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Abstract

We describe a loopwise perturbative truncation scheme for quantum transport equations in the Kadanoff–
Baym formalism, which does not necessitate the use of the so-called Kadanoff–Baym or quasi-particle 
ansaetze for dressed propagators. This truncation scheme is used to study flavour effects in the context of 
Resonant Leptogenesis (RL), showing explicitly that, in the weakly-resonant regime, there exist two distinct
and pertinent flavour effects in the heavy-neutrino sector: (i) the resonant mixing and (ii) the oscillations 
between different heavy-neutrino flavours. Moreover, we illustrate that Kadanoff–Baym and quasi-particle 
ansaetze, whilst appropriate for the flavour-singlet dressed charged-lepton and Higgs propagators of the RL 
scenario, should not be applied to the dressed heavy-neutrino propagators. The use of these approximations 
for the latter is shown to capture only flavour oscillations, whilst discarding the separate phenomenon of 
flavour mixing.
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1. Introduction

The scenario of leptogenesis [1] can be regarded as a cosmological consequence of the see-
saw mechanism [2–6], thereby providing an elegant unifying framework to account for both 
the observed baryon asymmetry of our Universe (BAU) and the smallness of the light-neutrino 
masses [7]. The key ingredients are heavy Majorana neutrinos, whose out-of-equilibrium de-
cays provide an initial excess in lepton number (L). This excess is subsequently converted to 
a net baryon number (B) via the equilibrated (B + L)-violating interactions of the electroweak 
sphalerons [8]. The L-violating Majorana mass terms, complex Yukawa couplings and expan-
sion of the Universe fulfill the necessary Sakharov conditions [9] for dynamically generating the 
BAU, namely B , C and CP violation, together with out-of-equilibrium dynamics. For a review 
on various aspects of leptogenesis, see e.g. [10] and references therein.

An attractive possibility of testing leptogenesis in foreseeable laboratory experiments is pro-
vided by the mechanism of Resonant Leptogenesis (RL) [11–13]. This relies on the fact that 
the heavy Majorana neutrino self-energy effects on the leptonic CP -asymmetry (the ε-type ef-
fects) become dominant [14–16] and get resonantly enhanced, when at least two of the heavy 
neutrinos have a small mass difference comparable to their decay widths [11,12]. The resonant 
enhancement of the CP -asymmetry enables a successful low-scale leptogenesis [13,17], whilst 
retaining perfect agreement with the active neutrino oscillation data [7]. This level of testability 
is further improved in the scenario of Resonant �-Genesis (RL�), where the final lepton asym-
metry is dominantly generated and stored in a single lepton flavour � [18,19]. In such models, 
the heavy neutrinos could be at a scale as low as the electroweak scale [17], whilst still having 
sizable couplings to other charged-lepton flavours �′ �= �. Thus, RL� scenarios may be testable 
in the run-II phase of the LHC [20–25] as well as in various low-energy experiments searching 
for lepton flavour/number violation [17,19,26,27].

In RL models, with quasi-degenerate heavy Majorana neutrinos, flavour effects in both heavy-
neutrino [12,17–19,28–33] and charged-lepton [34–41] sectors, as well as the interplay between 
them, can play an important role in determining the final lepton asymmetry. These intrinsically-
quantum effects can be accounted for by extending the classical flavour-diagonal Boltzmann 
equations for the number densities of individual flavour species to a semi-classical evolution 
equation for a matrix of number densities, analogous to the formalism presented in [42] for light 
neutrinos. This approach, the so-called ‘density matrix’ formalism, has been adopted for various 
leptogenesis scenarios [31,32,37,41,43–48]. A consistent treatment of all pertinent flavour ef-
fects, including flavour mixing, oscillations and off-diagonal (de)coherences, necessitates a fully
flavour-covariant formalism, which was recently developed in [49] (for an executive summary, 
see [50]). This provides a complete and unified description of RL. Moreover, the resonant mix-
ing of different heavy-neutrino flavours and coherent oscillations between them were found to be 
two distinct physical phenomena, in analogy with the experimentally-distinguishable phenomena 
of mixing and oscillations in the neutral K , D, B and Bs -meson systems [7].1 In particular, we 
draw attention to the phenomenon of oscillations via regeneration for the kaon system in medium 
[51,52]. A proper treatment of these flavour effects in this fully flavour-covariant formalism could 
lead to a significant enhancement in the final lepton asymmetry, as compared to partially flavour-

1 This was also shown explicitly in the context of cascade decays of heavy particles, where the time-scales for mixing 
and oscillation are well separated [53–56].
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dependent or flavour-diagonal limits, as illustrated numerically in [49] within the context of an 
RLτ model.2

On the other hand, there has been significant progress in the literature, attempting to go be-
yond the semi-classical ‘density matrix’ approach [42] to transport phenomena by means of 
the quantum field-theoretic analogues of the Boltzmann equations (see e.g. [57,58]), known 
as the Kadanoff–Baym (KB) equations [59] (for reviews, see [60–62]). This system of quan-
tum Boltzmann equations is commonly derived from the Cornwall–Jackiw–Tomboulis (CJT) 
effective action [62–66] of the Schwinger–Keldysh [67,68] closed-time path (CTP) formalism of 
non-equilibrium thermal field theory [69–71]. The KB equations are manifestly non-Markovian, 
describing the non-equilibrium time-evolution of two-point correlation functions, and have been 
studied extensively in various scenarios of leptogenesis [72–97]. In particular, these ‘first-
principles’ approaches to leptogenesis can, in principle, account consistently for all off-shell, 
finite-width and flavour effects, including thermal corrections. However, the loopwise perturba-
tive expansion of non-equilibrium propagators is normally spoiled by mathematical pathologies, 
known as pinch singularities [98–104], arising from ill-defined products of Dirac delta functions 
with identical arguments. Thus, in order to define and extract physically-meaningful quantities, 
such as particle number densities, one often resorts to particular approximations, specifically 
gradient expansion of time-derivatives in the so-called Wigner representation [105–109] and 
quasi-particle ansaetze [110–114] for the form of the dressed propagators.

Recently, a new perturbative formulation of non-equilibrium thermal field theory [115] (for 
an overview, see [116]) was developed, which is free of the mathematically ill-defined pinch 
singularities previously thought to spoil such approaches. Within this framework, one may define 
a perturbative loopwise truncation scheme for quantum transport equations that is valid to all 
orders in a gradient expansion, whilst capturing non-Markovian dynamics, memory and threshold 
effects. As a result, physically-meaningful particle number densities can be derived directly from 
the Noether charge, without the need for quasi-particle ansaetze.

In this paper, we use the formalism of [115] to obtain a well-defined loopwise perturbative 
truncation scheme for the KB equations in the weakly-resonant regime of RL. This is achieved 
without resorting to a quasi-particle ansatz for the dressed heavy-neutrino propagator. We find 
that the source term for the lepton asymmetry obtained in this KB approach is exactly the same as 
that derived in [49] using a semi-classical Boltzmann approach. Thus, we prove that there is no
double-counting of flavour effects captured in the fully flavour-covariant semi-classical formal-
ism of [49]. Moreover, we confirm that flavour mixing and oscillations are two physically-distinct
phenomena also in improved quantum Boltzmann treatments, as is the case in the semi-classical 
approach. Finally, we show that the use of KB or quasi-particle ansaetze for the resummed 
heavy-neutrino propagators captures only flavour oscillations and not the separate phenomenon 
of flavour mixing. As a result, the application of such approximations may lead to an underesti-
mate of the generated lepton asymmetry by a factor of order two in the weakly-resonant regime.

The rest of the paper is organized as follows. In Section 2, we introduce a flavour-covariant 
scalar toy model of RL and describe its flavour-covariant canonical quantization within the 
context of perturbative non-equilibrium thermal field theory. In Section 3, we derive the heavy-
neutrino and charged-lepton quantum transport equations relevant to the source term for the 
lepton asymmetry. Subsequently, in Section 4, we illustrate that the KB ansaetze are not ap-

2 Note that in RL� scenarios, the quantum (de)coherence effects in the charged-lepton sector must also be included, 
which might further contribute to the enhancement of the final lepton asymmetry, depending upon the model parameters 
[49].
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propriate in the presence of particle mixing and that such approximations, when applied to the 
resummed heavy-neutrino propagator, discard the phenomenon of flavour mixing. We then pro-
ceed to derive the form of the source term for the lepton asymmetry, incorporating both flavour 
mixing and oscillation. In Section 5, we derive an approximate analytic solution for the lepton 
asymmetry, making comparison with existing results. Finally, Section 6 summarizes our conclu-
sions. Further technical details of the resummation of the heavy-neutrino Yukawa couplings and 
thermal propagators are provided in Appendix A.

2. Flavour-covariant scalar model of RL

In order to study the role of heavy-neutrino flavour effects in RL within the KB formalism, 
but without the technical complications arising from the fermionic nature of the heavy neutrinos 
and charged leptons, we consider a simple toy model of RL with two real scalar fields Nα (with 
α = 1, 2), one complex scalar field L and a real scalar Φ . This simple model includes all qualita-
tively important features of leptogenesis, where the two real scalar fields mimic heavy Majorana 
neutrinos of two flavours and the complex scalar field models charged leptons of a single flavour. 
Moreover, Φ plays the role of the Standard Model (SM) Higgs field. The approximate global 
U(1) symmetry associated with the complex scalar field L corresponds to the lepton number. 
Similar toy models have been used extensively to study RL in the KB formalism [77,78,81,93,
96,108].

