem 4.1, we will prove one of the random attractors is

A(ω) =
⋃

B⊂X

A(B,ω) (4.2)

where the union is taken over all bounded subsets of X, and A(B,ω) is the weakly sequence
omega-limit set, that is,

A(B,ω) =
⋂
T �0

⋃
t�T

ϕ(t, θ−tω)BWS (4.3)

for every bounded set B ⊂ X. Using the same method as in [25], one can prove that if ϕ is
omega-limit compact then A(B,ω) has the following character:

x ∈ A(B,ω) iff ∃xn ∈ B, tn → ∞ such that ϕ(tn, θ−tnω)xn ⇀ x. (4.4)

Proof of Theorem 4.1. Necessity. Suppose ϕ has a random attractor Ã(ω). Then it is easy to
prove that the ε-neighborhood Nε(Ã(ω)) is a bounded absorbing set. But Ã(ω) is compact, we
know that κ(Ã(ω)) = 0 and, thus, for large T ,

κ

( ⋃
t�T

ϕ(t, θ−tω)B

)
� κ

(
Nε

(
Ã(ω)

))
� 2ε,

which proves (4.1). Thus, ϕ is omega-limit compact.
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Sufficiency. We will show that A(ω), defined by (4.2), is a random attractor. The proof can be
accomplished by the following 4 steps.

Step 1. We show that A(ω) is invariant. It is obvious that A(ω) is invariant if every A(B,ω),
defined by (4.3), is invariant. To prove A(B,ω) is invariant, we let x ∈ A(B,ω). Then, by the
character (4.4), there exist tn → ∞ and xn ∈ B such that

ϕ(tn, θ−tnω)xn ⇀ x.

By the omega-limit compactness of ϕ, we can choose a subsequence {nk} such that

yk := ϕ(tnk
, θ−tnk

ω)xnk
→ x. (4.5)

Since, by the assumption (i), there exists a bounded absorbing set B(ω), it follows from the
cocycle property (2.1) that, for fixed t > 0 and large k,

ϕ(t,ω)yk = ϕ(t + tnk
, θ−(t+tnk

)θtω)xnk
∈ B(θtω).

In particular, {ϕ(t,ω)yk, k ∈ N} is bounded in X. Thus, by the quasi-continuity of ϕ, it follows
from (4.5) that

ϕ(t,ω)yk ⇀ ϕ(t,ω)x.

Therefore, by the character (4.4) again, ϕ(t,ω)x ∈ A(B, θtω), which shows that

ϕ(t,ω)A(B,ω) ⊂ A(B, θtω), t � 0.

Conversely, let x ∈ A(B, θtω), where t is a fixed positive number. Then, by (4.4), there exist
xn ∈ B and tn with t < tn → ∞ such that

ϕ(tn, θ−tnθtω)xn ⇀ x.

Since ϕ is omega-limit compact, there exist a z ∈ X and a subsequence {nk} such that

zk := ϕ(tnk
− t, θ−(tnk

−t)ω)xnk
→ z. (4.6)

Thus, z ∈ A(B,ω) in view of (4.4). Using the cocycle property (2.1), we know that the sequence

ϕ(t,ω)zk = ϕ(tnk
, θ−tnk

θtω)xnk
⇀ x.

Noting that ϕ(t,ω)zk is bounded in X since a weakly convergent sequence is norm bounded, we
see, by the quasi-continuity of ϕ and by (4.6), that

ϕ(t,ω)zk ⇀ ϕ(t,ω)z.

Thus, x = ϕ(t,ω)z ∈ ϕ(t,ω)A(B,ω), which proves the converse inclusion and thus A(B,ω) is
invariant as required.
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Step 2. We show that there exists a bounded deterministic set B0 ⊂ X such that

A(ω) = A(B0,ω), P -a.s. ω ∈ Ω. (4.7)

This step is a key to prove the compactness of A(ω) and needs the ergodicity assumption of θt .
Follows the idea of [6, Proposition 2.3], we set

R(ω) = inf
{
r � 0

∣∣A(ω) ⊂ B(O, r)
}

(4.8)

where B(O, r) is the ball of center O and radius r . We must verify that R(ω) is well defined.
Indeed, for every bounded set B ⊂ X, there exists tB such that

co

( ⋃
t�tB

ϕ(t, θ−tω)B

)
WS = co

( ⋃
t�tB

ϕ(t, θ−tω)B

)
⊂ coB(ω).

Then it follows from (4.2) and (4.3) that A(ω) ⊂ coB(ω). Since the absorbing set B(ω) is
bounded, it follows that coB(ω) and thus A(ω) is bounded. We conclude that R(ω) is finite
for all ω ∈ Ω0 with P(Ω0) = 1. We set also

R(ω) = 0 if ω ∈ Ω \ Ω0.

Then the function R(ω) is measurable, and it follows from the ergodic theorem (e.g. see [1]) that
there exists a sequence tn → ∞ such that

R(θ−tnω) � R0 + 1, P -a.s. ω ∈ Ω,

where

R0 = ess inf
(
R(ω)

)
ω∈Ω

.

Let now B0 = B(O,R0 + 1), we claim that A(ω) = A(B0,ω). Indeed, let x ∈A(ω) and let tn be
the sequence defined above. Then, by the invariant property (which has been proved in Step 1),
there exists xn ∈A(θ−tnω) such that

ϕ(tn, θ−tnω)xn = x. (4.9)

Since A(θ−tnω) ⊂ B0, it follows from (4.9) and the character (4.4) that x ∈ A(B0,ω). We have
proved A(ω) ⊂ A(B0,ω). Conversely, it is obvious that A(B0,ω) ⊂ A(ω) and thus (4.7) holds.

