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Abstract

Recent results establish that a subset of the Voronoi diagram of a point set that is sampled from the smooth boundary of a shape
approximates the medial axis. The corresponding question for the dual Delaunay triangulation is not addressed in the literature. We
show that, for two-dimensional shapes, the Delaunay triangulation approximates a specific structure which we call anchor hulls.
As an application we demonstrate that our approximation result is useful for the problem of shape matching.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Shape modeling from point samples has recently gained considerable attention because of its great flexibility [12].
Researchers have started studying methods to extract various geometric structures of shapes from point samples. They
include reconstructing boundaries of shapes [11], approximating their medial axes [4,8,14], identifying features [13]
and many others.

A remarkable connection between the shape and its point sample was revealed by Brandt and Algazi [9] when they
showed that the Voronoi vertices of a dense point sample approximate the medial axis of a shape in two dimensions.
Although this result does not hold in three dimensions, Amenta and Bern showed that the elongated Voronoi cells ap-
proximate the normals on the shape boundaries [3]. Later, Amenta et al. [4] and Boissonnat and Cazals [8] established
that a subset of Voronoi vertices does indeed approximate the medial axis in three dimensions. Dey and Zhao [14]
showed that, not only a set of discrete Voronoi vertices approximates the medial axis, a subset of the Voronoi facets
approximates it in three dimensions. Given these approximation results by Voronoi diagrams, a natural question arises
‘what does the Delaunay triangulation of a point sample approximate?’. Some properties of the Delaunay triangula-
tion of a point sample from a curve or a surface have been studied recently. For example, the size complexity of the
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Fig. 1. Anchor hull edges are approximated by thin Delaunay triangles while the anchor polygons are approximated by relatively fat Delaunay
triangles.

Fig. 2. Anchor sets and anchor hulls: A(x) = {b, c, d} and H(x) is the anchor triangle bcd , A(y) = {e, f } and H(y) is the anchor edge ef ,
A(z) = {a} and H(z) is the anchor point a.

Delaunay triangulation of a point sample of a surface was recently investigated [7,15]. However, no result exists to
answer what structure of a shape is approximated by the Delaunay triangulations of a point sample.

In this paper we address this question for two-dimensional shapes. We establish that a subset of the Delaunay
triangulation approximates the anchor hulls of the shape. An anchor hull in a shape is the convex hull of the points
where the maximal empty balls centering a medial axis point touch the boundary of the shape (see Fig. 2). The anchor
hulls cover the shape. Fig. 1(a) shows the anchor hulls (shaded white) in a shape and Fig. 1(b) shows the Delaunay
triangulation of a point sample on its boundary. It exhibits how the anchor hulls are approximated by the Delaunay
triangles.

After establishing the anchor hull approximation result, we apply it to the well known problem of shape matching
[1,5,17,18]. Since similar shapes have similar anchor hulls, one can segment almost identical shapes similarly using
approximate anchor hulls. We use this segmentation to match two shapes with a score that reflects the similarity
between their anchor hulls. Experimental results confirm that anchor hulls provide an effective tool for shape matching.

2. Definitions

2.1. Anchor hulls and medial axis

In this paper the shape Σ is a compact, connected subset of R
2 with smooth boundary ∂Σ .

Let A :Σ → P(∂Σ) be the function from Σ to the power set P(∂Σ) of ∂Σ that assigns to every point of Σ

its nearest neighbors on the boundary, i.e. A(x) = argminy∈∂Σ ‖x − y‖. See Fig. 2. The next observation follows
immediately.

Observation 1. For every x ∈ Σ there exists a closed ball B ⊆ Σ such that A(x) is contained in the boundary of B .
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Anchor hull. For every x ∈ Σ , let H(x) denote the convex hull of A(x). We call H(x) the anchor hull of x. See,
for example, Fig. 2.

Observation 2. For every x ∈ Σ , it holds that H(x) ⊆ Σ .

Proof. This follows from Observation 1 and the fact that balls are convex. �
There is an interesting view of the anchor hulls in the lifted diagram of ∂Σ . Consider the map h : R2 → R

3 where
h(x1, x2) = (x1, x2, x

2
1 + x2

2). The curve h(∂Σ) is a lifting of ∂Σ onto the paraboloid x3 = x2
1 + x2

2 . Let Convh(∂Σ)

denote the convex hull of h(∂Σ). Each two dimensional anchor hull in Σ is the projection of a facet in Convh(∂Σ).
What we are studying is the approximation of Convh(∂Σ) with the convex hull of a finite sample of h(∂Σ). Approx-
imations of smooth convex bodies have been studied before [16]. However, these results cannot be called upon here
straightforwardly since Convh(∂Σ) is not necessarily smooth.

