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Summary

Protein-protein interaction maps provide a valuable
framework for a better understanding of the func-
tional organization of the proteome. To detect in-
teracting pairs of human proteins systematically, a
protein matrix of 4456 baits and 5632 preys was
screened by automated yeast two-hybrid (Y2H) in-
teraction mating. We identified 3186 mostly novel in-
teractions among 1705 proteins, resulting in a large,
highly connected network. Independent pull-down
and coimmunoprecipitation assays validated the over-
all quality of the Y2H interactions. Using topological
and GO criteria, a scoring system was developed to
define 911 high-confidence interactions among 401
proteins. Furthermore, the network was searched for
interactions linking uncharacterized gene products
and human disease proteins to regulatory cellular
pathways. Two novel Axin-1 interactions were vali-
dated experimentally, characterizing ANP32A and
CRMP1 as modulators of Wnt signaling. Systematic
human protein interaction screens can lead to a more
comprehensive understanding of protein function
and cellular processes.

Introduction

Protein-protein interactions (PPIs) are crucial for all bio-
logical processes. Therefore, compiling PPI networks
provides many new insights into protein function. Also,
interaction networks are relevant from a systems biol-
ogy point of view, as they may help to uncover the ge-
neric organization principles of functional cellular net-
works, when both spatial and temporal aspects of
interactions are considered (Ge et al., 2003). The gener-
*Correspondence: erich.w@mdc-berlin.de
ation of accurate cellular protein interaction networks
is an ongoing process, in which data produced by high-
throughput yeast two-hybrid screens (Y2H) and mass
spectroscopy contribute in a complementary manner
(Bork et al., 2004).

The Y2H system is a powerful tool for the identifica-
tion of PPIs, which can be applied in high-throughput
manner to detect interactions across the entire pro-
teome of an organism. Proteome-wide studies for
model organisms such as H. pylori (Rain et al., 2001),
S. cerevisiae (Ito et al., 2001; Uetz et al., 2000), C. ele-
gans (Li et al., 2004), and D. melanogaster (Giot et al.,
2003) have been performed, yielding large Y2H interac-
tion maps, which are currently utilized for more detailed
experimentation and formulation of biological hypothe-
ses. However, a proteome-wide interaction map of hu-
man proteins has not yet been provided. Taking into
account the high potential of human PPIs for under-
standing disease mechanisms and signaling cascades,
smaller scale, more specific interaction maps have
been generated. Examples are an interaction network
for Huntington’s disease with 186 interactions (Goehler
et al., 2004) or a network for the transforming growth
factor-β (TGF-β) signaling pathway with 755 interac-
tions (Colland et al., 2004). In addition, bioinformatic
analyses have been performed, collecting information
on human interactions from hypothesis-driven studies
(Peri et al., 2003) or from studies identifying conserved
orthologous interactions (Lehner and Fraser, 2004),
which are referred to as “interologs” (Matthews et al.,
2001; Walhout et al., 2000). Nevertheless, the transfer
of interaction information from model organisms to hu-
man is far more difficult than anticipated (Bork et al.,
2004; Ramani et al., 2005). Therefore, systematic map-
ping of human protein interactions is indispensable for
annotating human protein function and understanding
complex cellular processes.

The present screening was set up in order to gener-
ate a PPI map that describes a representative part of
the human interactome. In contrast to the high through-
put library screens used to analyze model organisms
(Formstecher et al., 2005; Giot et al., 2003; Li et al.,
2004), we have carried out a matrix interaction mating
screen. This approach yields reproducible interaction
data without the necessity of repeated sequencing,
once a bait/prey protein matrix is established. We have
systematically screened more than 5500 human pro-
teins for potential interactions, building an interaction
network that connects 1705 human proteins via 3186
interactions. The quality of the dataset was validated
by independent biochemical interaction assays and
bioinformatic analyses. Furthermore, we have eval-
uated the network to identify proteins potentially in-
volved in human regulatory pathways and have charac-
terized experimentally two novel modulators of the Wnt
signaling cascade. The network presented here can be
regarded as a starting point for the construction of a
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more comprehensive human PPI map and provides a
useful resource for further elucidation of protein function.

Results

Construction of a Human Y2H PPI Map
For the identification of interactions by a Y2H matrix
approach (Figure 1A), a nonredundant set of cDNAs
was obtained from the sequence analysis of a human
fetal brain expression library (Bussow et al., 1998). We
generated 3510 bait and 3589 prey clones by subclon-
ing of cDNA fragments into DNA binding domain (DBD)
and activation domain (AD) Y2H vectors, respectively.
In addition, a “GATEWAY recombinational cloning” ap-
proach was used to shuttle full-length human open read-
ing frames (ORFs) from entry vectors into Y2H plasmids,
yielding further 2033 bait and 2051 prey clones.

From the total of 11,183 Y2H clones, we created a
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Figure 1. Automated Y2H Matrix Interaction Mating