Step 3. We show that A(ω) is compact. By (4.7) in Step 2, we need only to prove that every
A(B,ω) is compact. Indeed, by Lemma 2.5(v) and the omega-limit compactness of ϕ, we have

κ

( ⋃
t�T

ϕ(t, θ−tω)BWS
)

= κ

( ⋃
t�T

ϕ(t, θ−tω)B

)
→ 0 as T → ∞.

Since
⋃

t�T ϕ(t, θ−tω)BWS is norm-closed in X, thanks to the property (iv) in Lemma 2.5, we
know that A(B,ω) is nonempty and compact as required.
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Step 4. We show that A(ω) is an attracting set. For every bounded set B ⊂ X, we claim that
A(B,ω) attracts B , that is,

dist
(
ϕ(t, θ−tω)B,A(B,ω)

) → 0 as t → ∞, P -a.s. ω ∈ Ω. (4.10)

Indeed, if not, then there exist δ > 0, tn → ∞ and xn ∈ B such that

dist
(
ϕ(t, θ−tnω)xn,A(B,ω)

)
� δ. (4.11)

By the omega-limit compactness of ϕ, there exist a subsequence {nk} and an x ∈ X such that

ϕ(tnk
, θ−tnk

ω)xnk
→ x.

But by (4.4) x ∈ A(B,ω), which contradicts (4.11). Thus (4.10) holds true and implies that

dist
(
ϕ(t, θ−tω)B,A(ω)

)
� dist

(
ϕ(t, θ−tω)B,A(B,ω)

) → 0

as t → ∞. That is, A(ω) attracts B , which completes the proof of Theorem 4.1. �
As a consequence, we obtain the sufficient condition for the existence of random attractor

given in [7,8] under the weaker continuity assumption.

Corollary 4.2. A quasi-continuous RDS ϕ has a random attractor A(ω) if ϕ has a compact
absorbing set B(ω).

Proof. For any bounded set B ⊂ X, there exists a tB such that

⋃
t�tB

ϕ(t, θ−tω)B ⊂ B(ω).

But B(ω) is compact, κ(B(ω)) = 0, and so

κ

( ⋃
t�tB

ϕ(t, θ−tω)B

)
= 0, (4.12)

which implies that ϕ is omega-limit compact. �
Remark 4.3. The formulation (4.2) of the random attractor seems to differ from the random
attractor obtained by the usual method in [7,8]. However, under the assumptions of Theorem 4.1,
we can show that they are the same one. That is,

A(ω) =
⋃

B⊂X

A(B,ω) =
⋃

B⊂X

AB(ω) (4.13)
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where A(B,ω) is defined by (4.3), and AB(ω) is defined by (see [7,8])

AB(ω) =
⋂
T �0

⋃
t�T

ϕ(t, θ−tω)B. (4.14)

Indeed, By (4.4) and the omega-limit compactness of ϕ, we can prove that A(B,ω) ⊂ AB(ω)

and thus A(B,ω) = AB(ω). But by the proof of Theorem 4.1,
⋃

B⊂X A(B,ω) is compact and
thus norm closed particularly, which implies that

⋃
B⊂X

A(B,ω) =
⋃

B⊂X

A(B,ω) =
⋃

B⊂X

AB(ω).

Remark 4.4. Using the same argument given in [7,8], one can show that the random attractor
A(ω), defined by (4.2), is the largest compact invariant set and the minimal closed attracting set.

Remark 4.5. Of course, Theorem 4.1 still holds if quasi-continuity of ϕ is replaced by the norm
continuity, weak continuity or norm-to-weak continuity. Even in the deterministic case, Theo-
rem 4.1 seems to be a slightly stronger result than [25, Theorem 4.2] since we need the weaker
continuity assumption (than norm-to-weak continuity).

5. Random attractors on the q-times integrated spaces

It is well known that many RDS generated by the concrete SPDEs possess a random attractor
on the Hilbert space L2(D), D ⊂ R

n is bounded. Assuming this fact, we will give in this section
a general method to prove the existence of random attractors on the Banach space Lq(D) for
q > 2.

We denote by ‖ · ‖q the norm of Lq(D), | · | the usual modular (or the absolute value), m(·)
the Lebesgue measure and D(|u| � M) = {x ∈ D | |u(x)| � M}.

Lemma 5.1. Suppose a RDS ϕ has a bounded absorbing set B(ω) in Lq(D). Then for P-a.s.
ω ∈ Ω , ε > 0 and bounded B ⊂ Lq(D), there exist T = T (B,ω) and M = M(ε,ω) such that

m
(
D

(∣∣ϕ(t, θ−tω)u
∣∣ � M

))
< ε, ∀t � T , u ∈ B. (5.1)

Proof. We let ψ(t) := ϕ(t, θ−tω) for convenience and work for every fixed ω ∈ Ω . By the
absorbing assumption, there exists a random variable M0 = M0(ω) such that, for bounded
B ⊂ Lq(D), we can find a constant T = T (B,ω) such that

∥∥ψ(t)u
∥∥q

q
� M0, whenever t � T , u ∈ B.