In order to capture fully the flavour-dynamics in the heavy-neutrino sector, we adopt the 
flavour-covariant formulation developed in [49]. Therein, the heavy-neutrino field transforms 
in the fundamental representation of U(NN), i.e. Nα → N ′

α = Uα
βNβ , where Uα

β ∈ U(NN).3

The relevant part of the Lagrangian may then be written in the following manifestly-covariant 
form:

LN = hαL†ΦNα + 1

4
Nα

[
m2

N

]αβ
Nβ + H.c., (2.1)

where the tree-level Yukawa coupling parameters hα transform as a vector and the heavy-neutrino 
mass-squared matrix [m2

N ]αβ transforms as a rank-2 tensor of U(NN), i.e.

hα → h′ α = Uα
βhβ,

[
m2

N

]αβ → [
m′ 2

N

]αβ = Uα
γ Uβ

δ

[
m2

N

]γ δ
. (2.2)

The basic Sakharov conditions [9] for the generation of the BAU are satisfied in this toy model 
as follows. The lepton number is explicitly broken by the L†ΦN term in (2.1). Also, the 
charge conjugation (C) symmetry is violated, provided that arg(h1) �= arg(h2) and the heavy 
neutrinos are non-degenerate. In this model, C-violation will also imply CP -violation, since 
CP -transformations on the scalar fields are identical to C-transformations, up to a sign change 
of the spatial coordinates. Finally, the out-of-equilibrium condition can be satisfied by the decays 
of Nα in an expanding Universe.

In order to define unambiguously the physical objects that enter into the heavy-neutrino 
rate equation, we follow the perturbative framework of non-equilibrium thermal field the-
ory described in [115]. This novel approach differs from the standard interpretation of the 
Schwinger–Keldysh closed-time path (CTP) formalism in the time-dependence of free propaga-
tors. Specifically, the free positive-frequency Wightman propagator of [115], in the interaction 
picture, is defined as

3 In this covariant notation, complex conjugation raises/lowers indices.
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Fig. 1. The CTP contour C+ ∪ C− in the analytically-continued complex-time (t) plane, indicating the relationship 
between macroscopic and microscopic times t = t̃f − t̃i , as defined in the perturbative non-equilibrium formulation of 
thermal Quantum Field Theory in [115].

[
i
N,0

> (x, y, t̃f ; t̃i )
]
α

β = 〈
Nα(x; t̃i )Nβ(y; t̃i )

〉
t
≡ 1

Z
Trρ(t̃f ; t̃i )Nα(x; t̃i )Nβ(y; t̃i ), (2.3)

where Z = Trρ(t̃f ; ̃ti ) is the partition function, with ρ(t̃f ; ̃ti ) being the quantum-statistical den-
sity operator. Here, t̃f is the microscopic time of observation of the system and t̃i is the boundary 
time at which the three equivalent pictures of quantum mechanics, viz. Schrödinger, interaction 
(Dirac) and Heisenberg, are coincident and the initial conditions may be specified unambigu-
ously. Together, these two microscopic times determine the macroscopic time of the statistical 
evolution: t = t̃f − t̃i . As a result, the statistical part of the free propagators evolves in time. 
Picture-independent physical observables may then be defined by taking the equal-time limit of 
ensemble expectation values. The resulting path-integral description is constructed over a modi-
fication of the original CTP contour, with t̃f = −t̃i = t/2, whose length evolves in time. This is 
illustrated graphically in Fig. 1.

This is in stark contrast with earlier CTP constructions (see e.g. [70,71]), which use the 
Heisenberg picture and a contour of fixed length. In these earlier treatments, the free propagator 
is given by[

i
N,0
> (x, y,0)

]
α

β = 〈
Nα(x)Nβ(y)

〉
0 ≡ 1

Z
Trρ(0)Nα(x)Nβ(y), (2.4)

whose role is to encode the initial conditions at a time t = 0.
With the recognition of the necessary dependence of diagrammatic series on the two micro-

scopic times t̃f and t̃i , it was shown in [115] that one may arrive at a perturbative framework of 
non-equilibrium field theory, using (2.3), that captures fully non-Markovian effects and is free 
of the so-called pinch singularities [98–104], previously thought to spoil such perturbative ap-
proaches when constructed using (2.4). As a result, it is now possible to obtain a well-defined 
perturbative loopwise truncation scheme for quantum transport equations, using the propaga-
tor (2.3) instead of (2.4). Moreover, it was illustrated that this loopwise perturbative truncation 
was two-fold, proceeding (i) spectrally: the truncation of the external leg of the transport equa-
tion determines the order of spectral dressing of the species being counted and (ii) statistically:
the truncation of the self-energies determines the set of processes driving the statistical evolu-
tion of the system. In this way, quantum transport equations are obtained without the need for 
quasi-particle approximations or gradient expansion.
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Within the union of these flavour-covariant and perturbative non-equilibrium frameworks [49,
115], the plane-wave decomposition of the heavy-neutrino field takes the following form:

Nα(x; t̃i ) =
∫
k

[
(2EN(k))−1/2]

α
β
([

e−ik·x]
β

γ aγ (k,0; t̃i ) + [
e+ik·x]

β
γ Gγδa

δ(k,0; t̃i )
)
,

(2.5)

where 
∫

k ≡ ∫ d3k
(2π)3 is a short-hand notation for the three-momentum integral. Here, the energy 

and Fourier kernels transform as rank-2 tensors under U(NN), since [E2
N(k)]αβ = k2δα

β +
[|mN |2]αβ .4 In addition, we have been careful to indicate that interaction-picture annihilation 
and creation operators aα(k, ̃t; ̃ti ) and aα(k, ̃t; ̃ti ) depend explicitly on the time t̃ and implicitly 
on the boundary time t̃i . The algebra of the creation and annihilation operators for the scalar 
fields is defined by the equal-time commutator[

aα(k, t̃; t̃i ), aβ
(
k′, t̃; t̃i

)] = (2π)3δα
βδ(3)

(
k − k′), (2.6)

where δα
β is the Kronecker delta. Notice that we have chosen the normalization of the operators 

(having mass dimensions −3/2) such that the commutator (2.6) is isotropic in flavour space. The 
unitary and symmetric matrix G, with elements Gαβ = [U∗U†]αβ , appearing in (2.5), is required 
by flavour covariance, since the operators aα(k, ̃t; ̃ti) and aα(k, ̃t; ̃ti ) necessarily transform in 
different representations of U(NN). Moreover, charge-conjugate pairs of creation or annihilation 
operators must also transform in different representations of U(NN) (for a detailed discussion, 
see [49]). This requires us to introduce the generalized charge-conjugation (C̃) transformation, 
defined via[

aα(k, t̃; t̃i )
]C̃ ≡ Gαβ

[
aβ(k, t̃; t̃i )

]C = GαβUCaβ(k, t̃; t̃i )U†
C = Gαβaβ(k, t̃; t̃i ), (2.7)

where UC is the charge-conjugation operator in Fock space. Thus, G accounts for flavour rota-
tions via U to and from the mass eigenbasis, in which the usual charge-conjugation C is defined. 
In the mass eigenbasis, which we denote by a caret (̂), we have Ĝ = 12, in which case the C̃
and C transformations coincide. We may now write the generalized “Majorana” constraint[

Nα
]C̃ = Nα. (2.8)

In addition, for this toy model, C̃ ≡ C for the charged-lepton and Higgs fields. Finally, we note 
that the heavy-neutrino Yukawa couplings transform as

(hα)C̃ = hα, (2.9)

ensuring that the Lagrangian in (2.1) has definite C̃ properties.
We now introduce the heavy-neutrino number densities[

nN(k, t)
]
α

β = V−1
3

〈
aβ(k, t̃; t̃i )aα(k, t̃; t̃i )

〉
t
, (2.10a)[

nN(k, t)
]
α

β = V−1
3 Gαμ

〈
aμ(k, t̃; t̃i )aλ(k, t̃; t̃i )

〉
t
Gλβ = [(

nN(k, t)
)C̃]

β
α, (2.10b)

4 Here, [|mN |2]αβ = [mN ]αγ [mN ]γβ . In the mass eigenbasis, [mN ]αβ is diagonal and its elements are the heavy-
neutrino mass eigenvalues (for more details, see [49]).
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where V3 ≡ (2π)3δ(3)(p = 0) is the spatial 3-volume. Notice that nN and nN are not independent 
by virtue of the (real scalar) “Majorana” constraint (2.8). We may then define the C̃ “even” and 
“odd” heavy-neutrino number densities5

nN ≡ 1

2

(
nN + nN

)
, δnN = nN − nN. (2.11)

In the mass eigenbasis, these become

n̂N = Re
[̂
nN

]
, δn̂N = 2i Im

[̂
nN

]
. (2.12)

Lastly, we introduce the flavour-covariant generalized real and imaginary parts, which, for an 
Hermitian matrix A = A†, are defined as[

R̃e(A)
]
α

β ≡ 1

2

(
Aαβ + GαμAλ

μGλβ
)
,[

Ĩm(A)
]
α
β ≡ 1

2i

(
Aαβ − GαμAλμGλβ

)
. (2.13)

In the weakly-resonant regime of RL, i.e. for ΓN1,2 	 |mN1 − mN2 | 	 mN1,2 , the heavy-
neutrino mass eigenbasis can be defined to be that in which the thermal mass matrix, given in 
terms of the retarded self-energy i�N

R (k) by[
M2

N(k)
]
α

β ≡ [|mN |2]
α

β − [
R̃eΠN

R (k)
]
α

β, (2.14)

is diagonal in the vicinity of the two quasi-degenerate thermal mass shells. This is based on 
the fact that the equilibrium retarded heavy-neutrino self-energy i�N

R,eq(k) is a slowly-varying 
function of k0 near the thermal mass shells, so that the mass eigenbasis is well defined. Therefore, 
we can approximate [M2

N(k)]αβ by its on-shell (OS) form [M2
N(k)]αβ , given by the solution of 

the thermal gap equation at equilibrium[
E 2

N(k)
]
α

β ≡ k2δα
β + [

M2
N(k)

]
α

β

= [
E2

N(k)
]
α

β − lim
ε→0+

[
R̃eΠN

R,eq

(
EN(k) + iε,k

)]
α

β. (2.15)

Assuming a Gaussian and spatially-homogeneous ensemble for the heavy neutrinos, we may 
write the double-momentum representation (see [49,115]) of the heavy-neutrino Wightman prop-
agators in the mass eigenbasis as[

i
̂
N,0
≷

(
k, k′, t̃f ; t̃i

)]
αβ

= 2π |2k0|1/2δ
(
k2 − m̂N,α

)
2π |2k′

0|1/2δ
(
k′ 2 − m̂N,β

)
ei(k0−k′

0)t̃f
(
θ(±k0)θ

(±k′
0

)
δαβ

+ [
θ(k0)θ

(
k′

0

) + θ(−k0)θ
(−k′

0

)][̂
nN(k, t)

]
αβ

)
(2π)3δ(3)

(
k − k′). (2.16)

Here, we see that, in general, the heavy-neutrino Wightman propagators depend explicitly on 
the zeroth components of two four momenta, k0 and k′

0, since the time-translational invariance 

of free propagators is broken in the presence of flavour coherences. The phase ei(k0−k′
0)t̃f arises 

from the free evolution of the interaction-picture operators.