(A) Process of the systematic automated large-scale Y2H matrix interaction mating. Three major steps: (1) creation of a human protein matrix
in yeast, (2) high-throughput screening of the Y2H matrix with pools of eight baits (first interaction mating), and (3) confirmation of identified
interactions using individual pairs of baits and preys (second interaction mating).
(B) Identification of Y2H PPIs using the pooled mating approach (first interaction mating). Top panel: yeast clones spotted onto SDII (-Trp-
Leu) agar plates to select for diploid yeasts expressing bait and prey fusions. Bottom panel: PPIs identified (arrows) by assaying the growth
of diploid yeasts on SDIV (-Trp-Leu-His-Ura) agar plates.
(C) Confirmation of Y2H interactions by analyzing yeast clones expressing single pairs of bait and prey proteins (second interaction mating).
Diploid yeast clones were gridded in duplicates onto nylon membranes (3 × 3 pattern) placed on SDIV agar plates. Membranes were assayed
for β-galactosidase activity to identify positive clones (arrows).
(D) Distribution of cellular component and molecular function GO categories. Outer rings: proteins encoded by the human genome (10,504
with GO component and 12,174 with GO function identifiers). Middle rings: proteins contained in the Y2H matrix (3267 with GO component
and 3778 with GO function identifiers). Inner rings: PPI network proteins (1064 with GO component and 1208 with GO function identifiers).
Each section represents the number of proteins (percentage indicated) assigned to a given GO category. The Y2H matrix is a representative
subset of all human proteins. The distribution between categories did not change for network proteins.
(E) Length distribution of human proteins. Red bars: fraction of proteins encoded by the human genome (28,707 according to RefSeq [NCBI]).
Orange bars: proteins contained in the Y2H matrix (5640). Yellow bars: proteins with Y2H interactions (1824). The distribution of the matrix
proteins was similar to the proteins encoded by the genome. The majority of the proteins (81% of the matrix proteins and 70% of the proteins
in the human genome) had a predicted length between 100 and 500 amino acids.
atrix for systematic interaction mating. A MATα yeast
train was individually transformed with the 5640 prey
lasmids, and 5543 bait plasmids were introduced into
MATa strain. For interaction screening, eight clones

xpressing non-self-activating baits were pooled and
ated with the prey clones. Positive clones, which acti-

ated the HIS3 and URA3 reporter, were identified by
rowth on selective plates (Figure 1B) and/or lacZ re-
orter gene activation in β-galactosidase assays. All
ositive preys identified in the first pooled mating
creens were individually retested for interactions with
ach of the eight baits in a second mating assay (Figure
C). An unambiguously positive interaction was only
ssigned to a pair of proteins after two independent
ating assays.
More than 25 million protein pairs (4456 baits × 5632

reys) were examined, and 3269 interactions among
064 baits and 1075 preys were identified (Figure 1A
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and see Tables S1–S3 in the Supplemental Data avail-
able with this article online). The Y2H interactions were
grouped into two data sets: those that activated all
three reporter genes, HIS3, URA3, and lacZ (LacZ4 set),
and those that activated only the two growth reporters
HIS3 and URA3 (SD4 set). The LacZ4 and SD4 sets
comprise 2124 and 1145 interactions, respectively.

To examine whether the protein matrix is an unbiased
representation of the human proteome, gene ontology
(GO) criteria were applied (Ashburner et al., 2000). Ex-
cept for membrane proteins, which were underrepre-
sented because the library used for subcloning was
selected for cDNAs that encode proteins without trans-
membrane domains, similar size fractions of proteins
annotated to the different GO component as well as GO
function categories (Figure 1D, upper and lower panel).
Interestingly, the distribution of proteins in both the GO
function and component classes remained largely the
same among the identified interactions as in the matrix
and the complete proteome (Figure 1D, inner circles).
In Figure 1E, the protein length distribution of the matrix
and the interacting proteins was compared with all hu-
man ORFs encoded in the genome. In all three groups,
the majority of proteins had a predicted length between
100 and 500 amino acids.

Experimental Verification of Interactions
To evaluate the quality of the Y2H data, a representative
sample of interactions was randomly selected for verifi-
cation assays because interactions recapitulated inde-
pendently are unlikely to be experimental false positives
(Goehler et al., 2004). Using a membrane coimmunopreci-
pitation assay (Figure 2A), 116 protein pairs were tested
with a success rate of 72/116 (62%). Another 131 in-
teractions were verified in pull-down experiments (Fig-
ure 2B), with a success rate of 87/131 (66%). With both
assays, a difference in success rates was observed
when the SD4 (56%) and the LacZ4 data (67%) were
compared (chi-square p = 0.11). These results demon-
strate that our Y2H data contain a large fraction of in-
teractions that can be confirmed by other methods.
They also support previous Y2H studies (Vidalain et al.,
2004), emphasizing the difference in validity of the in-
teractions from the SD4 and the LacZ4 sets.

Properties of the Y2H Network
For analysis of the protein interaction data, each cDNA
was mapped to an NCBI gene locus (Table S2). After
collapsing 83 interactions that occurred in bait/prey
and prey/bait configurations or that mapped pairwise
to the same gene loci, a total of 3186 unique interac-
tions between 1705 different human proteins was ob-
tained (Tables S1 and S3). Computational analysis of
the data revealed one giant network of 3131 interac-
tions between 1613 proteins and 43 small isolated net-
works of less than six proteins (Figure S2). For the large
interaction network, a mean shortest path length be-
tween any two proteins of 4.85 links was calculated
(Figure 3A). This means that most proteins are very
closely linked, a phenomenon that has been described
as small world property of networks (Strogatz, 2001).