On the other hand

∥∥ψ(t)u
∥∥q

q
=

∫
D

∣∣ψ(t)u
∣∣q �

∫
D(|ψ(t)|�M)

∣∣ψ(t)
∣∣q � Mq · m(

D
∣∣ψ(t)u

∣∣ � M
)
.

Thus m(D(|ψ(t)u| � M)) < ε if we choose M large enough such that M > (M0/ε)
1/q . �
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We also need the following basic lemma given in [25].

Lemma 5.2. (See [25].) If a bounded set B ⊂ Lq(D) has a finite ε-net in Lq(D), then there is a
number M such that

sup
u∈B

∫
(|u|�M)

|u|q � 2q+1εq. (5.2)

Theorem 5.3. Let ϕ(t,ω) be a RDS on Lq(D) and a continuous RDS on Lr(D) for some 1 <

r � q , where D is bounded. Suppose ϕ has a random attractor in Lr(D). Then ϕ has a random
attractor in Lq(D) if and only if

(i) ϕ has a bounded absorbing set in Lq(D);
(ii) for every bounded deterministic set B ⊂ Lq(D), we have

lim
t,M→∞ sup

u∈B

∫
D(|ϕ(t,θ−t ω)u|�M)

∣∣ϕ(t, θ−tω)u
∣∣q = 0, P -a.s. ω ∈ Ω. (5.3)

Proof. Taking X = Lq(D), Y = Lr(D) in Proposition 3.3, we know that ϕ is quasi-continuous
in Lq(D). Then by Theorem 4.1 we have only to consider the omega-limit compactness of ϕ

in Lq(D). We work for every fixed ω ∈ Ω0 with P(Ω0) = 1 and let ψ(t) = ϕ(t, θ−tω) for
convenience.

Necessity. Since ϕ is by Theorem 4.1 omega-limit compact in Lq(D), it follows that for every
ε > 0 and bounded B ⊂ Lq(D), there exists a T = T (ε,B,ω) such that the set

B̃ =
⋃
t�T

ψ(t)B

admits a finite ε-net in Lq(D). Applying Lemma 5.2 to the bounded set B̃ , we can also choose
an M0 = M0(B, ε,ω) such that if M � M0 and t � T then

sup
u∈B

∫
D(|ψ(t)u|�M)

∣∣ψ(t)u
∣∣q � 2q+1εq,

which proves (5.3).
Sufficiency. For any ε > 0 and bounded B ⊂ Lq(D) (⊂ Lr(D)), by the assumption (5.3) there

exist t1 = t1(B, ε,ω) and M = M(B,ε,ω) such that

sup
u∈B

∫
D(|ψ(t)u|�M)

∣∣ψ(t)u
∣∣q <

εq

2q+3
, ∀t � t1. (5.4)

Since by Theorem 4.1 ϕ is omega-limit compact in Lr(D), there exists a t2 � t1 such that the set

B̂ =
⋃

ψ(t)B
t�t2
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has a finite (2M)(r−q)/r (εq/2)1/r -net {uk} ⊂ B̂ in Lr(D). Thus, for any u ∈ B̂ we can choose
some uk ∈ B̂ such that

‖u − uk‖r
r < (2M)r−q · εq

2
. (5.5)

It is obvious that D = D1 ∪ D2 ∪ D3 ∪ D4, where

D1 = D
(|u| � M, |uk| � M

)
, D2 = D

(|u| � M, |uk| � M
)
,

D3 = D
(|u| � M, |uk| � M

)
, D4 = D

(|u| � M, |uk| � M
)
. (5.6)

Then (5.5) implies that

∫
D1

|u − uk|q �
∫

D(|u−uk |�2M)

|u − uk|q � (2M)q−r‖u − uk‖r
r <

εq

2
. (5.7)

Since |u − uk| � 2|u| in D2, it follows from (5.4) that

∫
D2

|u − uk|q � 2q

∫
D(|u|�M)

|u|q <
εq

8
. (5.8)

Similarly, since |u − uk| � 2|uk| in D3,

∫
D3

|u − uk|q � 2q

∫
D(|uk |�M)

|uk|q <
εq

8
. (5.9)

Using the inequality (a + b)q � 2q(|a|q + |b|q) and (5.4), we also find

∫
D4

|u − uk|q � 2q

( ∫
D(|u|�M)

|u|q +
∫

D(|uk |�M)

|uk|q
)

<
εq

4
. (5.10)

It follows from (5.7)–(5.10) that

‖u − uk‖q
q �

(∫
D1

+
∫
D2

+
∫
D3

+
∫
D4

)
|u − uk|q < εq, (5.11)

which proved B̂ has an ε-net in Lq(D) and thus ϕ is omega-limit compact in Lq(D) as
needed. �
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6. Applications to the stochastic reaction–diffusion equation

6.1. Preliminaries for the equation

Let D ⊂ R
n, n ∈ N, be a bounded open set with regular boundary ∂D. We consider the fol-

lowing stochastic reaction–diffusion equation

⎧⎪⎨
⎪⎩du − (

�u − f (u)
)
dt =

m∑
j=1

gj dWj (t),

u = 0 on ∂D.

(6.1)

The function f is polynomial defined by

f (s) =
2p−1∑
j=1

aj s
j , a2p−1 > 0, p > 1. (6.2)

We also assume that

gj ∈ L∞(D), j = 1,2, . . . ,m. (6.3)

The random functions Wj , j = 1, . . . ,m, are independent two-sided real-valued Wiener pro-
cesses on a probability space (Ω,F ,P ), where Ω = {ω ∈ C(R,R

n) | ω(0) = 0}, with P being
a product measure of two Wiener measures on the negative and the positive time parts of Ω . We
have

(
W1(t,ω),W2(t,ω), . . . ,Wm(t,ω)

) = ω(t), t ∈ R.