5 We adopt the notation of [49], where the bold-face A denotes the entire matrix in flavour space, while [A]αβ denotes 
its individual elements.
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In the weakly-resonant regime, we may approximate m̂N,α 
 mN = (m̂N,1 + m̂N,2)/2 in 
the on-shell delta functions of (2.16). We then obtain the free homogeneous heavy-neutrino 
Wightman propagators, which, in a general basis, may be written in the single momentum repre-
sentation[

i

N,0
≷ (k, t)

]
α

β = 2πδ
(
k2 − m2

N

)(
θ(±k0)δα

β + [
nN(k, t)

]
α

β
)
. (2.17)

By resumming the dispersive self-energy corrections, we may replace mN in (2.17) by the aver-
age thermal mass MN(k) ≡ (M̂N,1(k) + M̂N,2(k))/2, given by the solution to (2.15).

For our subsequent discussion, we need in addition the equilibrium form of the dressed Higgs 
and charged-lepton Wightman propagators for vanishing chemical potential. In the narrow-width 
approximation (NWA), it will be sufficient to use the standard quasi-particle expressions

i

Φ,eq
≷ (q) = 2πδ

(
q2 − M2

Φ

)[
θ(±q0) + nΦ

eq(q)
]
, (2.18)

i

L,eq
≷ (p) = 2πδ

(
p2 − M2

L

)[
θ(±p0) + θ(p0)n

L
eq(p) + θ(−p0)n

L
eq(p)

]
, (2.19)

where M2
X denotes the thermal mass of the species X and nX

eq(p) = (eEX(p)/T − 1)−1 is the 
equilibrium number density of X, obeying Bose–Einstein statistics, with EX(p) being the OS 
quasi-particle energy, as determined by a thermal gap equation analogous to (2.15).

3. Quantum transport equations

In this section, we will obtain the rate equations for the heavy neutrinos and charged leptons, 
derived within the perturbative framework of [115], as outlined above. In particular, we will 
derive the form of the source term for the charged-lepton asymmetry in the scalar toy model 
described in Section 2.

Employing the methods described in [115], we may define the total number density unam-
biguously in terms of the negative-frequency Wightman propagator as

n(t,X) =
(X)∫

p,p′

(
p0 + p′

0

)
i�<

(
p,p′, t̃f ; t̃i

)
, (3.1)

where we have introduced the following short-hand notation for the integration measure:

(X)∫
p,p′

≡
∫

p,p′
e−i(p−p′)·Xθ

(
p0 + p′

0

)
, (3.2)

with 
∫
p

≡ ∫ d4p

(2π)4 and 
∫
p,p′,... ≡ ∫

p

∫
p′ · · ·. Here, X ≡ Xμ = (t̃f , X) is the macroscopic space-

time coordinate four-vector. Notice that the definition (3.1) is valid to any order in a perturbative 
truncation of the heavy-neutrino propagator. By inserting the free heavy-neutrino propagator on 
the RHS of (3.1), we obtain the number density nN of spectrally-free particles (with respect to 
absorptive transitions). Instead, inserting the resummed heavy-neutrino propagator, we count the 
number density nN

dress of fully spectrally-dressed particles.
In coordinate space, the KB equations for the Wightman propagators of a given species may 

be written in the following condensed form (see e.g. [57]):
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(−�2
x − |m|2 · +�P∗)

�≷ = −1

2
(�> ∗ �< − �< ∗ �> + 2�≷ ∗ �P ), (3.3)

where �2
x ≡ ∂xμ∂xμ is the d’Alembertian operator, ∗ indicates the convolution

A ∗ B ≡
∫

z∈Ωt

A(x, z, t̃f ; t̃i ) · B(z, y, t̃f ; t̃i ), (3.4)

and · denotes matrix multiplication in flavour space. Here, 
∫
z∈Ωt

≡ ∫
Ωt

d4z is the space-time con-

volution integral over the hypervolume Ωt = [t̃i , ̃tf ] ×R
3 = [− t

2 , t2 ] ×R
3, bounded temporally 

by the boundary and observation times [115]. In addition, we note that

B ∗ A ≡
∫

z∈Ωt

B(x, z, t̃f ; t̃i ) · A(z, y, t̃f ; t̃i ), (3.5)

without reversal of the external arguments x and y. In (3.3), i�>(<) are the absorptive self-
energies arising from unitarity cuts with positive- (negative-) energy flow, whilst i�P and 
i�P are the principal-part self-energy and propagator, respectively. For the propagators and 
self-energies of the charged-lepton and Higgs, the matrix product (·) trivially reduces to scalar 
multiplication.

Performing a double Fourier transform (see [115]), (3.3) takes the following double-
momentum representation:(

p2 − |m|2 · +�P�
)
�≷ = −1

2
(�> � �< − �< � �> + 2�≷ � �P ), (3.6)

where � denotes the weighted convolution integral in the double momentum space

A � B ≡
∫

q,q ′
(2π)4δ

(4)
t

(
q − q ′)A(p, q, t̃f ; t̃i ) · B(

q ′,p′, t̃f ; t̃i
)
. (3.7)

Here, the weight function is given by

(2π)4δ
(4)
t

(
q − q ′) ≡

∫
z∈Ωt

e−i(q−q ′)·z = (2π)4δt

(
q − q ′)δ(3)

(
q − q′), (3.8)

with

δt

(
q0 − q ′

0

) ≡ 1

π

sin[(q0 − q ′
0)t/2]

q0 − q ′
0

. (3.9)

As for the ∗ operation in (3.4), the external arguments p and p′ are not reversed for B �A relative 
to (3.7).

Following [115] and using (3.1), we find the rate equation for the total number density

dn(t,X)

dt
−

(X)∫
p,p′

(
p2 − p′ 2)�< −

(X)∫
p,p′

([|m|2,�<

] − [�P ,�<]�
)

= −1

2

(X)∫
′

({�>,�<}� − {�<,�>}� + 2[�<,�P ]�
)
. (3.10)
p,p
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Here, we have introduced the (anti-)commutators in flavour space:

[A,B]� ≡ A � B − B � A, (3.11a)

{A,B}� ≡ A � B + B � A, (3.11b)

with the � operation defined in (3.7) above. In (3.10), the first two terms of the LHS comprise the 
drift terms; the latter two terms of the LHS describe mean-field effects, including oscillations; 
and, finally, the terms on the RHS describe collisions. We emphasize that (3.10) is obtained with-
out the need to perform a gradient expansion or make use of a quasi-particle ansatz. Thus, (3.10)
is valid at any order in perturbation theory for spatially inhomogeneous systems, thereby captur-
ing fully the flavour effects, non-Markovian dynamics and memory effects.

3.1. Heavy-neutrino rate equations

Starting from the general transport equation (3.10), we now proceed to derive the rate equa-
tion for the heavy-neutrino number densities. The principal-part self-energy �N

P in the last term 
on the LHS of (3.10) combines with the tree-level heavy-neutrino mass |mN |2 to give the ther-
mal mass: M2

N = |mN |2 − �N
P , where we have used R̃e(�N

R ) = �N
P in (2.14). In the absence 

of mixing, the commutator containing �N
P involves a principal-value integral that we may safely 

neglect for quasi-degenerate heavy neutrinos. Nevertheless, mixing between the Majorana neu-
trinos causes the appearance of off-diagonal entries in �N

P proportional to Dirac delta functions 
in the NWA. It can be shown that, in the weakly-resonant regime, these are higher-order effects 
compared to the ones taken into account in our analysis.

Following [115] and using the definition of the total number density in (3.1), we obtain the 
following rate equation for the dressed heavy-neutrino number density nN

dress:

dnN
dress

dt
=

(X)∫
k,k′

[
−i

[
M2

N, i�N
<

] − 1

2

({
i�N

<, i�N
>

}
�
− {

i�N
>, i�N

<

}
�

)]
. (3.12)

Neglecting the O(h6) terms proportional to the lepton asymmetry, we may approximate the 
charged-lepton and Higgs propagators in the heavy-neutrino self-energies by their quasi-particle 
equilibrium forms, as given in (2.18) and (2.19). The non-Markovian heavy-neutrino self-
energies may then be written in the form[

iΠN
≷

(
k, k′, t̃f ; t̃i

)]
α

β

= 2 R̃e
(
h†h

)
α

β

∫
p,q

(2π)4δt (k − p − q)(2π)4δt

(
k′ − p − q

)



L,eq
≶ (p)


Φ,eq
≶ (q). (3.13)

We now perform a Wigner–Weisskopf approximation along the lines of [49], in order to ob-
tain the Markovian limit of (3.12). The Wigner–Weisskopf approximation is performed by the 
replacement of Ωt by Ω∞ in the space-time integrals, which corresponds to taking the limit 
t → ∞ in the vertex functions by virtue of the identity

lim
t→∞ δt (k0 − p0 − q0) = δ(k0 − p0 − q0). (3.14)

We note that the free-phase contributions in (3.2) and those present in the dressed heavy-neutrino 
propagator, cf. (2.16), will cancel in this energy-conserving limit. Thus, we make the following 
replacement of the dressed heavy-neutrino propagator in the Markovian approximation
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e−i(k0−k′
0)t̃f �N

<

(
k, k′, t̃f ; t̃i

) −→ �N
<

(
k, k′, t

)
, (3.15)

where the latter is distinguished by the form of its time argument.
With the approximations (3.14) and (3.15), we obtain from (3.12) the Markovian heavy-

neutrino rate equation for the dressed number density:

d[nN
dress]αβ

dt
=

∫
k,k′

θ
(
k0 + k′

0

)[−i
[
M2

N, i
N
<

(
k, k′, t

)]
α

β

− 1

2

([
iΠN

< (k)
]
α

γ
[
i
N

>

(
k, k′, t

)]
γ

β + [
i
N

>

(
k, k′, t

)]
α

γ
[
iΠN

<

(
k′)]