Next, we calculated the degree distribution P(k) of
the human proteins, measuring the probability that a
Figure 2. Verification of Y2H Interactions by Coimmunoprecipitation
and Pull-Down Assays

(A) Membrane filter coimmunoprecipitation assay. Pairs of proteins
were transiently expressed as hemagglutinin (HA)- and protein A
(PA)-tagged fusions in COS-1 cells. Cleared cell lysates were fil-
tered through a membrane coated with human IgG to retain the
protein A fusion protein. After washing, the HA-tagged protein,
bound to the protein A fusion partner, was detected on the mem-
brane using anti-HA antibody. Identities of the PA- and HA-tagged
fusions are as indicated. Protein expression levels and nonrelated
control experiments are presented in Figure S1.
(B) In vitro pull-down assay. His-tagged fusions proteins produced
in E. coli were immobilized, and their interacting partners (HA-fu-
sions) were pulled down from COS-1 cell extracts. Binding was
detected by SDS-PAGE and immunoblotting using anti-HA anti-
body. Identities of the His- and HA-tagged fusions are as indicated.
given protein interacts with k other proteins. As shown
in Figure 3B, the degree distribution of the network pro-
teins decreases slowly, closely following a power-law.
This indicates that the human interaction map has
scale-free properties (Barabasi and Oltvai, 2004), which
is in agreement with interaction studies for model or-
ganisms (Figure S3A). On average, proteins in the net-
work have 1.87 interaction partners. However, 804 pro-
teins with only one, as well as 24 hubs–proteins with
more than 30 partners–were detected. Previous studies
in yeast have demonstrated that proteins acting as
hubs are three times more likely to be essential for cells
than proteins with only a small number of links (Jeong
et al., 2001). Therefore, the hubs in our human interac-
tion network deserve closer scrutiny with regard to im-
portant cellular tasks than other proteins.

To address the topological properties of our interac-
tion map, we calculated the average clustering coeffi-
cient, C(k), a measure of the tendency of proteins in a
network to form clusters or groups (Barabasi and Olt-
vai, 2004). We found that the average C(k) diminishes
when the number of interactions per protein increases
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Figure 3. Properties of the Human Y2H PPI Network

(A) Distribution of the shortest path (I) between pairs of proteins in the Y2H network. On average, any two proteins in the network are
connected via 4.85 links.
(B) Degree distribution of the network proteins. Number of proteins with a given link (k) in the network approximates a power-law (P(k) w kγ;
γ = 1.78).
(C) Degree distribution of the clustering coefficients of the network proteins. The average clustering coefficient of all nodes with k links was
plotted against the number of links. (CCp = 2n/kp(kp − 1), with n as the number of links connecting the kp neighbors of node p to each other;
see also Figure S3B).
(D) Degree distribution of the topological coefficients of the network proteins. The topological coefficient was calculated for every protein in
the network and plotted against the number of links (TCp = average(J(p,j)/kp), where J(p,j) denotes the number of nodes to which both p and
j are linked, kp is the number of links of node p; see also Figure S3C).
(Figure 3C), indicating that the network has a potential
hierarchical organization (Barabasi and Oltvai, 2004). A
very similar result was also obtained when human in-
teractions of a HPRD reference data set were analyzed
(Figure S3B). In hierarchical networks, sparsely con-
nected proteins are part of highly linked regions, which
are connected via hubs (Ravasz et al., 2002). This also
suggests that the interaction network has two levels of
organization, local clustering, potentially representing
protein complexes or functional modules, and more
global connectivity mediated via hubs, conceivable as
higher-order communication points between protein
complexes (Han et al., 2004).

Besides the clustering coefficient, the topological co-
efficient was used (Goldberg and Roth, 2003; Ravasz et
al., 2002) to study the characteristics of the interaction
network. The topological coefficient, TC(k), is a relative
measure for the extent to which a protein in the network
shares interaction partners with other proteins. (see
Figure S3C). As shown in Figure 3D, also the topologi-
cal coefficient decreased with the number of links
(close to 1/k), demonstrating that, relatively, in our net-
work, hubs do not have more common neighbors than
proteins with fewer links. This indicates that proteins
with many links are not artificially clustered together
(Supplemental Data and Table S2). Moreover, it con-
firms the modular network organization indicated by
the clustering coefficient.
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stablishment of Criteria for the Development
f a Confidence-Scoring System
o enable a meaningful evaluation of the potential bio-
ogical relevance of the identified interactions, it is criti-
al to assess the confidence of an interaction (Form-
techer et al., 2005; Giot et al., 2003; Li et al., 2004). For
his purpose, criteria for confidence need to be defined.
sing experimental, topological, and GO information,
e established the following six criteria for confidence
lassification:

(1) The PPI activates three reporter genes (HIS3,
URA3, and lacZ).

(2) The PPI is found in human interaction clusters.
(3) The PPI is found in orthologous D. melanogaster

clusters.
(4) The PPI is found in orthologous C. elegans

clusters.
(5) The PPI is found in orthologous S. cerevisiae

clusters.
(6) The PPI is formed of two proteins sharing GO an-

notation.

he Reporter Gene Activation Criterion
2H interactions that can be identified by activation of

hree reporter genes are of higher confidence and can
e reproduced with higher success rates than interac-



A Human Protein-Protein Interaction Network
961
tions detected only with two reporters. This is sup-
ported by our data (c.f. Figures 1 and 2) as well as sev-
eral other high-throughput interaction-mapping studies
(Vidalain et al., 2004). Therefore, the 2054 interactions
(LacZ4 set) that were identified with the reporters HIS3,
URA3, and lacZ were regarded as of higher confidence
(Table 1, Crit. 1), while the 1145 interactions which were
detected only with the HIS3 and URA3 growth reporters
(SD4 set) were not.
The Topological Criteria
PPIs in Human Interaction Loop Motifs. As cellular
functions are carried out by stably or transiently associ-
ated groups of proteins, we reasoned that interactions
in potential functional modules (Barabasi and Oltvai,
2004; Milo et al., 2002) are of higher confidence than
others. Therefore, Y2H interactions that are present in
three- and four-protein-interaction loop motifs (Gold-
berg and Roth, 2003; Wuchty et al., 2003; Yeger-Lotem
et al., 2004) were identified. For this purpose, we com-
bined our Y2H with the human PPI reference data ex-
tracted from HPRD (Peri et al., 2003) in order to create
a denser, more comprehensive data set for motif analy-
sis (for a detailed description of the interaction motif
analysis see the Supplemental Data). Our in silico
analysis revealed 1809 Y2H interactions that participate
in three- and four-protein-interaction loops. Sixteen in-
teractions from the HPRD data were directly recapitu-
lated in our Y2H data (3%), which is in agreement with
currently expected overlap rates between data sets
(Formstecher et al., 2005; Han et al., 2005). Four of
these did not participate in protein-interaction loops.
In total, 1813 interactions were classified as of higher
confidence based on topological criteria for human in-
teractions (Table 1, Crit. 2).