The time shift is simply defined by

θsω(t) = ω(t + s) − ω(s), t, s ∈ R. (6.4)

It is a family of ergodic transformations.
Let Aq = −� with D(Aq) = W 2,q (D) ∩ W

1,q

0 (D) and write A = A2. Then Aq generates an
analytic semigroup etAq on Lq(D) (see Pazy [15]). The Ornstein–Uhlenbeck process defined by

z(t) =
m∑

j=1

t∫
−∞

eA(t−s)gj dWj (s) (6.5)

is P -a.s. pathwise continuous and is the unique stationary solution of the linear equation

dz + Azdt =
m∑

gj dWj (t). (6.6)

j=1
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It is well known (see [8,9]) that for any s ∈ R, u0 ∈ L2(D) and ω ∈ Ω , there exists a unique
solution

v ∈ C
([s, t];L2(D)

) ∪ L2(s, t;H 1
0 (D)

) ∪ L2p
(
s, t;L2p(D)

)
for any t � s of the equation

{
dv

dt
+ Av + f (v + z) = 0,

v(s) = u0 − z(s)

(6.7)

and u = v + z is a solution of (6.1) such that u(s) = u0. Denote this solution by u(t) =
u(t; s, u0;ω) (denoted sometimes by u(t; s, u0), u(t; s), u(t) or even u if no confusions). Then

ϕ(t,ω)u0 := u(t;0, u0;ω), t � 0, (6.8)

is a continuous RDS on L2(D) with the following fact

ϕ(s, θ−sω)u0 = u(0;−s, u0;ω), s � 0. (6.9)

The random attractor in L2(D) has been obtained by [8,9].

Theorem 6.1. (See [8,9].) The RDS defined by (6.8) possesses a random attractor in L2(D).

6.2. Absorption in Lq(D)

In order to prove the RDS ϕ defined by (6.8) has a random attractor in Lq(D) (q > 2), by
Theorem 5.3, we must show that ϕ has a bounded absorbing set and some asymptotic a priori
estimates in Lq(D) (q > 2).

In this subsection, we will prove that the RDS ϕ generated by Eq. (6.1) has a bounded absorb-
ing set B(ω) ⊂ Lq(D), q > 2, which absorbs in fact all bounded sets B ⊂ L2(D).

We need the properties of the polynomial f defined by (6.2). The proof is elementary and so
is omitted. In the sequel, the large positive constant C may be different from line to line.

Lemma 6.2. For the polynomial f defined by (6.2), there exist c1, c2 and large number C such
that

(i) f ′(x) � −C, for all x ∈ R;
(ii) f (x + y)x2k+1 � c1x

2p+2k − C(y2p+2k + 1), for all k ∈ N and x, y ∈ R;
(iii) there exists an M > 0 such that f (x) � c2x

2p−1 if x � M , while f (x) � c2x
2p−1 if

x � −M .

We now prove the existence of bounded absorbing sets in Lq(D). The idea of the induction
proof follows from the proof of differentiability of the system in L2(D) given in [9, Lemma 4.3]
or [14, Lemma 2.3]. Recall that u(t) = u(t; s, u0;ω) is the solution of (6.1) with u(s) = u0 and
v(t) = v(t; s, u0 − z(s);ω) is the solution of (6.7) with v(s) = u0 − z(s).
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Lemma 6.3. For every fixed q > 2, there exists a random variable γ (ω) such that, for any R > 0
there exists an s0 = s0(R,ω) < −1 satisfying∥∥u(0; s, u0;ω)

∥∥
q

� γ (ω), whenever s � s0, ‖u0‖2 � R. (6.10)

Proof. We have only to prove that (6.10) holds for all

qk = 2k(p − 1) + 2, k ∈ N, (6.11)

since for every q , Lq(D) ⊃ Lqk (D) for some qk . To do this, we shall prove, recursively in k,
that there exist random numbers γ k

1 (ω), γ k
2 (ω) such that, for any R > 0, there exists an sk =

sk(R,ω) � −1 satisfying

0∫
− 1

k

∥∥v
(
τ ; s, u0 − z(s);ω)∥∥qk

qk
dτ � γ k

1 (ω), (6.12)

∥∥u(t; s, u0;ω)
∥∥

qk
� γ k

2 (ω), − 1

k + 1
� t � 0, (6.13)

whenever s � sk and ‖u0‖2 � R.
We first prove (6.12)–(6.13) for k = 1, that is, q1 = 2p. Taking the scalar product of (6.7) with

v on L2(D) and using Lemma 6.2(ii), we have

d

dt
‖v‖2

2 + ‖v‖2
H 1 + c1‖v‖q1

q1 � C‖z‖q1
q1 + C. (6.14)

Integrating (6.14) over t ∈ [−1,0] we find

0∫
−1

∥∥v(τ)
∥∥q1

q1
dτ � C

0∫
−1

∥∥z(τ )
∥∥q1

q1
dτ + C + ∥∥v(−1)

∥∥2
2. (6.15)

But it has been proved in [7] that there exist γ0 = γ0(ω) and s0 = s0(R,ω) such that

sup
−1�t�0

∥∥v
(
t; s, u0 − z(s)