γ
β
)

+ 1

2

([
iΠN

> (k)
]
α

γ
[
i
N

<

(
k, k′, t

)]
γ

β

+ [
i
N

<

(
k, k′, t

)]
α

γ
[
iΠN

>

(
k′)]

γ
β
)]

, (3.16)

in which the explicit forms of the Markovian heavy-neutrino self-energies are given by

i
[
ΠN

≶ (k)
]
α

β = 2 R̃e
(
h†h

)
α

βB
eq
≶ (k). (3.17)

Herein, we have introduced the thermal loop functions

B
eq
≶ (k) ≡

∫
p,q

(2π)4δ(4)(p − k + q)

Φ,eq
≶ (q)


L,eq
≶ (p), (3.18)

which satisfy Beq
< (−k) = B

eq
> (k) ∈ R. In the classical-statistical regime and restricting to positive 

energy flow (k0 > 0), the thermal loop functions may be written as

B
eq
> (k0 > 0,k) = −

∫
dΠΦ

∫
dΠL(2π)4δ(4)(k − pΦ − pL), (3.19)

B
eq
< (k0 > 0,k) = −

∫
dΠΦ

∫
dΠL(2π)4δ(4)(k − pΦ − pL)nΦ

eq(EΦ)nL
eq(EL). (3.20)

The phase space measure appearing here is defined as

dΠX ≡ d4pX

(2π)4
2πδ

(
p2

X − M2
X

)
θ
(
p0

X

)
, (3.21)

for a given species X. Notice that (3.16) still accounts for the non-homogeneity of the heavy-
neutrino propagator.

Following [115] and as described in Section 2, the rate equations (3.10) may be truncated in a 
perturbative loopwise manner as follows: (i) spectrally, by truncating the external leg of the KB 
equation and (ii) statistically, by truncating the self-energy. In order to obtain the asymmetry at 
O(h4), it is sufficient to consider the evolution of the spectrally-free heavy-neutrino number den-
sity. This is obtained by truncating (3.16) spectrally at zeroth loop order, replacing the external 
heavy-neutrino propagators by the free homogeneous propagator in (2.17). On the other hand, 
we retain the full 1-loop CJT-resummed statistical evolution, described by the heavy-neutrino 
self-energy, which contains the dressed (quasi-particle) charged-lepton and Higgs propagators 
in (2.18) and (2.19). We then obtain the rate equation for the spectrally-free number density 
(denoted as [nN ]αβ )
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d[nN ]αβ

dt
=

∫
k

θ(k0)

{
−i

[
M2

N, i
N,0
< (k, t)

]
α

β

− 1

2

({
iΠN

< (k), i
N,0
> (k, t)

}
α

β − {
iΠN

> (k), i
N,0
< (k, t)

}
α

β
)}

, (3.22)

where the k′-integral in (3.16) was carried out trivially.
Substituting explicitly for the form of the free heavy-neutrino propagator in (2.17) and assum-

ing kinetic equilibrium along the lines of [49], (3.22) gives the rate equation for nN(t):

d[nN ]αβ

dt
= −i

[
EN,nN

]
α

β + [
R̃e

(
γ

N,(0)
LΦ

)]
α

β − 1

2nN
eq

{
nN, R̃e

(
γ

N,(0)
LΦ

)}
α

β, (3.23)

where the C̃P -“even” rate is defined in terms of the tree-level Yukawa couplings

[
γ

N,(0)
LΦ

]
α

β ≡
∫

NLΦ

2hαhβ, (3.24)

with the short-hand notation∫
NLΦ

≡
∫

dΠN

∫
dΠL

∫
dΠΦ(2π)4δ(4)(pN − pL − pΦ)e−p0

N/T . (3.25)

The thermally-averaged effective energy matrix is [49]

EN = gN

nN
eq

∫
k

EEE N(k)e−EN (k)/T , (3.26)

with EEE N(k) defined in (2.15). Here, EN(k) = (|k|2 + M2
N)1/2 is the average energy and MN =

1
2 Tr(M†

NMN) is the average thermal mass for the system of two quasi-degenerate heavy neutri-
nos. Moreover, we have indicated explicitly the dependence on the number of internal degrees 
of freedom of the heavy neutrino scalars gN = 1, in order to facilitate the comparison with the 
realistic case of Majorana fermions, where gN = 2. Separating the C̃P -“even” and -“odd” parts 
of (3.23), we obtain the final rate equations

d[nN ]αβ

dt
= − i

2

[
EN, δnN

]
α

β + [
R̃e

(
γ

N,(0)
LΦ

)]
α

β − 1

2nN
eq

{
nN, R̃e

(
γ

N,(0)
LΦ

)}
α

β, (3.27a)

d[δnN ]αβ

dt
= −2i

[
EN,nN

]
α

β − 1

2nN
eq

{
δnN, R̃e

(
γ

N,(0)
LΦ

)}
α

β, (3.27b)

which agree with those obtained in the semi-classical approach of [49], when the effective 
Yukawa couplings used there are replaced by the tree-level ones. As we will show below, the 
flavour-covariant rate equations in (3.27) are sufficient to obtain the form of the lepton asymme-
try at O(h4) in the weakly-resonant regime, in complete agreement with the results presented 
in [49]. In particular, we draw attention to the second term on the RHS of (3.27a), as identified 
in [49], which induces flavour coherences in the heavy-neutrino number density [nN ]αβ , thus 
triggering oscillations in addition to mixing.
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3.2. Lepton asymmetry source term

The lepton asymmetry is defined in terms of the total number densities of the charged leptons 
and anti-leptons, nL and nL, as

δnL ≡ nL − nL. (3.28)

The source term for this asymmetry is obtained by considering the contribution to the lepton 
transport equation that contains the CP -even part of the (anti-)lepton and Higgs propagators. In 
the regime where the asymmetry is small, we may approximate these propagators as having the 
equilibrium forms given by (2.18) and (2.19) in the single-momentum representation.

Proceeding analogously to the heavy-neutrino case, replacing the charged-lepton and Higgs 
propagators by their quasi-particle equilibrium forms in (2.18) and (2.19), we obtain the follow-
ing Markovian approximation of the source term for the lepton asymmetry:6

dδnL

dt
⊃ −i

∫
k,k′,p,q

θ
(
p0 + k′

0 − q0
)
(2π)4δ(4)(p − k + q)

×
[
hβhα

(
1

2

[

N

<

(
k, k′, t

) + 
N
<

(
k′, k, t

)]
α

β

Φ,eq
> (q)


L,eq
>

(
k′ − q

)
− 1

2

[

N

>

(
k, k′, t

) + 
N
>

(
k′, k, t

)]
α

β

Φ,eq
< (q)


L,eq
<

(
k′ − q

)) − C̃.c.

]
, (3.29)

where C̃.c. denotes the generalized charge-conjugate terms.
In the next section, we will demonstrate explicitly that it is not appropriate to replace the 

non-homogeneous heavy-neutrino propagator in (3.29) by the homogeneous approximation of 
the free heavy-neutrino propagator given in (2.17). We note that this would correspond to a sta-
tistical truncation of the source term for the lepton asymmetry δnL and not a spectral truncation, 
as was the case with this replacement in the heavy-neutrino rate equations of Section 3.1 [cf. 
(3.22)].

4. Flavour mixing and Kadanoff–Baym ansaetze

In this section, we will derive the contribution of the dressed heavy-neutrino Wightman prop-
agators to the source term for the asymmetry in the presence of flavour mixing. In addition, we 
will show that the standard quasi-particle or KB ansaetze for the form of these propagators are 
insufficient to capture all physically-relevant phenomena. Specifically, we will demonstrate how 
both heavy-neutrino mixing and oscillations provide distinct contributions to the O(h4) lepton 
asymmetry in the weakly-resonant regime and that the flavour mixing contribution is tacitly dis-
carded when the standard quasi-particle or KB ansaetze are used.

In the Markovian approximation and assuming that the charged-lepton and Higgs propagators 
have the equilibrium forms in (2.18) and (2.19), the Schwinger–Dyson equation of the dressed 
heavy-neutrino Wightman propagator takes the form [115]

6 For further details of the diagrammatic representation of non-homogeneous self-energies and, in particular, their 
double-momentum structure, see [115,116].
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i�N
<

(
k, k′, t

) = i�N,0
<

(
k, k′, t

) + i�N,0
R (k) · i�<(k)(2π)4δ(4)

(
k − k′) · i�N

A

(
k′)

+ i�N,0
R (k) · i�R(k) · i�N

<

(
k, k′, t

)
+ i�N,0

<

(
k, k′, t

) · i�A
(
k′) · i�N

A

(
k′). (4.1)

Instead, the equation for the advanced propagator takes on the simple closed form:

i�N
A (k) = i�N,0

A (k) + i�N,0
A (k) · i�A(k) · i�N

A (k). (4.2)

As shown diagrammatically in Fig. 2, we can solve (4.1) iteratively, obtaining[
i
N

<

(
k, k′, t

)]
α

β = [
i
N

R (k)
]
α

γ
[
iΠN

< (k)
]
γ

δ(2π)4δ(4)
(
k − k′)[i
N

A

(
k′)]

δ
β

+
∞∑

m=0

[(
i
0

R(k) · iΠN
R (k)

)m]
α

γ
[
i
N,0

<

(
k, k′, t

)]
γ

δ

×
∞∑

n=0

[(
iΠN

A

(
k′) · i
N,0

A

(
k′))n]

δ
β . (4.3)

Note that (4.3) is free of pinch singularities, since we have been accounting for the viola-
tion of time-translational invariance (for a more detailed discussion, see [115]). An alternative 
derivation of the homogeneous Markovian form of the dressed Wightman propagator is given in 
Appendix A by means of a direct matrix inversion, which is in agreement with (4.3). We also 
discuss the NWA of these dressed CTP propagators in Appendix A.