PPIs in Orthologous Interaction Loop Motifs. In order
to utilize the large interaction data sets of model organ-
isms for the identification of higher confidence interac-
tions by loop motif analysis, we determined which of
the interacting proteins from our network have ortholo-
gous proteins in D. melanogaster (Dm), C.elegans (Ce),
and S. cerevisiae (Sc) (Remm et al., 2001). Then, we
used this information to assemble theoretical ortholo-
gous interactions that emulate the respective human
Y2H PPIs. Next, we merged these data sets with pub-
lished model organism PPI data from Dm (Giot et al.,
2003), Ce (Li et al., 2004), and Sc (Mewes et al., 2004)
and determined the appearance of orthologous Y2H in-
teractions in interaction loop motifs. Using this in silico
approach 957, 497, and 316 interactions were identified
in the Dm, Ce, and Sc data sets, respectively, and re-
garded as of higher confidence (Table 1, Crit. 3, 4, and
5). Subsumed in these sets were 35 truly conserved in-
Table 1. Criteria for the Selection of Potential Higher-Confidence Interactions

Confidence Criteria Definition of the Criteria Number of PPIs Selected

Crit. 1 HIS3, URA3, and lacZ Y2H reporter activity 2054
Crit. 2 PPIs found in human interaction clusters 1813
Crit. 3 PPIs found in orthologous D. melanogaster clusters 957
Crit. 4 PPIs found in orthologous C. elegans clusters 479
Crit. 5 PPIs found in orthologous S. cerevisiae clusters 316
Crit. 6 PPIs formed of proteins sharing GO annotation 130

Total selected interactions 5749
teractions–interologs (Matthews et al., 2001; Walhout et
al., 2000).

The significance of the motif analyses for interaction
confidence was evaluated by computer-generated ran-
domized networks with the same properties as the Y2H
network (scale-free, same degree distribution). We
compared the number (NY2H) of interactions in loop mo-
tifs in the Y2H and the randomized networks; then, Z
score values (Z score = (NY2H − Nrand)/SD) were calcu-
lated as a qualitative measure of statistical significance
(Yeger-Lotem et al., 2004). As shown in Figure 4A, the
number of times Y2H interactions appear in human in-
teraction loops is more than 25 standard deviations
greater than their mean number of appearances in ran-
domized networks (Nrand), indicating that the utilization
of loop motifs as a confidence criterion is justified.
Using randomized networks of orthologous proteins,
similar results were obtained for Dm data. Lower Z
score values were measured for Ce and Sc data, which
might reflect a lower degree of homology to human pro-
tein interactions (Figure 4A).
The GO Coannotation Criterion
As proteins of similar cellular function and localization
tend to form PPI clusters, the Y2H PPIs were also in-
vestigated with regard to GO annotation (Lehner and
Fraser, 2004). We examined how many Y2H interaction
partners appear together on the same GO hierarchy
level and compared these numbers with the analogous
numbers for the randomized networks. As shown in
Figure 4B, from a depth of seven onward in the GO
hierarchy, significantly higher numbers of Y2H interac-
tions with shared terms in all three GO classes (cellular
component, biological process, and molecular func-
tion) were detected. As GO coannotated interaction
pairs are generally regarded as more reliable (Giot et
al., 2003; Ramani et al., 2005), these interactions (130
PPIs) were considered as of higher confidence (Table
1, Crit. 6).

Identification of High-Confidence Interactions
To classify Y2H interactions into categories of low, me-
dium, and high confidence, an interaction was awarded
one quality point for each fulfilled criterion described
above. 5749 points were given to 2618 of the 3186 PPIs,
with any given interaction receiving between 0 and 6
quality points. Interactions were then ranked according
to their number of quality points and grouped into the
three confidence sets (Figure 4C). Five hundred sixty-
eight (18%) Y2H interactions did not receive quality
points and were classified as of low confidence (LC
set). 1707 interactions (54%) obtained 1–2 quality points
and were classified as of medium confidence (MC set).
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Figure 4. A Confidence-Scoring System for Y2H PPIs

(A) Statistical significance of loop motif analysis (criteria 2–5). Z score values ((#PPIsY2H − #PPIsrand)/SDrand) were calculated from the number
of loop motif interactions from the experimental Y2H network and the random model networks (Table S6). Values for human (Hs), Drosophila
(Dm), C. elegans (Ce), and S. cerevisiae (Sc) are presented. Y2H interactions appear with higher frequency in protein interaction loops than
interactions from the randomized networks.
(B) Statistical significance of interacting proteins with shared GO annotation at various levels of the GO hierarchy for component, process,
and function. Z score values ((#PPIsY2H − #PPIsrand)/SDrand) were calculated from the number of interacting proteins with shared GO terms
from the experimental Y2H and random networks (Table S7). Interacting proteins annotating to the same GO categories at a depth of R7
fulfilled criterion 6.
(C) Distribution of the Y2H interactions according to their quality scores. Based on experimental and bioinformatic criteria (criteria 1–6), 5749
quality points were awarded to 2618 Y2H PPIs. Low (LC)-, medium (MC)-, and high (HC)-confidence data sets are indicated.
(D) Statistical significance of the quality scoring system. Z score values ((#PPIsY2H − #PPIsrand)/SDrand) were calculated from the number
interactions that scored quality points in the bioinformatic analyses from the Y2H and random networks (Table S8).
Importantly, the data allowed the definition of 911 high-
confidence interactions that collected 3 or more quality
points (HC set, 28%), involving 401 different human
proteins.