)∥∥
2 � γ0 (6.16)

whenever s � s0 and ‖u0‖2 � R. It note also that by the assumption (6.3) gj ∈ L∞(D) and thus
z has continuous path on Lq(D) for any q � 2, which, together with (6.15)–(6.16), implies that

0∫
−1

∥∥v(τ)
∥∥q1

q1
dτ � γ 1

1 := C

0∫
−1

∥∥z(τ )
∥∥q1

q1
dτ + C + γ 2

0 < +∞, (6.17)

which proved (6.12) for k = 1. Multiplying (6.7) by vq1−1 and using Lemma 6.2(ii) again we
obtain

d ‖v‖q1
q1 + c2‖v‖q2

q2 � C‖z‖q2
q2 + C. (6.18)
dt
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Integrating (6.18) from τ (−1 � τ � −1/2) to t (−1/2 � t � 0) we get

∥∥v(t)
∥∥q1

q1
� C

t∫
τ

∥∥z(σ )
∥∥q2

q2
dσ + C(t − τ) + ∥∥v(τ)

∥∥q1
q1

, −1 � τ � −1

2
� t � 0.

Integrating the above inequality from τ = −1 to τ = −1/2 and using (6.17), we have

∥∥v(t)
∥∥q1

q1
� γ 1

2 := 2C

0∫
−1

∥∥z(σ )
∥∥q2

q2
dσ + 2C + 2γ 1

1 < ∞, −1

2
� t � 0,

which proved (6.13) for k = 1.
Assume now (6.12)–(6.13) hold for k. Using a similar argument as in the derivation of (6.18),

we can prove the existence of ck
1 and C such that

d

dt
‖v‖qk

qk
+ ck

1‖v‖qk+1
qk+1 � C

(‖z‖qk+1
qk+1 + 1

)
. (6.19)

Integrating (6.19) from t = − 1
k+1 to t = 0 yields

ck
1

0∫
− 1

k+1

∥∥v(t)
∥∥qk+1

qk+1
dt � C

( 0∫
− 1

k+1

∥∥z(t)
∥∥qk+1

qk+1
dt + 1

)
+

∥∥∥∥v

(
− 1

k + 1

)∥∥∥∥
qk

qk

.

Thanks to the induction assumption (6.13) for k, we see that

∥∥∥∥v

(
− 1

k + 1

)∥∥∥∥
qk

qk

� 2qk

(∥∥∥∥u

(
− 1

k + 1

)∥∥∥∥
qk

qk

+
∥∥∥∥z

(
− 1

k + 1

)∥∥∥∥
qk

qk

)
� 2qk

(
γ k

2 + C
)
.

Thus we have proved (6.12) for k + 1. Integrating from τ (−1 � τ � − 1
k+2 ) to t (− 1

k+2 � t � 0)

in (6.19) with k replaced by k + 1, we obtain

∥∥v(t)
∥∥qk+1

qk+1
� C + ∥∥v(τ)

∥∥qk+1
qk+1

, −1 � τ � − 1

k + 2
� t � 0.

Integrating the above inequality from τ = − 1
k+1 to τ = − 1

k+2 we know

(
1

k + 1
− 1

k + 2

)∥∥v(t)
∥∥qk+1

qk+1
� C +

0∫
− 1

k+1

∥∥v(τ)
∥∥qk+1

qk+1
dτ, − 1

k + 2
� t � 0,

which, together with (6.12) for k + 1, implies that (6.13) holds for k + 1 and completes the
induction proof. �
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6.3. Asymptotic estimates

This subsection presents some asymptotic a priori estimates for the unbounded part of the
modular |u| in Lq(D) (q > 2). We need an auxiliary lemma which gives the asymptotic estimate
in L2(D) at all time t ∈ [−1,0]. (The special case that t = 0 is immediate from Theorems 5.3
and 6.1.)

Lemma 6.4. For any ε > 0 and bounded set B ⊂ L2(D), there exist s0 = s0(ε,B,ω), M1 =
M1(ε,B,ω), M2 = M2(ε,B,ω) such that, for all s � s0, u0 ∈ B , P -a.s. ω ∈ Ω

∫
D(|u(t)|�M1)

∣∣u(t; s, u0;ω)
∣∣2

< ε, −1 � t � 0, (6.20)

∫
D(|v(t)|�M2)

∣∣v(
t; s, u0 − z(s);ω)∣∣2

< ε, −1 � t � 0. (6.21)

Proof. Using a similar argument as given in [7], one can prove that there exists a compact ab-
sorbing set B(ω) ⊂ L2(D), which absorbs every bounded set B in L2(D) at all time t ∈ [−1,0]
(rather than t = 0 only). More precisely, there exists s0 � −1 such that if s � s0 then

u(t; s,B) :=
⋃

u0∈B

{
u(t; s, u0)

} ⊂ B(ω), −1 � t � 0. (6.22)

Since B(ω) is compact, for any ε > 0, the set

⋃
−1�t�0

⋃
s�s0

u(t; s,B)

has an (ε/8)1/2-net. Thus by Lemma 5.2 there exists an M1 such that

sup
−1�t�0

∫
D(|u(t)|�M1)