Medial axis. The medial axis M of Σ is the closure of the set of center points of all maximal closed balls contained
in Σ . The maximal balls are called medial balls which, by definition, are also tangent to ∂Σ .

The medial axis M , in general, is a geometric graph with branching points. It turns out that M can have infinitely
many branchings if ∂Σ is not well-behaved [10]. Although the examples are very pathological, we need to exclude
these cases for our theoretical results. Also, to avoid complications in our proofs we need an assumption about the
finiteness of the anchor sets.

Shape genericity assumptions. For the rest of the paper we assume that the shape Σ , other than being compact and
bounded by a smooth curve ∂Σ , satisfies the following generic conditions.

• A(x) is finite for all x ∈ Σ . That is, the anchor hulls are either points, line segments or polygons. We refer to them
as anchor points, anchor edges and anchor polygons, respectively.

• The medial axis M has a finite graph structure; see Choi et al. [10] for the class of curves satisfying this condition.
• The medial balls with two points of tangency to ∂Σ are non-degenerate. Consider any medial ball B with the

center, say at m, where A(m) = {x, y}. When B is grown by moving its center along m − x, it cannot be tangent
to another point, say z of ∂Σ , where z is arbitrarily close to y.

Let N ⊂ M be the set of non-manifold points in M , i.e. the set of points that do not have an open neighborhood in
M homeomorphic to an open interval. Notice that N includes the boundary points of M as well as all branching points.

Observation 3. For each point m ∈ M \ N it holds that |A(m)| = 2.

We define

∂Σ2 = {
x ∈ ∂Σ | ∃m ∈ M \ N with x ∈ A(m)

}
.

Pairing. We have a natural pairing μ on the points of ∂Σ2, namely,

μ : ∂Σ2 → ∂Σ2, x 	→ x′ = μ(x),

if the there exists m ∈ M \ N with A(m) = {x, x′}. See Fig. 3 for an illustration.

Fig. 3. Partition on ∂Σ : the points of some open curve segments are paired with points in its dashed partner. The endpoints of these curve segments
are points in ∂Σi for i �= 2. For example, a ∈ ∂Σ1 and {b, c, d} ⊂ ∂Σ3.
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Observation 4. The pairing μ is a well defined function on ∂Σ2.

Proof. By definition there exists a partner x′ for every x ∈ ∂Σ2. That is, all we have to show is that there exists only
one such partner. Let x′ be a partner of x and m ∈ M \ N with A(m) = {x, x′}. Since we assumed that A(m) is finite
for all m ∈ Σ , there exists a unique ball B ⊂ Σ with center m such that B ∩ ∂Σ = {x, x′}. By construction the vector
m − x is orthogonal to the tangent of ∂Σ at x and it points into the interior of the shape Σ . Since there can be only
one such ball B , the partner x′ of x has to be unique. �

The continuity of μ implies the following nesting property of the pairing μ. To state this property we introduce the
notation of a segment that turns out to be useful also later on. For a, b ∈ ∂Σ , we denote by σ(a, b) ⊂ ∂Σ the shorter
of the two open curve segments that connect a and b in ∂Σ . The closure of σ(a, b) is denoted by σ(a, b).

Observation 5. Let σ(a, b) ⊂ ∂Σ2 be a curve segment and σ(c, d) ⊆ σ(a, b). Then μ(σ(c, d)) ⊆ μ(σ(a, b)).

We are also interested in ∂Σ \ ∂Σ2. To classify these points we distinguish two types of points in N , namely
boundary points m of M for which |A(x)| = 1 and non-boundary points m for which |A(m)| � 3. For i > 0, we define

∂Σi = {
x ∈ ∂Σ | ∃m ∈ M with x ∈ A(m) and

∣∣A(m)
∣∣ = i

}
.

Note that, this definition subsumes the definition of ∂Σ2. We have,

(i) if m ∈ M is a boundary-point, A(m) ⊆ ∂Σ1,
(ii) if m ∈ M \ N , A(m) ⊆ ∂Σ2, and

(iii) if m ∈ N is non-boundary, A(m) ⊆ ∂Σ>2.

See Fig. 3 for an illustration.

2.2. Sampling

In our setting a sampling of a shape Σ is a finite subset S of the boundary ∂Σ . Since we want a sampling to be
feature adaptive, we adopt the notions of local feature size and ε-sample from Amenta et al. [2].