Finally, we determined whether the assignment of
Y2H interactions into confidence sets is statistically
significant. We quantified the numbers of Y2H interac-
tions in the confidence sets and compared the results
with the numbers obtained for interactions from ran-
domized networks. As shown in Figure 4D, Y2H interac-
tions were found with higher frequency in the HC set (3
or more quality points) than interactions from random
networks. This indicates that our scoring system for the
selection of interactions with potential higher biological
relevance yields statistically significant results.

Properties of the High-Confidence PPI Network
The group of HC interactions resulting from our confi-
dence-scoring procedure mainly contains interactions
with biological context information, i.e., interactions
where additional supportive information, like GO coan-
notation or participation in loop motifs, is available.
Therefore, we suggest that the HC interactions are
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ost promising with regard to further functional analy-
is and the generation of new hypotheses. Because of
his increased relevance, we specially extracted a net-
ork of the HC interactions from our data, which is
harted in Figure 5A. We grouped the proteins in three
road categories using GO and OMIM criteria: disease
roteins (45), uncharacterized proteins (49), and known
roteins (307). For the 45 disease proteins, 163 HC PPIs
ere identified (Table S1). This information can be used
s a resource for disease-specific investigations.
As visible in Figure 5A, the majority of proteins (87%)

re linked and form a large interaction network. In addi-
ion, 24 small networks with less than six proteins were
btained. The proteins contained in the HC set are still
nonbiased representation of the human proteome

hen GO criteria are applied (Figure S5), indicating that
onfidence filtering did not preferentially remove cer-
ain groups/classes of proteins. In contrast to other
onfidence-scoring procedures (Formstecher et al.,
005; Giot et al., 2003), our approach did not exclude
roteins because they have a high number of links.
herefore, the HC and the complete data set have a
ery similar degree distribution and relative number of
ubs. However, further topological analysis revealed
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Figure 5. Network Views

(A) A graph of the HC interaction network involving 401 proteins linked via 911 interactions. Orange: disease proteins (according to OMIM
morbidmap, NCBI); light blue: proteins with GO annotation; yellow: proteins without GO and disease annotation. Interactions connecting the
nodes are represented by color-coded lines according to their confidence scores. Green: 3 quality points; blue: 4 quality points; red: 5 quality
points; purple: 6 quality points.
(B) Y2H proteins linked to the Wnt signaling pathway. Spheres: proteins annotated in the KEGG regulatory pathways (blue); proteins with
high-confidence Y2H interactions (light blue); proteins with MC or LC PPIs (white). Links: protein-protein relations annotated in the Wnt
pathway (brown); PPIs from HPRD (black); Y2H HC PPIs (red); Y2H LC and MC PPIs (gray). The proteins CRMP1, ANP32A, and KIAA1377
bridge two proteins in the Wnt pathway.
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that the mean path length between proteins is signifi-
cantly shorter and the average clustering coefficient is
higher in the HC map (Figure S5). These results suggest
that the HC network has an even more pronounced hi-
erarchical structure than the complete network and
contains a larger number of closely linked protein clus-
ters, which could be indicative of functional protein
complexes (Barabasi and Oltvai, 2004).

Development of a Database for Network Exploration
Accompanying this manuscript, a web-based search-
able database was created at http://www.mdc-berlin.
de/neuroprot/database.htm. This database permits que-
ries for protein names and synonyms, accession num-
bers, gene names, and official gene symbols, as well
as LocusLinkID. Annotations are provided for every
protein and every interaction it is involved in. The data-
base also enables a graphical representation of queried
proteins and their interaction partners. Links to biblio-
graphic references and relevant external databases are
also included. A screen-shot illustration of the user
interface is presented in the Supplemental Data.

Linking Y2H Interactions to Regulatory Pathways
A direct comparison between the Y2H network and 22
human regulatory pathways from the Kyoto encyclope-
dia of genes and genomes—KEGG (Kanehisa et al.,
2004)—revealed that the two data sets share 162 pro-
teins involved in different signal transduction processes
or neurodegenerative diseases (see Table S4 for a sur-
vey). We found that these proteins had 568 interactions
in the Y2H network, 168 of which were HC. They link
115 proteins, including 13 disease proteins, to the 22
different regulatory pathways. Eight proteins, e.g., (ZHX1,
PTN, EEF1A1, ANP32A, CRMP1, GTF3C1, UNC119, and
KIAA1377) were found to connect via HC interactions
with proteins in the Wnt signaling pathway (Figure 5B),
which controls patterning and organogenesis during
development and is important for tumor formation in
adults (Logan and Nusse, 2004).