The first term on the RHS of (4.3) gives the washout due to 
L = 0 and 
L = 2 scatterings. 
Notice that it does not contribute to the source term, since, if we extract the latter by taking the 
equilibrium part of �<, the whole term has an equilibrium form at O(h4), as considered here. 
Therefore, no double-counting is present and an explicit real intermediate state (RIS) subtraction 
[117] procedure is not needed, as expected on general grounds in the KB formalism [77,78,82]. 
The second term on the RHS of (4.3) can be written in terms of the resummed Yukawa couplings 
hα [13,49], since, at leading order, we have the following equivalence in the heavy-neutrino mass 
eigenbasis:

ĥα

[ ∞∑
n=0

(
i
̂0

R(k) · iΠ̂R(k)
)n

] β

α

= +

+

+ · · · ∼ ĥβ. (4.4)

In Appendix A.1, we prove that this equivalence holds in (3.29) at O(h4) in the lepton asymme-
try, at least in the weakly-resonant regime. There, we also show that, in the mass eigenbasis, the 
part of the heavy-neutrino propagator contributing to the source term for the asymmetry is[

i
̂N
<

(
k, k′, t

)]
αβ

⊃ [

̂N

R (k)
]
αγ

([

̂

N,0
R (k)

]−1
γ γ

[
i
̂N,0

<

(
k, k′, t

)]
γ δ

[

̂

N,0
A

(
k′)]−1

δδ

)[

̂N

A

(
k′)]

δβ
. (4.5)

On the other hand, the KB ansatz for the heavy-neutrino propagator (restricting to positive 
frequencies) takes the following form in the heavy-neutrino mass eigenbasis:
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Fig. 2. Diagrammatic representation of the iterative solution to the Schwinger–Dyson equation for the dressed heavy-
neutrino matrix Wightman propagator i�N

< . Here, the double lines are fully dressed propagators, whereas the single lines 
are the propagators dressed with dispersive corrections only. The unshaded circles are the relevant self-energies, whereas 
the shaded ones are the amputated self-energy corrections to the vertices, which can be identified at leading order with 
the resummed Yukawa couplings (see (4.4) and Appendix A).[

i
̂N
KB,<

(
k, k′, t

)]
αβ

= 2πδ
(
k2 − M̂2

N,α

)
2πδ

(
k′ 2 − M̂2

N,β

)[
nN

KB(k, t)
]
αβ

(2π)3δ(3)
(
k − k′), (4.6)

which satisfies the following properties(
k2 − M̂2

N,α

)[
i
̂N

KB,<

(
k, k′, t

)]
αβ

= 0,
[
i
̂N

KB,<

(
k, k′, t

)]
αβ

(
k′2 − M̂2

N,β

) = 0. (4.7)

It is immediately apparent that the full form of the dressed heavy-neutrino Wightman propagator 
in (4.3) and, equivalently, (4.5) does not satisfy (4.7), by virtue of the mixing that gives rise to the 
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Fig. 3. Diagrammatic representation of the source term for the charged-lepton asymmetry in terms of the resummed 
Yukawa couplings and the spectrally-free heavy-neutrino propagator.

resummed Yukawa couplings. We therefore come to the following conclusion: the application 
of KB ansaetze for the heavy-neutrino propagators discards the physical phenomena of flavour 
mixing.

In [104], it has been pointed out that, for a single-flavour case, one needs to include explicitly 
the effect of the width of the heavy neutrinos in the collision terms, when performing a zeroth-
order gradient expansion or, equivalently, the Markovian approximation. Our results, obtained in 
a different approach as compared to [104], show that the inclusion of off-diagonal widths in the 
source terms is also necessary in order to describe properly the phenomena of flavour mixing.

Other approaches in the literature [87,96], although not relying explicitly on a KB ansatz, 
are still able to solve the KB equations for the dressed heavy-neutrino propagator only up to 
an unknown function that parametrizes the external perturbation of the system. Both mixing 
and oscillations are in principle present in such double-time approaches. It is however not clear 
whether our predictions are in quantitative agreement, since a direct comparison is made difficult 
by the simplified non-equilibrium setting in a non-expanding Universe studied in [87,96].

From (4.4), we see that the mixing effect due to the absorptive part of the heavy-neutrino self-
energy in the dressed propagator (4.3) can be factorized into the resummed Yukawa couplings. 
Moreover, we can replace the non-homogeneous free heavy-neutrino propagator �N,0

< (k, k′, t)
on the RHS of (4.3) with the homogeneous approximation given by (2.17). Thus, the contribution 
of the charged-lepton self-energy to the source term may be written in terms of the spectrally-free 
heavy-neutrino propagator and the resummed Yukawa couplings hα as

dδnL

dt
⊃ −

∫
k

θ(k0)
[
hβhα

([
i
N,0

< (k, t)
]
α

βB
eq
> (k) − [

i
N,0
> (k, t)

]
α

βB
eq
< (k)

) − C̃.c.
]
,

(4.8)

without having required a quasi-particle ansatz for the dressed heavy-neutrino propagator. This 
procedure is illustrated diagrammatically in Fig. 3 and proven explicitly in Appendix A.1.

Finally, assuming kinetic equilibrium7 and separating the C̃P -“even” and “-odd” parts of the 
heavy-neutrino number density nN and δnN , as described in [49], the equation for the asymmetry 
becomes

dδnL

dt
=

( [nN ]αβ

nN
eq

− δα
β

)[
δγ N

LΦ

]
β

α + [δnN ]αβ

2nN
eq

[
γ N
LΦ

]
β

α + W
[
δnL

]
, (4.9)

7 This is a valid assumption in the strong-washout regime of RL, since elastic scattering processes rapidly equilibrate 
the momentum distributions for all the relevant particle species on time-scales much shorter than those of their statistical 
evolution.
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where W[δnL] denotes the washout terms not studied explicitly here. The thermally-averaged 
rates are defined as[

γ N
LΦ

]
α

β ≡
∫

NLΦ

(
hαhβ + [

hc̃
]
α

[
hc̃

]
β
)
, (4.10a)

[
δγ N

LΦ

]
α

β ≡
∫

NLΦ

(
hαhβ − [

hc̃
]
α

[
hc̃

]β)
, (4.10b)

where c̃ ≡ C̃P indicates the generalized CP conjugate. Eq. (4.9) describes the generation of the 
asymmetry via both heavy-neutrino mixing (proportional to [δγ N

LΦ]αβ ) and oscillations (propor-
tional to [δnN ]αβ ). In particular, the source terms agree with the ones given in [49], where both 
the phenomena are separately identified and taken into account in the calculation of the final 
asymmetry.

5. Approximate analytic solution for the lepton asymmetry

In this section, we obtain an approximate analytic solution for the charged-lepton asymmetry 
in the strong-washout regime, using the KB rate equations derived in Section 3. To this end, we 
introduce the following notational conventions:

ηX ≡ nX

nγ
, η̂N ≡ η̂N

ηN
eq

− 1, K̂ ≡ �̂

ζ(3)HN

, (5.1)

where nγ = 2T 3ζ(3)/π2 is the photon number density (with ζ(3) ≈ 1.20206) and HN is the 
Hubble constant in a Friedmann–Robertson–Walker Universe at temperature T = MN . The ther-
mal width � of the heavy neutrinos, obtained from Ĩm�N

R = MN�, is related to the decay rate 
by means of Π̂N

< (k0 > 0, k) 
 2ie−k0/T Im Π̂N
R , which implies

R̃eγ N
LΦ = gN

2

M3
NK1(z)�

π2z
, (5.2)

with z = MN/T and Kn(z) being the n-th order modified Bessel function of the second kind. 
We emphasize again that the off-diagonal elements of (5.2) induce flavour coherences in the 
heavy-neutrino sector via the second term on the RHS of (3.27a), giving rise to oscillations by 
virtue of the flavour commutators in (3.27).

Taking into account the expansion of the Universe and using ηN
eq ≈ gNz2K2(z)/4, (3.27a) and 

(3.27b) can be combined into [49]

dη̂N

dz
= K1(z)

K2(z)

(
1 + η̂N − iz

[
M̂N

ζ(3)HN

, η̂N

]
− z

2

{
K̂, η̂N

})
. (5.3)

In the strong-washout regime [K]αβ � 1, the system evolves towards the attractor solution given 
by

i

[
M̂N

ζ(3)HN

, η̂N

]
+ 1

2

{
K̂N, η̂N

} 
 12

z
. (5.4)

The elements needed in what follows are found to be
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[̂
ηN

]
αα

= 1

[K̂(0)]ααz

(MN,1 − MN,2)
2 + (Γ̂

(0)
11 + Γ̂

(0)
22 )2/4

(MN,1 − MN,2)2 + (Γ̂
(0)

11 +Γ̂
(0)

22 )2 Im[(̂h†ĥ)12]2

4(̂h†ĥ)11 (̂h
†ĥ)22


 1

[K̂(0)]ααz
, (5.5)

Im
[̂
ηN

]
12 = ζ(3)HN

z

[Γ̂ (0)]12

[Γ̂ (0)]11[Γ̂ (0)]22

(MN,1 − MN,2)(Γ̂
(0)

11 + Γ̂
(0)

22 )/2

(MN,1 − MN,2)2 + (Γ̂
(0)

11 +Γ̂
(0)

22 )2 Im[(̂h†ĥ)12]2

4(̂h†ĥ)11 (̂h
†ĥ)22

, (5.6)

where �(0) is the thermal width matrix, appearing in (5.2), but with tree-level Yukawa couplings 
in γ N

LΦ . Taking into account the expansion of the Universe and neglecting 2 ↔ 2 scatterings in 
the washout term, the rate equation for the lepton asymmetry (4.9) can be written as [49]

d[δηL]
dz

= z3K1(z)

[
−1

3
KδηL

+ π2z

M3
NK1(z)2ζ(3)HN

(
Im

[̂
ηN

]
12 Im

[
γ̂ N
LΦ

]
12 + [̂

ηN
]
αβ

[
δγ̂ N

LΦ

]
βα

)]
, (5.7)

where K = Tr K is an effective washout parameter. The attractor solution is found by setting the 
RHS of (5.7) to zero. We also neglect the O(h6) off-diagonal entries in the last term, finally 
obtaining

δηL 
 δηL
mix + δηL

osc, (5.8)

where the neglected terms in (5.8) are formally at O(h6) and higher. Here, the mixing and oscil-
lation contributions are given explicitly by

δηL
mix = gN

2

3

2Kz

∑
α �=β

Im(̂h†ĥ)2
αβ

(̂h†ĥ)11(̂h†ĥ)22

(M2
N,α − M2

N,β)MNΓ̂
(0)
ββ

(M2
N,α − M2

N,β)2 + (MNΓ̂
(0)
ββ )2

, (5.9)

δηL
osc = gN

2

3

2Kz

Im(̂h†ĥ)2
12

(̂h†ĥ)11(̂h†ĥ)22

(M2
N,1 − M2

N,2)MN(Γ̂
(0)

11 + Γ̂
(0)

22 )

(M2
N,1 − M2

N,2)
2 + M2

N(Γ̂
(0)

11 + Γ̂
(0)

22 )2 Im[(̂h†ĥ)12]2

(̂h†ĥ)11 (̂h
†ĥ)22

.