∣∣u(t; s, u0)
∣∣2

< 22+1ε/8 = ε,

whenever u0 ∈ B and s � s0, which proved (6.20).
To prove (6.21), we let

E = sup
−1�t�0

∥∥z(t)
∥∥∞, (6.23)

which is finite by the bounded assumption (6.3) of gj . By Lemma 5.1, we can choose s1 � s0 �
−1 and M̃ � M1 such that, for all s � s1 and u0 ∈ B ,

m
(
D

(∣∣u(t; s, u0)
∣∣ � M̃

))
� ε

E2
, −1 � t � 0. (6.24)

Taking now M2 = M̃ + E and noting that
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D
(∣∣v(t)

∣∣ � M2
) ⊂ D

(∣∣u(t)
∣∣ � M̃

) ⊂ D
(∣∣u(t)

∣∣ � M1
)
,

we get from (6.20) and (6.23)–(6.24) that

∫
D(|v|�M2)

∣∣v(t)
∣∣2 � 2

∫
D(|u|�M1)

∣∣u(t)
∣∣2 + 2

∫
D(|u|�M̃)

∣∣z(t)∣∣2 � 4ε,

which completes the proof of (6.21). �
Using the auxiliary lemma above, we can now give the asymptotic estimates in Lq(D) for

q = q1 = 2p.

Lemma 6.5. For any bounded set B ⊂ L2(D) and P -a.s. ω ∈ Ω , we have

lim−s,M→+∞ sup
u0∈B

∫
D(|u(t;s,u0;ω)|�M)

∣∣u(t; s, u0;ω)
∣∣2p = 0, t ∈

[
−1

2
,0

]
. (6.25)

Proof. For any ε > 0, let s0,M1,M2 be the constants defined in Lemma 6.4. By Lemma 5.1 we
choose s1 � s0 � −1 and M3 such that, for all s � s1, u0 ∈ B ,

m
(
D

(∣∣u(t; s, u0)
∣∣ � M3

))
� ε

E2p
, −1 � t � 0, (6.26)

where E = sup{‖z(t)‖∞; −1 � t � 0} defined as in (6.23). By Lemma 6.2(iii), we can choose
M4 such that

f (x) � 0 if x � M4. (6.27)

Let now M = E + max{M1,M2,M3,M4}. Multiplying Eq. (6.7) by (v − M)+ and integrating
over D we find

d

dt

∥∥(v − M)+
∥∥2

2 + 2
∫
D

∣∣∇(v − M)+
∣∣2 + 2

∫
D(v�M)

f (v + z)(v − M) = 0 (6.28)

where

(v − M)+ =
{

v − M if v � M,

0 if v � M.

By (6.27) we know that f (v + z)(v − M) � 0 on D(v � M) (since v + z � M − E � M4).
Integrating (6.28) from t = −1 to t = 0 and using (6.21) we obtain

2

0∫ ∫
f (v + z)(v − M) �

∥∥(
v(−1) − M

)
+
∥∥2

2 < ε. (6.29)
−1 D(v�M)
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Noting that ∫
D(v�2M)

f (v + z)v � 2
∫

D(v�M)

f (v + z)(v − M)

and

v2p � c1f (v + z)v + C
(|z|2p + 1

)
,

we get from (6.26) and (6.29) that

0∫
−1

∫
D(v�2M)

v2p � Cε (6.30)

where C does not depend on ε and B . We then take the product of (6.7) with (v − 2M)
2p−1
+ to

find

1

2p

d

dt

∥∥(v − 2M)+
∥∥2p

2p
+

∫
D(v�2M)

f (v + z)(v − 2M)2p−1 � 0. (6.31)

In particular

d

dt

∥∥(v − 2M)+
∥∥2p

2p
� 0, (6.32)

which implies obviously that

∥∥(
v(t) − 2M

)
+
∥∥2p

2p
�

∥∥(
v(τ) − 2M

)
+
∥∥2p

2p
, −1 � τ � −1

2
, −1

2
� t � 0.

Integrating it from τ = −1 to τ = −1/2 and using (6.30) we get

∥∥(
v(t) − 2M

)
+
∥∥2p

2p
� 2

−1/2∫
−1

∫
D(v�2M)

v2p < Cε, −1

2
� t � 0,

which implies that∫
D(v�4M)

v2p(t) � 22p+1
∫

D(v�2M)

(
v(t) − 2M

)2p � Cε, −1

2
� t � 0.

This, together with (6.26), implies that∫
u2p(t) � Cε, −1

2
� t � 0. (6.33)
D(u�4M+E)
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Taking (v + M)− and (v + 2M)
2p−1
− instead of (v − M)+ and (v − 2M)

2p−1
+ in the preceding

proof, we deduce similarly that

∫
D(u�−4M−E)

u2p(t) � Cε,
1

2
� t � 0,

which completes the proof of (6.25). �
In what follows we give the asymptotic estimate in Lq(D) for any q > 2.