Using bioinformatic tools, we also identified proteins
that form links with two or more proteins annotated in
a KEGG pathway, increasing the confidence of the
pathway assignment. This approach identified 66 pro-
teins, including seven disease proteins (Table S5). We
found that the proteins ANP32A, CRMP1, and KIAA1377,
e.g., are linked to the Wnt pathway via two proteins
(Figure 5B). Interestingly, ANP32A (acidic leucine-rich
nuclear phosphoprotein 32), a potential tumor suppres-
sor (Bai et al., 2001), associates with Axin-1 (Luo and
Lin, 2004), as well as phosphatase 2A (PPP2CA), which
are both crucial for regulating the Wnt pathway. In addi-
tion, an interaction between Axin-1, ROCK1, and
CRMP1 (collapsin response mediator protein-1) was
identified. ROCK1 is part of the noncanonical Wnt/PCP
pathway and modulates cytoskeletal dynamics and the
activity of MAP kinases, while CRMP1 functions in Rho/
Rac signaling during neuronal differentiation (Arimura
et al., 2004), suggesting a new link between Wnt signal-
ing and processes controlling cytoskelatal organiza-
tion. Finally, interactions linking RUVBL1, a β-catenin/
Tcf cofactor (Bauer et al., 2000), to MAPK9, a nuclear
member of the MAP kinase family (Luo and Lin, 2004),
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ia the uncharacterized protein KIAA1377 were also
ound. This suggests that KIAA1377 could participate
n the integration/diversification of signals at transcrip-
ion level.

NP32A and CRMP1 Modulate the Activity
f the Wnt Pathway

n order to determine the binding sites required for the
nteractions between ANP32A, CRMP1, and Axin-1,
ST pull-down experiments were performed (Figure 6).
e found that the acidic C-terminal half of ANP32A (aa

50–249), which contains a potential acetyltransferase
nhibitory domain (Seo et al., 2002), interacts with the
-terminal DIX domain of Axin-1 (aa 725–826), while the
-terminal half, with three leucine-rich repeats (Ulitzur
t al., 1997), did not bind to Axin-1. Also, we showed
hat the C-terminal 228 amino acids of CRMP1 are criti-
al for the interaction with a central region in Axin-1 (aa
10–625; Figures 6A and 6B).
To test whether the interactions are functionally rele-

ant in the canonical Wnt signaling cascade, a cell-
ased transcription assay was performed. Axin-1 is a
egative regulator of the Wnt pathway that controls the

evels of the transcriptional activator β-catenin (Behrens
t al., 1996). In the absence of Wnt signals, β-catenin is
egraded by an Axin-1-containing multiprotein com-
lex (Luo and Lin, 2004), while activation of the path-
ay with, e.g., dishevelled (Dvl) inhibits β-catenin deg-

adation and induces Lef/Tcf-dependent transcription
Huelsken and Birchmeier, 2001). In the assay, moder-
te overexpression of Dvl in HEK293 cells caused a
-fold increase in reporter gene activity. However, this

ncrease was reduced to 1.5-fold in a dose-dependent
anner, when full-length ANP32A or CRMP1 were

oexpressed (Figure 6C). The activity of protein frag-
ents in the Wnt signaling assay correlated with their

bility to bind Axin-1. The C-terminal half of ANP32A
ontaining the Axin-1 binding site was sufficient to sup-
ress Wnt signaling, while the N-terminal 150 amino
cids of ANP32A were inactive. Similarly, the C-terminal
ragment of CRMP1 containing the Axin-1 binding site
educed Lef/Tcf-dependent transcription as efficiently
s the full-length protein, while the N-terminal part had
o effect (Figure 6C). These results demonstrate that
onnecting proteins via Y2H interactions to signaling
ascades such as the Wnt pathway allows the identifi-
ation of potential pathway modulators.

iscussion

o assign functions to uncharacterized proteins and to
nderstand the composition of protein complexes, sev-
ral large- and medium-scale interaction studies have
een undertaken using the Y2H system or MS-based

unctional proteomics approaches (von Mering et al.,
002). These studies have provided the scientific com-
unity with predictions on protein function of model
rganisms such as yeast, Drosophila, or C. elegans.
owever, proteome-wide maps of interactions among
uman proteins have not yet been presented.
Here, we report a first systematic Y2H analysis of hu-
an proteins. Using a matrix approach and two rounds
f automated interaction mating, we identified 3186 in-
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Figure 6. The Axin-1 Interacting Proteins ANP32A and CRMP1 Act as Repressors in Wnt/β-catenin Signaling

(A) Schematic representation of the primary structures of Axin-1, ANP32A, and CRMP1. RGS: regulation of G protein signaling domain; DIX:
dishevelled and axin domain; LRR: leucine-rich repeat; D/E-rich: Asp/Glu-rich region; D-HYD: similarity to dihydropyrimidinases. Binding
results are summarized.
(B) GST pull-down assays to confirm the Axin-1/ANP32A (top) and the Axin-1/CRMP1 interactions.
(C) ANP32A and CRMP1 repress Lef/Tcf-dependent transcription induced by Dishevelled (Dvl) in cell-based assays. TOP reporter: gray bars;
FOP reporter: white bars. The averages from at least three assays for every construct were combined. Expression levels of the proteins were
verified by Western blotting using anti-HA antibody recognizing Dvl and anti-PA antibody detecting ANP32A and CRMP1 proteins.
teractions connecting 1705 proteins. Among them, 195
disease proteins and 342 uncharacterized proteins
were placed in a new context via direct and indirect
interactions with other proteins. We validated the in-
teractions by independent pull-down and coimmuno-
precipitation experiments (Figure 2), as interactions de-
tectable in different binding assays are unlikely to be
experimental false positives (Goehler et al., 2004; Li et
al., 2004). The overall success rate was about 65%,
confirming our screening procedure as capable of gen-
erating a data set that contains a large fraction of reli-
able interactions.