(5.10)

These results, valid in the weakly-resonant strong-washout regime, exactly reproduce the ones 
obtained in the semi-classical Boltzmann approach of [49] for the single lepton flavour case 
studied here. At leading order, the contribution of mixing is governed by the diagonal entries of 
the CP -“even” number density n̂N , whereas that of oscillations is triggered by the presence of 
off-diagonal CP -“odd” δn̂N . A detailed discussion of both flavour mixing and oscillations, in 
relation to the CP -violation properties of the Lagrangian of the system, is given in [49].

We note here that the oscillation term in (5.10) by itself agrees with the form for the total
asymmetry given in the quantum Boltzmann approach of [97] and with earlier results of [86,87,
94,95] in their validity limit Re[(̂h†ĥ)2

12] 	 (̂h†ĥ)αα .8 Moreover, this oscillation phenomenon 
does not involve any off-shell effects, since (5.10) can be obtained from an on-shell analysis with 
only tree-level Yukawa couplings (see [49]). However, unlike previous treatments, we emphasize 
that the KB approach detailed in this paper captures the distinct phenomena of flavour mixing 
[11–16] in addition to oscillation phenomena. As shown numerically in [49], the contributions of 

8 The limit Re[(̂h†ĥ )2 ] 	 (̂h†ĥ )αα implies that Im[(̂h†ĥ)12]2 
 (̂h†ĥ)11 (̂h†ĥ)22 in the two-flavour case.
12
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Fig. 4. The evolution of the total asymmetry (black continuous line), starting from the initial conditions ηN = 2ηN
eq12

and δηL = 0. The red dotted line is the contribution of flavour mixing and the blue dashed line is that of oscillations. 
For illustrative purposes, the parameters are chosen as follows: mN = 1 TeV, (m̂N,2 − m̂N,1)/mN = 10−12, ĥ1 =
0.5 × 10−6(1 + 5eiδ)mN and ̂h2 = 0.5i × 10−6(1 − 5eiδ)mN , with δ = 2 × 10−5. For simplicity, the effect of thermal 
masses and widths is neglected.

these two distinct flavour effects, (5.9) and (5.10), are comparable in the weakly-resonant regime. 
Hence, the total lepton asymmetry in (5.8) can be enhanced by a factor of order two, compared 
to either (5.9) or (5.10) alone.

In order to illustrate the distinction between the two physical phenomena contributing to the 
generation of the asymmetry, we plot in Fig. 4 the numerical solution of the rate equations (5.3)
and (5.7), starting from the initial conditions ηN = 2ηN

eq12 and δηL = 0. The black continuous 
line denotes the solution of the full rate equations, the red dotted line gives the contribution 
of mixing (obtained neglecting off-diagonal number densities) and the blue dashed line shows 
the contribution of oscillations (obtained replacing hα → hα). With this choice of initial con-
ditions, coherences between the two heavy-neutrino flavours are initially absent. Thus, at early 
times, only flavour mixing contributes to the asymmetry. On the other hand, as discussed in de-
tail in [49], in order to have a significant contribution from oscillations, the off-diagonal entry 
nN

12 needs first to be created by coherent decays and inverse decays. Thus, as shown in Fig. 4, 
this phenomenon becomes effective later than flavour mixing. At late times, both phenomena are 
present and give a similar contribution in the weakly-resonant strong-washout regime, providing 
an enhancement by a factor of order two with respect to mixing or oscillations alone. The differ-
ent time behaviour outlined above, in addition to their differing physical origins, confirms that 
mixing and oscillations are two distinct physical phenomena and that both their contributions to 
the asymmetry need to be taken into account. Finally, we point out that the oscillatory behaviour 
in Fig. 4 does not result from non-Markovian memory effects as studied, for example, in [73,
74]. Instead, it is due to the oscillation of the heavy-neutrino coherences. The non-Markovian 
finite-time effects are safely neglected in the strong-washout regime of interest here.

Before concluding this section, we would like to stress here that the phenomenon of coherent 
heavy-neutrino oscillations, discussed above, is an O(h4) effect on the total lepton asymmetry 
[49] and so differs from the O(h6) mechanism proposed in [43]. The latter effect is relevant only 
at temperatures much higher than the sterile neutrino masses, such as in the models studied in 
[32,43–48,88,118], where the total lepton number is not violated at leading order. On the other 
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hand, the O(h4) effect identified here (and earlier in [49]) is enhanced in the same regime as the 
resonant ε-type CP violation effects, namely for z ≈ 1 and 
MN ∼ ΓNα , and its contribution 
to the final lepton asymmetry depends crucially on the flavour coherences in the heavy-neutrino 
sector (cf. (4.9); see [49] for a detailed discussion). In the current work, we have assumed that 
the momentum distribution in kinetic equilibrium is a flavour singlet. As discussed in [49], this 
approximation is valid in the resonant regime, but not in the hierarchical one. A detailed study 
of this phenomenon in the hierarchical regime goes beyond the scope of this paper and will be 
given elsewhere.

6. Conclusions

We have presented a novel approach to the study of flavour effects in Resonant Leptogene-
sis by embedding the fully flavour-covariant formalism developed in [49] into the perturbative 
non-equilibrium thermal field theory formulated in [115]. In this formulation, one may expand 
the Schwinger–Dyson series diagrammatically in a perturbative loopwise sense, without encoun-
tering pinch singularities. Moreover, one may define physically-meaningful number densities at 
any order in perturbation theory, without necessitating the use of any quasi-particle ansatz. The 
truncation of the resulting transport equations proceeds in a two-fold manner: (i) spectrally, cor-
responding to the choice of observables being counted in the quantum transport equation and (ii) 
statistically, by which the set of processes causing the non-equilibrium evolution of the system 
are fixed.

Within this perturbative non-equilibrium field-theoretical framework, we have confirmed the 
results previously obtained in [49] via a semi-classical formalism, reproducing them quantita-
tively at O(h4) in the weakly-resonant regime. The main physical result is that the mixing of 
different heavy-neutrino flavours and the oscillations between them are two distinct physical 
phenomena. The first is driven by the CP -“even” number density nN and the CP -“odd” rate 
[δγ N

LΦ ]αβ , whereas the second is mediated by the CP -“odd” off-diagonal coherences [δn̂N ]12. 
This is akin to the mixing and oscillation phenomena observed experimentally in K , D and 
B-meson systems. As identified in [49], both the phenomena contribute at O(h4) with compa-
rable magnitude in the weakly-resonant regime. The strong-washout form of the asymmetry due 
to oscillations (5.10) is in agreement with the results obtained in other KB studies [86,87,94,97]
and in the flavour-covariant semi-classical approach in [49].

However, as emphasized throughout this article, the KB approach presented here includes also
the effect of mixing, as given by (5.9). This contribution agrees with the one identified in [12], 
and re-obtained in [13,49], once the thermal masses and widths are used in the formulae given 
there. The appearance of this additional O(h4) contribution, not present in previous KB studies, 
is due to the fact that we do not, as is typically the case, use a KB ansatz, or other equivalent 
approximation, for the dressed heavy-neutrino propagators. We have shown that these approx-
imations implicitly discard mixing effects. In the approach detailed here, such approximations 
are not required, since we are able to express the source term for the asymmetry in terms of the 
spectrally-free heavy-neutrino propagators, with the effect of mixing being captured by the ef-
fective resummed Yukawa couplings [cf. (4.8)]. In Fig. 4, we have shown explicitly that mixing 
and oscillations are two distinct physical phenomena that contribute separately to the asymmetry, 
since their time behaviour, in addition to their physical origin, is different. With this approach 
to solving the quantum transport equations, we have justified, at leading order in the weakly-
resonant regime, the semi-classical approach adopted in [49] of describing the effect of mixing 
by means of effective CP -violating Yukawa couplings [13]. Finally, we emphasize that mixing 
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and oscillation contributions to the BAU are not exclusive to leptogenesis but generic phenom-
ena applicable to baryogenesis models involving mixing of states. Therefore, both contributions 
should be included for precise quantitative predictions of the generated baryonic asymmetry in 
the Universe.
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Appendix A. Resummed thermal propagators and Yukawa couplings

In [49], it was shown that the time-translational invariance of flavour-covariant CTP propaga-
tors is necessarily broken in the absence of thermodynamic equilibrium. In this section, working 
within the Markovian approximation detailed in Sections 3 and 4, we derive the momentum-
space representation of the resummed CTP propagator in the mass eigenbasis. Subsequently, in 
A.1, we use the form of these resummed propagators to obtain the resummed Yukawa couplings 
in the presence of thermal corrections. In so doing, we generalize the approach of [13]. Finally, 
in A.2, we reproduce the thermal RIS contribution used in the semi-classical approach of [49]. 
Throughout this appendix, we suppress the superscript N on heavy-neutrino propagators and 
self-energies for notational convenience.

In coordinate space, the resummed heavy-neutrino CTP propagator takes the form[
i
ab(x, y, t̃f ; t̃i )

] β

α
≡ 〈

TC
[
Na

α(x)Nb,β(y)
]〉

t
, (A.1)

where TC denotes path ordering along the CTP contour (see Fig. 1), a, b = 1, 2, are the CTP 
indices (see [69–71]) and the heavy-neutrino field operators are understood in the Heisenberg 
picture. We note that (A.1) is not a picture-independent object, since it is not evaluated at equal 
times x0 = y0 = t̃f (see [115]). In what follows, we work in momentum space, omitting all 
arguments for conciseness.