Lemma 6.6. Let q > 2 be fixed. For every bounded set B ⊂ L2(D), we have

lim−s,M→+∞ sup
u0∈B

∫
D(|u|�M)

∣∣u(0; s, u0;ω)
∣∣q = 0, P -a.s. ω ∈ Ω. (6.34)

Proof. Let qk = 2k(p−1)+2 defined as in (6.11). We will prove by induction that for any ε > 0
there exist sk

0 = sk
0 (ε,B,ω), Mk

1 = Mk
1 (ε,B,ω) and Mk

2 = Mk
2 (ε,B,ω) such that, for all s < sk

0 ,
u0 ∈ B ,

0∫
− 1

k

( ∫
D(|v|�Mk

1 )

∣∣v(
τ ; s, u0 − z(s)

)∣∣qk

)
dτ < Cε, (6.35)

∫
D(|u|�Mk

2 )

∣∣u(t; s, u0)
∣∣qk < Cε, − 1

k + 1
� t � 0. (6.36)

The case that k = 1 has been proved by Lemma 6.5. Assume now that (6.35)–(6.36) hold for k.
By Lemma 5.1 we can choose sk

1 � sk
0 and Mk

3 such that, for s � sk
1 and u0 ∈ B ,

m
(
D

(∣∣u(t; s, u0)
∣∣ � Mk

3

))
� ε

Eqk+1
, −1/k � t � 0. (6.37)

Let M = E + max{Mk
1 ,Mk

2 ,Mk
3 ,M4}, where M4 is the constant such that f (x) � 0 whenever

x � M4. Using similar arguments as in the derivation of (6.31) we can prove the existence of ck

such that

d

dt

∥∥(v − M)+
∥∥qk

qk
+ ck

∫
D(v�M)

f (v + z)(v − M)qk−1 � 0. (6.38)

Using (6.37) and the induction assumption (6.36) we know that, for − 1
k+1 � t � 0,

∥∥(
v(t) − M

)
+
∥∥qk

qk
� C

( ∫
D(u�Mk)

uqk (t) +
∫

D(u�Mk)

zqk (t)

)
< Cε, (6.39)
2 3
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which implies by integrating (6.38) over [− 1
k+1 ,0] that

0∫
− 1

k+1

∫
D(v�M)

f (v + z)(v − M)qk−1 < Cε. (6.40)

It is easy to prove that

∫
D(v�2M)

f (v + z)vqk−1 � 2qk

∫
D(v�M)

f (v + z)(v − M)qk−1.

This, together with (6.40), (6.37), Lemma 6.2(ii), implies that

0∫
− 1

k+1

∫
D(v�2M)

vqk+1 < Cε. (6.41)

We also multiply Eq. (6.7) by (v − 2M)
qk+1−1
+ to find

d

dt

∥∥(v − 2M)+
∥∥qk+1

qk+1
� 0. (6.42)

Then

∥∥(
v(t) − 2M

)
+
∥∥qk+1

qk+1
�

∥∥(
v(τ) − 2M

)
+
∥∥qk+1

qk+1
, − 1

k + 1
� τ � − 1

k + 2
� t � 0.

Integrating it from τ = − 1
k+1 to τ = − 1

k+2 and using (6.41) we have

(
1

k + 1
− 1

k + 2

)∥∥(
v(t) − 2M

)
+
∥∥qk+1

qk+1
�

0∫
− 1

k+1

∫
D(v�2M)

(v − 2M)qk+1 < Cε, (6.43)

whenever − 1
k+2 � t � 0, which implies easily that

∫
D(v�4M)

vqk+1(t) � Cε, − 1

k + 2
� t � 0,

and thus

∫
uqk+1(t) � Cε, − 1

k + 2
� t � 0. (6.44)
D(u�4M+E)
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On the other hand, we have the similarly asymptotic estimates for the negative part and thus
(6.35)–(6.36) hold for k + 1, which completes the induction proof of (6.35)–(6.36). In particular,
(6.36) with t = 0 implies that (6.34) holds for all qk . Since for every q > 2, Lq(D) ⊃ Lqk (D) for
some large qk , (6.34) holds for all q > 2. �
6.4. Existence and the fractal dimension of random attractors

By using the preceding results, we can now state our conclusions about the existence of ran-
dom attractors for Eq. (6.1) in Lq(D) for any q � 2.

Theorem 6.7. Assume that D ⊂ R
n is bounded and gj ∈ L∞(D), j = 1, . . . ,m. Then the RDS

ϕ generated by the stochastic reaction–diffusion equation (6.1) possesses a random attractor
Aq(ω) in Lq(D) for any q � 2. Aq(ω) is an invariant and compact random set which attracts
bounded sets of L2(D) under the Lq -norm topology. Furthermore, Aq(ω) = A2(ω) := A(ω),
for all q � 2, where A(ω) is the usual attractor in L2(D).

Proof. By Lemmas 6.3, 6.6 and Theorem 6.1, we know that the hypotheses of Theorem 5.3
are satisfied, which proved the RDS ϕ has a random attractor Aq(ω) in Lq(D). It notes that by
Lemma 6.3 Aq(ω) attracts in fact all bounded sets in L2(D). By this fact and a similar argument
as in the deterministic case, it is easy to prove that all Aq(ω) (q � 2) are the same set A(ω). �

Finally we are concerned with the fractal dimension of A(ω) under the Lq -norm topology.
Recall that, for a bounded set B ⊂ Lq(D), the fractal dimension of B under Lq -norm is defined
by (see [18,20])

dimq(B) = lim sup
ε→0

logMq(ε)

− log ε
(6.45)

where Mq(ω) denotes the minimum number of balls Bq(ui, ε) := {u ∈ Lq(D) | ‖u − ui‖q < ε}
of radius ε required to cover B . By [12, Lemma 2.1], the centers ui can be taken in B , that is,

dimq(B) = lim sup
ε→0

logNq(ε)

− log ε
(6.46)

where Nq(ε) denotes the minimum number of balls of radius ε with centers in B that required to
cover B under the Lq -norm.