Besides experimental false positives arising from the
inherent limitations of the Y2H approach, biological
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false positives reduce the reliability of large-scale Y2H
interaction data sets. Biological false positives are in-
teractions that are produced and reproduced in various
exogenous assays but do not form under physiological
conditions. Due to the scarcity of information about
stable and transient protein complexes in human, it
seems impossible to estimate the rate of biological
false positives in our data set. Their frequency cannot
be determined without additional information from
other proteomics studies providing physiological data
about protein complex composition, protein localiza-
tion, and cell type specificity (Ge et al., 2003).

High rates of missed interactions have been reported
when different Y2H screens or data sets generated with
different methods were crossvalidated (Formstecher et
al., 2005; von Mering et al., 2002). The studies cover
only small fractions of the interactome, and approaches
differ widely enough to result in complementary rather
than overlapping data. Various explanations for the oc-
currence of false negatives in the Y2H approach have
been put forward, mostly relating to the lack of post-
translational modifications, improper folding of the hy-
brid proteins, or the inability of interacting proteins to
enter the nucleus (von Mering et al., 2002). We eval-
uated the overlap of Y2H interactions with previously
published data sets like HPRD, which collects interac-
tions identified in small-scale experiments with various
in vitro and in vivo techniques, finding a similar lack of
concordance. This might have to do with the mentioned
insufficiencies of the Y2H system or the patchiness of
the information of the reference data sets (Ramani et
al., 2005). However, Han et al., (2005) recently at-
tempted to explain that the low coverage of interaction
data sets is to be expected without assuming false
positives, because currently available methods are only
capable of producing incomplete data sets. We sug-
gest that novel identification as well as multiple-step
validation/confirmation strategies will have to be put in
place in order to produce comprehensive, crosscon-
nected interaction data sets.

To identify interactions that are biologically meaning-
ful, a confidence-scoring system was developed using
experimental, topological, and GO criteria (Figure 4).
Protein clusters were detected significantly more often
in the Y2H network than in any of the random control
networks, indicating that biologically relevant, func-
tional complexes can be recognized in the interaction
data (Supplemental Data). For example, we identified
new interaction partners for the disease protein emerin
(EMD), which causes X-linked Emery-Dreifuss muscular
dystrophy (EDMD) when mutated (Emery, 2002). Emerin
binds to the Src-homology 3 proteins SH3GL2 and
SH3GL3 and the uncharacterized developmental pluri-
potency-associated protein 4 (DPPA4), which itself
binds to SH3GL3 and SH3GL1, thus forming a small,
highly connected interaction cluster. The identification
of these interactions might promote understanding of
EMD function in mammalian cells and can be used as
a starting point for investigating the role of the partici-
pating proteins in EDMD pathogenesis.

Another interesting outcome of our study is the high
connectedness of network proteins to proteins of gene
regulatory pathways listed in the KEGG database.
Using simple bioinformatic tools, we directly linked
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bout 150 human proteins via HC interactions to the
2 different KEGG pathways. In addition, proteins that
ridge two or more proteins in a given pathway were

dentified. Utilizing this more stringent approach, 66
roteins could be newly mapped to one or more KEGG
athways (Tables S4 and S5). Using cell-based assays,
e functionally validated two of the proteins, which
ere linked to the Wnt pathway by computational
nalysis (Figure 6). We found that the proteins ANP32A
nd CRMP1, which are both implicated in disease pro-
esses (Bai et al., 2001; Shih et al., 2003), can suppress
anonical Wnt signaling, suggesting that they might be
unctional modulators of this pathway in vivo. This indi-
ates that Y2H screening combined with bioinformatic
athway mapping increases our knowledge about sig-
aling cascades and permits design of new experimen-
al strategies.

onclusions
his report supplies more than 3000 protein-protein in-
eractions, 911 supported with topological and GO cri-
eria, 159 verified biochemically. The interaction map
inks 195 disease proteins to previously unidentified
artners, allows the description of 342 uncharacterized
uman proteins via their interactions, and suggests
ew roles for hundreds of known proteins. Also, the
tudy integrates Y2H interaction data with known regu-
atory pathways, extracting potential functional mod-
les that participate in signaling cascades from the
tatic, large-scale human Y2H map. This human PPI
ap will serve as a unique resource for further experi-
entation and analysis leading to the identification of
isease-modifier genes and new drug targets.

xperimental Procedures

ubcloning of Human cDNAs into Y2H Plasmids
665 cDNAs of the hEx1 library (Bussow et al., 1998) were se-
uenced from the 5# end to determine the identity and the reading

rame of each cDNA fragment. BLASTP analysis against the nr
NCBI) or TrEMBL (Swiss-Prot) databases revealed a nonredundant
et of 4275 cDNAs, which were inserted by restriction cloning into
he Y2H plasmids pGAD426 and pBTM117c (http://www.mdc-berlin.
e/neuroprot/labequip.htm). For recombinational cloning of human

ull-length ORFs, 2136 human cDNA fragments were PCR amplified
ith specific primer pairs from source clones of the RZPD reposi-

ory and BP cloned into pDONR201 (Invitrogen, Carlsbad). Recom-
inant clones were sequenced and annotated using BLASTP
earches. cDNA fragments were then shuttled into the Y2H vectors
BTM116-D9 and pGAD426-D3 by recombinational cloning (http://
ww.rzpd.de/products/orfclones/). The redundancy of clones in

he matrix, i.e., clones coding for different parts of the same pro-
eins, was less than 4%. In total, 48% of the plasmids encoded full-
ength ORFs, whereas 52% coded for C-terminal fragments of
arger human proteins.