In the thermal mass eigenbasis (see Section 2), we may write the inverse resummed CTP 
propagator �̂

−1
in the following block decomposition:

�̂
−1 =

[
D −D<

−D> D

]
(A.2)

where the set of submatrices {D} have elements given by (see e.g. [13])

Dαβ = (
p2 − M̂2

α

)
δαβ + iε(δαβ + 2nαβ) + [Π̂abs]αβ, (A.3a)

D≷,αβ = 2iε
(
θ(±p0)δαβ + nαβ

) + [Π̂≷]αβ, (A.3b)

Dαβ = −(
p2 − M̂2)δαβ + iε(δαβ + 2nαβ) − [

Π̂∗ ]
. (A.3c)
α abs αβ
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Here, M̂α is the thermal mass, defined via (2.14), and [Π̂abs]αβ are the elements of the absorptive 
part of the Feynman self-energy. We omit the caret on D’s for notational convenience. The terms 
proportional to the prescription ε (cf. [115]) are, as we will see, necessary to obtain the correct 
tree-level propagators and results consistent with the diagrammatic resummation in Section 4. 
We note that the matrix inversion of the inverse propagator does not yield a unique solution to 
the Klein–Gordon equation without correctly encoding the boundary conditions of the Cauchy 
problem by virtue of these prescription-dependent terms.

The inverse CTP propagator (A.2) transforms as a rank-2 tensor of U(N ) under an arbitrary 
flavour rotation U, as follows:[

�−1]
k
l = [

U†�̂
−1U

]
k
l (A.4)

where U ∈ U(N ) and can be written as a Kronecker product

U ≡ 12 ⊗ U, (A.5)

in which 12 is the 2 × 2 unit matrix. In addition, the CTP indices of �̂
−1

in (A.4) are raised and 
lowered by means of the SO(1, 1) CTP ‘metric’

g = gab ≡ diag(1,−1), (A.6)

as follows:[
�̂

−1]ab = [
g�̂

−1
g
]ab

, (A.7)

where

g ≡ g ⊗ 12. (A.8)

Notice that the choice of block decomposition is not unique. We could alternatively have chosen 
to represent the inverse CTP propagator in the form[

�̂
−1]′ ≡ [

D11 D12

D21 D22

]
, (A.9)

where

Dαβ =
[

Dαβ −D<,αβ

−D>,αβ Dαβ

]
. (A.10)

In this case, the order of the Kronecker products in the 2N × 2N U(N ) and SO(1, 1) transfor-
mation matrices would be reversed, i.e.

U ≡ U ⊗ 12, g ≡ 12 ⊗ g. (A.11)

Nevertheless, the two block decompositions (A.4) and (A.9) are related by means of a per-
mutation transformation, i.e. [�−1]′ = P�−1P. For example, in the relevant case N = 2, the 
involutory permutation matrix P is given by

P =

⎡⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

⎤⎥⎥⎦ . (A.12)
0 0 0 1



150 P.S. Bhupal Dev et al. / Nuclear Physics B 891 (2015) 128–158
Therefore, both choices of block decomposition will yield equivalent results for the resummed 
CTP propagator, since these will be related by the same transformation, i.e. �′ = P�P.

By virtue of the Banachiewicz inversion formula, the block decomposition of the resummed 
CTP propagator is

� ≡ [�]ab =
[

(�−1/D)−1 (�−1/D<)−1

(�−1/D>)−1 (�−1/D)−1

]
, (A.13)

where A/B denotes the Schur complement of A relative to B, i.e.

�−1/D = D − D<D−1D>, �−1/D = D − D>D−1D<, (A.14a)

�−1/D> = D< − DD−1
> D, �−1/D< = D> − DD−1

< D. (A.14b)

The resummed CTP propagator then takes the form

� = 1

det�−1

[
DDD DDD<

DDD> DDD

]
, (A.15)

where

DDD ≡ D adj
(
D − D<D−1D>

)
, DDD ≡ D adj

(
D − D>D−1D<

)
, (A.16)

DDD> ≡ D> adj
(
D< − DD−1

> D
)
, DDD< ≡ D< adj

(
D> − DD−1

< D
)
. (A.17)

Here, adj indicates the adjugate matrix and Roman (non-italicized) D’s denote the determinant 
of the corresponding matrix, e.g. for N = 2

D = detD = D11D22 − D12D21. (A.18)

Using the relations for the retarded and advanced functions,

DR = D − D< = D> − D, (A.19a)

DA = D
†
R = D − D> = D< − D, (A.19b)

we may show that

DDD = − adj(DR)D adj(DA), (A.20a)

DDD = − adj(DR)D adj(DA), (A.20b)

DDD≷ = − adj(DR)D≷ adj(DA). (A.20c)

The determinant of the inverse CTP propagator may be calculated using elementary row trans-
formations and is given by

det�−1 = (−1)N DRDA = (−1)N DRD∗
R = (−1)N |DR|2. (A.21)

Finally, putting everything back together, we find the following form for the resummed CTP 
propagators in the case of N flavours:

�F = (−1)N−1�RD�A, (A.22a)

�D = (−1)N−1�RD�A, (A.22b)

�≷ = (−1)N−1�RD≷�A, (A.22c)

where
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�R = D−1
R = adjDR

DR
, �A = D−1

A = adjDA

DA
(A.23)

are the retarded and advanced propagators, respectively. We note that the expressions (A.22) are 
fully flavour-covariant and can be rotated to any basis. In addition, one may verify that

�R(A) = �F − �<(>) = �>(<) − �D, (A.24)

consistent with a single-flavour scenario.
In addition, we note that by virtue of the contributions from the ε-dependent terms in (A.3), 

the resummed propagators in (A.22) are consistent with those obtained by the iterative diagram-
matic resummation in (4.3). For instance, consider the ε-dependent contribution to the Wightman 
propagators

i[
̂≷]αβ ⊃ [
̂R]αγ 2ε
(
θ(±p0)δγ δ + n̂γ δ

)[
̂A]δβ . (A.25)

This may be written as

i[
̂≷]αβ ⊃ [
̂R]αγ

[

̂

0,−1
R

]
γ σ

[

̂0

R

]
σσ

2ε
[
θ(±p0)δσρ + n̂σρ

][

̂0

A

]
ρρ

[

̂

0,−1
A

]
ρδ

[
̂A]δβ,

(A.26)

where the central terms are given by[

̂0

R

]
σσ

2ε
[
θ(±p0)δσρ + nσρ

][

̂0

A

]
ρρ

= 1

p2 − M̂σ + iεp0
2ε

[
θ(±p0)δσρ + n̂σρ

] 1

p2 − M̂ρ − iεp0
. (A.27)

In the homogeneous Markovian approximation, we replace M̂σ ∼ M̂ρ ≈ M̂ . Thus, using the limit 
representation of the Dirac delta function

δ(x) = lim
ε→0+

1

π

ε

x2 + ε2
, (A.28)

we find

i
[

̂0

≷
]
σρ

= [

̂0

R

]
σσ

2ε
[
θ(±p0)δσρ + n̂σρ

][

̂0

A

]
ρρ

= 2πδ
(
p2 − M̂2)[θ(±p0)δσρ + n̂σρ

]
, (A.29)

which is precisely the propagator in (2.17). Hence, (A.26) yields the second line of (4.3).
Having observed that it is not appropriate to neglect the ε-dependent terms next to the self-

energies in (A.3), it is pertinent to comment on the NWA of the resummed propagators. At first 
sight, it would appear that both lines of (4.3) give two identical contributions in the NWA. How-
ever, we point out that ε and η ≡ ImΠR → 0 should be treated as two independent infinitesimals, 
since the latter is, strictly speaking, small but finite in the NWA. Thus, in this approximation, the 
first line of (4.3) is proportional to η, whereas the second line to ε [see (A.29)]. Combining them, 
we obtain a term of the form

lim
ε,η→0+

1

π

ε + η

x2 + (ε + η)2
= δ(x), (A.30)

which shows that we recover the expected result in the NWA.
In addition, it is illustrative to check that we recover the correct zero-temperature and single-

flavour CTP limits. As an example, we consider the flavour-11 component of the resummed 
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Feynman propagator. In the zero-temperature limit, we may restrict to positive frequencies, set-
ting 
< = 0, such that 
R → 
F and 
A → −
D. For N = 2, we then find

[
F]11 = D22

D
= [

D11 − D12D
−1
22 D21

]−1 (A.31)

which, in the mass eigenbasis, gives

[
̂F]11 =
[
p2 − M̂2

1 + iε + Π̂11 − Π̂12Π̂21

p2 − M̂2
2 + iε + Π̂22

]−1

(A.32)

in agreement with well-known results (see e.g. [11]).
On the other hand, we may obtain the single flavour limit by setting the off-diagonal com-

ponents (D12, D21, 
12, 
21, etc.) to zero. In this case, we obtain the usual CTP resummed 
propagator


F = − D11

|DR,11|2 , (A.33)

which, after dropping the redundant flavour indices, takes the form


F = p2 − M2 − i ImΠ(p)

(p2 − M2)2 + (ImΠ(p))2
, (A.34)

with M2 = m2 − ReΠ(p). Notice that we have safely dropped the ε-dependent terms, again in 
agreement with known results (see e.g. [115]).

A.1. Resummed Yukawa couplings in charged-lepton self-energies

In this subsection, we show explicitly that, formally at O(h4) in the asymmetry, the contribu-
tion of the charged-lepton self-energy to the source term can be written in terms of the resummed 
Yukawa couplings, as in (4.8) and illustrated in Fig. 3.