In order to prove the finiteness of the fractal dimension of the random attractor A(ω) under any
Lq -norm (q � 2), we need a key lemma, which gives a comparison result of fractal dimensions
under the different Lq -norm.

Lemma 6.8. Suppose a set B is bounded in Lδ(D) for all 1 < δ < +∞, where D is bounded.
Then we have

dimr (B) � dimq(B) � 2q − r

r
dimr (B), for q � r > 1. (6.47)
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Proof. It is relatively easy to prove the first inequality. Indeed, by the Hölder inequality we know
that

‖u‖r � c1‖u‖q, ∀u ∈ Lq(D), (6.48)

where c1 = |D|(q−r)/qr . Consider an ε-net Bq(ui, ε) in Lq(D), i = 1,2, . . . ,Nq(ε). By (6.48)
we have

Bq(ui, ε) ⊂ Br(ui, c1ε),

it follows that Nr(c1ε) � Nq(ε), and so

logNr(c1ε)

− log(c1ε)
� logNq(ε)

− log c1 − log ε

yields dimr (B) � dimq(B).
In order to prove the second inequality in (6.47), we first show that for any fixed δ > 1 and

q � r > 1 there exists a number C1 = C1(δ,B,q) such that

sup
u∈B

∫
D(|u|�C1ε

−δ)

|u|q < εq, ∀ε > 0, (6.49)

where C1 does not depend on ε. Indeed, by the assumptions, B is bounded in Lqδ′
(D), where δ′

satisfies 1/δ + 1/δ′ = 1, then

c2 := sup
u∈B

{‖u‖qδ′ ,‖u‖q

}
< +∞. (6.50)

By the Hölder inequality we have

∫
D(|u|�C1ε

−δ)

|u|q � ‖u‖q

qδ′ ·
(
m

(
D

(|u| � C1ε
−δ

))) 1
δ � c

q

2

(
m

(
D

(|u| � C1ε
−δ

))) 1
δ . (6.51)

But by (6.50)

m
(
D

(|u| � C1ε
−δ

))
� 1

(C1ε−δ)q

∫
D(|u|�C1ε

−δ)

|u|q �
c
q

2

C
q

1

εqδ, (6.52)

which, together with (6.51), implies that

∫
D(|u|�C1ε

−δ)

|u|q �
c
q+q/δ

2

C
q/δ

1

εq . (6.53)

Thus (6.49) holds if we choose C1 such that C
q/δ

> c
q+q/δ .
1 2
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We then show that for any δ > 1 there exists a constant C2 such that

Nq(C2ε) � Nr

(
ε(δ(q−r)+q)/r

)
, ∀ε > 0. (6.54)

To this end, let B have a net Br(uk, ε
(δ(q−r)+q)/r ) in Lr(D), k = 1,2, . . . , Nr(ε

(δ(q−r)+q)/r ).
Then for any u ∈ B there exists some uk such that

‖u − uk‖r
r � εδ(q−r)+q . (6.55)

Let

D1 = D
(|u| � C1ε

−δ, |uk| � C1ε
−δ

)
, D2 = D

(|u| � C1ε
−δ, |uk| � C1ε

−δ
)
,

D3 = D
(|u| � C1ε

−δ, |uk| � C1ε
−δ

)
, D4 = D

(|u| � C1ε
−δ, |uk| � C1ε

−δ
)
.

By (6.55) we have

∫
D1

|u − uk|q �
(
2C1ε

−δ
)q−r‖u − uk‖r

r � (2C1)
q−r εq .

Similar to the proof of (5.8)–(5.10), it follows from (6.49) that

(∫
D2

+
∫
D3

+
∫
D4

)
|u − uk|q � 4 · 2qεq .

Thus ‖u − uk‖q � C2ε if we choose C2 such that C
q

2 � (2C1)
q−r + 2q+2. That is, B has a

C2ε-net in Lq(D), where the number of balls equals to Nr(ε
(δ(q−r)+q)/r ), which proved (6.54).

Finally, it follows from (6.54) that

logNq(C2ε)

logC2 − log(C2ε)
� logNr(ε

(δ(q−r)+q)/r )

− log ε(δ(q−r)+q)/r
· δ(q − r) + q

r
.

Taking the sup-limit as ε → 0 we find

dimq(B) � δ(q − r) + q

r
dimr (B), ∀δ > 1, q � r > 1.

Letting δ → 1 we obtain

dimq(B) �
(

2q

r
− 1

)
dimr (B), q � r > 1,

which completes the proof of the lemma. �
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Theorem 6.9. Let A(ω) = Aq(ω) be the same random attractor obtained in Theorem 6.7. Then
A(ω) has finite fractal dimensions under Lq -norm for any q � 2. Furthermore, we have

dim2 A(ω) � dimq A(ω) � (q − 1)dim2 A(ω), q � 2, (6.56)

where dimq A(ω) denotes the fractal dimension under the Lq -norm and dim2 A(ω) is the usual
fractal dimension under the L2-norm.

Proof. Taking r = 2 in Lemma 6.8 we obtain (6.56) immediately. But it has been proved by
Langa and Robinson [12] that dim2 A(ω) < +∞, then (6.56) implies that dimq A(ω) < +∞ for
all q > 2. �
Remark 6.10. Since the Hausdorff dimension is less than the fractal dimension, the attractor
A(ω) has finite Hausdorff dimensions under any Lq -norm (q � 2). It is also possible to derive a
similar estimate of (6.56) for the Hausdorff dimensions.
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