utomated Y2H Screening
o create a matrix for interaction mating, the L40ccα MATα yeast
train (Goehler et al., 2004) was individually transformed with prey
lasmids (coding Gal4 activation domain fusions); the resulting
east clones were arrayed in 384-well microtiter plates. Simulta-
eously, the bait plasmids (coding LexA DNA binding domain fu-
ions) were introduced into a L40ccU MATa strain and assembled

n 96-well plates. Baits (19.6%), which activated the HIS3, URA3,
nd lacZ reporter genes after mating with a MATα strain expressing
n AD protein, were excluded from the automated Y2H analysis.
For interaction mating, 5 �l liquid cultures of the MATα yeast

trains were replicated in 384-well MTPs using a pipetting robot

http://www.mdc-berlin.de/neuroprot/labequip.htm
http://www.mdc-berlin.de/neuroprot/labequip.htm
http://www.rzpd.de/products/orfclones/
http://www.rzpd.de/products/orfclones/
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(Biomek FX), grown, and mixed with 40 �l pooled MATa strains
(eight baits). The yeast mixtures were then transferred onto YPD
agar plates using a spotting robot (KBiosystems) and incubated for
36 hr at 30°C. After mating, the clones were automatically picked
from the plates and transferred into 384-well MTPs containing SDII
(-Leu-Trp) liquid medium. For selection of PPIs, diploid yeasts were
spotted onto SDIV (-Leu-Trp-Ura-His) agar plates as well as nylon
membranes placed on SDIV agar plates. After 5–6 days of incuba-
tion at 30°C, digitized images of the agar plates and nylon mem-
branes were assessed for growth and β-galactosidase activity
using the software Visual Grid (GPC Biotech).

For confirmation of interactions, the eight baits from each pool
were arrayed in 96-well MTPs (Biomek 2000) and mated with the
positive preys identified in the first mating screen. After 36 hr at
30°C, yeast cultures were spotted onto SDII agar plates for selec-
tion of diploid cells expressing both protein fusions. After 4 days
at 30°C, the yeast colonies were assayed on SDIV agar plates and
nylon membranes.

Membrane Coimmunopurification and Pull-Down Assays
For expression of hemagglutinin (HA)- and protein A (PA)-tagged
fusions, cDNA fragments (identical to those in the Y2H assays)
were subcloned into pTL-HA or pcDNA3.1-PA, respectively, and
cotransfected pairwise into COS-1 cells. Cell extracts were as-
sessed for the expression of both proteins by SDS-PAGE and im-
munoblotting and filtered (approximately 3 �g protein extract)
through a nitrocellulose membrane (Schleicher & Schuell) coated
with human IgG (Sigma, 1:1000 in PBS) using a 96-well dot blot
apparatus. Membranes were washed six times and probed with
the anti-HA monoclonal antibody 12CA5 (Roche Diagnostics) for
detection of PPIs.

For in vitro pull-down assays, cDNA fragments were subcloned
into pQE30-NST (Bussow et al., 1998) or pTL-HA. Soluble protein
extracts of His- and HA-tagged fusions were prepared from E. coli
and COS-1 cells, respectively. His-tagged fusions were bound to
Ni2+NTA agarose beads (approximately 30 �g protein). After wash-
ing (50 mM HEPES-KOH [pH 7.4], 300 mM NaCl, 1 % NP-40, 5 mM
imidazol, 1 mM DTT), they were incubated for 2 hr at 4°C with 200
�g COS-1 cell extract containing the potential interacting HA-
tagged fusion protein. After washing, bound proteins were ana-
lyzed by SDS-PAGE and immunoblotting with the anti-HA antibody.

Luciferase Reporter Assay
Lef/Tcf reporter assays were performed as previously described
(Brembeck et al., 2004) with the following modifications: HEK293
cells were cotransfected with 0.125, 0.25, and 0.5 �g of the indi-
cated ANP32A or CRMP1 plasmids and 0.5 �g Dvl expression con-
structs together with TOP or control FOP luciferase reporter and
β-galactosidase plasmids using Lipofectamine 2000 (Invitrogen).
Empty vector DNA was added to a total of 1.25 �g plasmid DNA.
Luciferase activity was determined 48 hr after transfection and nor-
malized against β-galactosidase activity. Reporter assays were
performed as triple transfections.

Computational Analysis of the PPI Map
Using LL.out_hs (NCBI, 05-13-2004 release), proteins were mapped
to a unique gene locus via their accession numbers obtained in a
BLASTP search against the nr (NCBI) or TrEMBL (Swiss-Prot) data-
bases. The BLAST analysis of Y2H clones and the orthology as-
signments computed with the InParanoid program (Remm et al.,
2001) against the predicted proteome of D. melanogaster (FlyBase
release r3.2.0), C. elegans (WormBase release WS121), and S. cere-
visiae (SGD ORF set of 04-02-2004) are presented in Table S2. A
PPI human reference set of 14,384 PPIs between 4,478 proteins
was obtained from the HPRD (status 09-17-04). For the assignment
of interolog clusters, we referred to the complete D. melanogaster
Y2H data set (Giot et al., 2003; 20,439 PPIs; 6,991 proteins), the
C. elegans WI5 data set (Li et al., 2004; 5534 PPIs; 3227 proteins),
and the manually curated catalog of PPIs from S. cerevisiae (MIPS
at http://mips.gsf.de/; 8946 PPIs; 4525 proteins). Topological analy-
sis, e.g., degree distribution, clustering coefficients, and path
lengths, was carried out with TopNet (Yu et al., 2004). GO assign-
ments made use of NCBI loc2go, (12-09-2004) and OBO (12-09-
2004), and pathway assignment was performed using KEGG data
(Release 34.0).

Supplemental Data
Supplemental Data include five figures, supplemental text, and
eight tables which provide a full documentation of the human PPI
dataset and can be found with this article online at http://www.cell.
com/cgi/content/full/122/6/957/DC1/.
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