From (4.9), we see that the quantity of interest is

T ≡ hα[
<]αβhβ. (A.35)

The contribution to T of the second line of (4.3), which appears in the source term (4.9), will 
be denoted by Tsrc. Using (4.3) and noting that the summations there are equal to �R(A) · �0,−1

R(A)
, 

Tsrc can be written as

Tsrc = hα[
R]αλ
[



0,−1
R

]
λ
γ
[

0

<

]
γ

δ
[



0,−1
A

]
δ
μ
[

A

]
μ

βhβ

=
∑
γ,δ

ĥα[
̂R]αγ

([

̂

0,−1
R

]
γ γ

[

̂0

<

]
γ δ

[

̂

0,−1
A

]
δδ

)[
̂A]δβ ĥβ

≡ ĥα[
̂R]αγ N̂γ δ[
̂A]δβ ĥβ . (A.36)

Let us introduce the notation

/α ≡
{

2 if α = 1,

1 if α = 2.
(A.37)

We treat the off-diagonal number densities [̂nN ]α/α as formally at O(h2), assuming that they are 
generated dynamically from an incoherent initial condition (see [49]). Therefore, we have
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N̂αβ = (
s − M2

N,α

)[

̂0

<

]
αβ

(
s − M2

N,β

) = (s − sα)
[

̂0

<

]
αβ

(
s − s∗

β

) + O
(
h4), (A.38)

where we have used Γα,/α[
̂0
<]α/α = O(h4), with Γα being the width of the heavy neutrinos. Here, 

sα denotes the location of the two complex poles of the retarded propagator

sα = M2
N,α − iMNΓα. (A.39)

Proceeding as in [13], the resonant terms in Tsrc can be expanded as

Tsrc 

∑
α

ĥα Zα

s − sα

(
Gα − DR

12

DR
/α/α

G/α

)
, (A.40)

with

Gα ≡ N̂αδ[
̂A]δβ ĥβ . (A.41)

In (A.40), we have included the wavefunction renormalization Zα ≡ ( d
ds

[
R(s)]−1
αα

)−1, even 
though this will be a higher-order effect in the analysis below.

For the case of two heavy neutrinos studied here, the resummed Yukawa couplings are given, 
in the mass eigenbasis, by

ĥα = ĥα − ĥ/αi Im[Π̂R]α/α

M2
N,α − M2

N,/α + i Im[Π̂R]/α/α

, (A.42)

where the indices are not summed over. The C̃P conjugate couplings [hc̃]α are obtained by 
using the complex-conjugate tree-level couplings in the RHS of (A.42). Eq. (A.41) can, in turn, 
be expanded as

Gα 

∑
β

(
N̂αβ + DR

12

D
R,∗
/β/β

N̂α/β

)
Z∗

β

s − s∗
β

ĥβ. (A.43)

Using (A.43) in (A.40), we find

Tsrc =
∑
α,β

ĥα Zα

s − sα
N̂αβ

Z∗
β

s − s∗
β

ĥβ +
∑
α,β

DR
12

D
R,∗
/β/β

ĥα Zα

s − sα
N̂α/β

Z∗
β

s − s∗
β

ĥβ

−
∑
α,β

DR
12

DR
/α/α

ĥα Zα

s − sα
N̂/αβ

Z∗
β

s − s∗
β

ĥβ + O
(
h6). (A.44)

The contributions in the second line of (A.44) can be neglected. To show this, consider for ex-
ample the first summation: the only terms that can give contributions at O(h4) are the ones with 
α = /β . Using (A.38), these become

DR
12

D
R,∗
/β/β

ĥα
[

̂0

<

]
αα

s − sα

s − s∗
β

ĥβ + O
(
h6) = DR

12

D
R,∗
/β/β

ĥα[
̂0
<]ααiMNΓαĥβ

M2
N,α − M2

N,β − iMNΓβ

+ O
(
h6)

= O
(
h6), (A.45)

having also used (2.17) and (A.39). Therefore, we obtain the final expression

Tsrc =
∑
α,β

hα
[

0

<

]
α

βhβ + O
(
h6), (A.46)

which is the form that we use in (4.8) and Fig. 3.
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A.2. RIS in semi-classical Boltzmann approaches

We now use the results obtained above to recover the thermal RIS contribution used in [49], 
relevant to semi-classical approaches. Let us consider the pole expansion of the Feynman propa-
gator, which may be written in the form

�̂F = DDD

|DR|2 . (A.47)

For the flavour-11 component, the pole expansion is

[
̂F]11 = D11

|DR|2
∣∣∣∣
s≈s1

+ D11

|DR|2
∣∣∣∣
s≈s∗

1

+ D11

|DR|2
∣∣∣∣
s≈s2

+ D11

|DR|2
∣∣∣∣
s≈s∗

2

+ · · · , (A.48)

where s(∗)
1,2 are the complex roots of |DR|2 = 0. Noting that

detDDD = −det
[
adj(DR)D adj(DA)

] = −|DR|2(N−1) detD, (A.49)

it follows, in the vicinity of the poles, that

detDDD = D11D22 − D12D21 ≈ 0. (A.50)

Hence, we may write

[
̂F]11 = D11

|DR|2
∣∣∣∣
s≈s1

+ D11

|DR|2
∣∣∣∣
s≈s∗

1

+ D12

D22

D22

|DR|2
D21

D22

∣∣∣∣
s≈s2

+ D12

D22

D22

|DR|2
D21

D22

∣∣∣∣
s≈s∗

2

+ · · · , (A.51)

or, equivalently,

[
̂F]11 = ZR,1

s − s1
+ ZA,1

s − s∗
1

+ D12

D22

ZR,2

s − s2

D21

D22
+ D12

D22

ZA,2

s − s∗
2

D21

D22
+ · · · , (A.52)

where we have introduced

ZR(A),α ≡ [
ZR(A)(

√
s )

]
α

=
(

DA(R)(
√

s )

2
√

s

d

d
√

s

[
̂−1
F (

√
s )]αα

DA(R)(
√

s )

)−1

. (A.53)

The pole expansion (A.52) differs from that in [13] by the presence of the complex-conjugate 
poles. Proceeding similarly, we find

[
̂F]22 = ZR,2

s − s2
+ ZA,2

s − s∗
2

+ D21

D11

ZR,1

s − s1

D12

D11
+ D21

D11

ZA,1

s − s∗
1

D12

D11
+ · · · , (A.54)

[
̂F]12 = ZR,1

s − s1

D12

D11
+ ZA,1

s − s∗
1

D12

D11
+ D12

D22

ZR,2

s − s2
+ D12

D22

ZA,2

s − s∗
2

+ · · · , (A.55)

[
̂F]21 = ZR,2

s − s2

D21

D22
+ ZA,2

s − s∗
2

D21

D22
+ D21

D11

ZR,1

s − s1
+ D21

D11

ZA,1

s − s∗
1

+ · · · . (A.56)

Finally, the amplitude pertinent to the derivation of the resummed Yukawa couplings in semi-
classical approaches is the s-channel exchange [13]9

9 Here, we have used A and B to label the vertices to avoid confusion with the A that denotes advanced functions.
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Ts = Γ A
1 [
̂F]11Γ

B
1 + Γ A

1 [
̂F]12Γ
B

2 + Γ A
2 [
̂F]21Γ

B
1 + Γ A

2 [
̂F]22Γ
B

2 . (A.57)

Using the results above, the resonant contribution takes the form

T̃s = ∣∣VA
1

∣∣2
[ |ZR,1|2 + |ZA,1|2

|s − s1|2 + ZR,1Z
∗
A,1

(s − s1)2
+ Z∗

R,1ZA,1

(s − s∗
1 )2

]∣∣V B
1

∣∣2 + (1 ↔ 2), (A.58)

where

V
A(B)
1 = Γ

A(B)
1 + D12

D11
Γ

A(B)
2 , V

A(B)
2 = Γ

A(B)
2 + D21

D22
Γ

A(B)
1 . (A.59)

In the pole-dominance region, we find

|T̃s,RIS|2 = ∣∣VA
1

∣∣2∣∣V B
1

∣∣2 π

m1ΓR,1
|ZR,1 − ZA,1|2δ+

(
s − M̂2

1

) + (1 ↔ 2), (A.60)

where M2
1 = Re s1 = ReΠR,11 and M1ΓR,1 = Im s1 = ImΠR,11 are the thermal masses and 

widths, calculated from the dispersive and absorptive parts of the retarded self-energies, respec-
tively. In addition, δ+(s − M̂2

1 ) = θ(
√

s )δ(s − M̂2
1 ). Notice that (A.60) is obtained from the 

results of [13] by replacing |Zα|2 with |ZR,α − ZA,α|2 and the masses, widths and vertices by 
their thermal counterparts, calculated using the retarded self-energy.

Finally, we now show that, in the equilibrium limit, we recover the thermal RIS contribution 
found in [49]. Ignoring higher order mixing terms, we have

[
̂F]11 ≈ s − M̂2
1 + iMΓF,1

(s − s1)(s − s∗
1 )

= s − M̂2
1 + i(1 + 2n(

√
s ))MΓ1

(s − s1)(s − s∗
1 )

, (A.61)

using the fluctuation-dissipation theorem to relate the time-ordered and retarded widths ΓF,1 and 
Γ1. Partial fractioning the resonant part, we obtain

[
̂F]11 = iMΓ1

s1 − s∗
1

(
1 + 2n(

√
s )

)[ 1

s − s1
− 1

s − s∗
1

]
. (A.62)

Since s1 − s∗
1 = 2iMΓ1, we see the importance of keeping track of the structure of the numerator 

and find

[
̂F]11 = 1

2

(
1 + 2n(

√
s )

)[ 1

s − s1
− 1

s − s∗
1

]
. (A.63)

In this case, the residues of the poles are

ZR,1 = 1

2

(
1 + 2n(

√
s )

)
, ZA,1 = −1

2

(
1 + 2n(

√
s )

)
. (A.64)

Hence, the RIS contribution takes the form

|T̃s,RIS|2 = ∣∣VA
1

∣∣2∣∣V B
1

∣∣2 π

MΓ1

(
1 + 2n(

√
s )

)2
δ+

(
s − M̂2

1

) + (1 ↔ 2) + · · · , (A.65)

which, to leading order in the statistical factors, contains the thermal RIS contribution identified 
in [49]. As noted in Section 3, such thermal RIS contributions are not double-counted in the 
KB approach discussed in this article, but must be subtracted in semi-classical Boltzmann ap-
proaches, such as [49]. Notice finally that, when the thermal contributions are neglected, (A.65)
agrees with the results in [13].
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