Local feature size. The local feature size is a function f on ∂Σ that assigns to every point x ∈ ∂Σ its distance to the
medial axis of Σ . Because of the second genericity conditions and compactness of ∂Σ , we have minx∈∂Σ f (x) lower
bounded by a non-zero positive constant. It is a direct consequence of the triangle inequality that f () is 1-Lipschitz,
i.e., f (x) � f (y) + ‖x − y‖ for any two x, y ∈ ∂Σ .

ε-sample. A finite subset S ⊂ ∂Σ is an ε-sample if every point x ∈ ∂Σ has a point from S within a distance
of εf (x).

Our main result concerns the approximation of anchor hulls by the Delaunay triangulation. Actually, we study the
Delaunay triangulation of a sample S ⊂ ∂Σ restricted to Σ , denoted DelS|Σ . To define this Delaunay triangulation
we need the notion of Voronoi diagram. The Voronoi diagram of S is a cell decomposition of R

2 into convex cells.
Every Voronoi cell corresponds to exactly one sample point and contains all points of R

2 that do not have a smaller
distance to any other sample point.

Restricted Delaunay triangulation. The Delaunay diagram of a sample S restricted to Σ is a cell complex DelS|Σ .
The convex hull of three or more points in S defines a Delaunay cell in DelS|Σ if the intersection of the corresponding
Voronoi cells is not empty in Σ and there exists no superset of points in S with the same property. Analogously, the
convex hull of two points defines a Delaunay edge in DelS|Σ if the intersection of their corresponding Voronoi cells is
not empty in Σ . Every point in S is a Delaunay vertex in DelS|Σ . If the sample points in S are in general position, all
Delaunay cells are triangles and we call the restricted Delaunay diagram DelS|Σ the restricted Delaunay triangulation
of S.

We will show that all anchor edges are approximated by some Delaunay edges. Conversely, most Delaunay edges
that are relatively long approximate some anchor edges. Some of the long Delaunay edges may not approximate any
anchor edge. Their endpoints lie near the points in ∂Σi for i > 3. They approximate a diagonal of the corresponding
anchor polygon. In Fig. 1, the edge dissecting the middle anchor polygon (a quadrilateral) is such an edge.
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Fig. 4. Exclusions: The dark shaded curve segments are excluded from ∂Σ to obtain Γε0 (left). The excluded curve segment around a is extended

and the curve segment σ(s, t) = ξ(a) is excluded to obtain Γ̃ε0 (right).

3. Approximation

3.1. Exclusions

Our proofs proceed in two parts. First, we prove the results for all of ∂Σ but some excluded regions. Then, we
extend the results to these excluded regions.

Let B(x, r) denote a ball of radius r with the center at x and Ur(x) = ∂Σ ∩ interior(B(x, r)). For ε0 > 0 define

Γε0 = closure

(
∂Σ \

⋃
x∈A(N)

Uε0f (x)(x)

)
.

Fig. 4 illustrates the exclusions for Γε0 . We extend the exclusions a little more to make them symmetric with respect
to the pairing. This leads us to define,

Γ̃ε0 = closure
(
Γε0 \ {

x ∈ Γε0 |μ(x) /∈ Γε0

})
.

For a /∈ ∂Σ2 let ξ(a) be the component in ∂Σ \ Γ̃ε0 that contains a, i.e., it is the open curve segment excluded
from ∂Σ by a. In what follows, by the endpoints of ξ(a) we refer to the endpoints of the closure of ξ(a).

Observation 6. For any x ∈ Γ̃ε0 we have x′ ∈ Γ̃ε0 .

Proof. Follows immediately from the above definitions. �
Observation 7. Let t be an endpoint of ξ(a) for any a /∈ ∂Σ2. If a ∈ ∂Σ1, the point t ′ is another endpoint of ξ(a).
Otherwise, t ′ is an endpoint of ξ(b) where {a, b} ⊂ A(n) for some non-boundary point n ∈ N .

Proof. By construction t ∈ Γ̃ε0 . Consider the open curve segment σ(t, a). It is mapped to an open curve segment
σ(t ′, b) by μ where {a, b} ⊂ A(n) for some n ∈ N . In case a ∈ ∂Σ1, we have a = b.

Otherwise, we only need to show that t ′ is the endpoint of ξ(b). If not, there are two possibilities: either t ′ ∈ ξ(b),
or there is an endpoint s of ξ(b) so that s ∈ σ(t ′, b). We handle both cases by exploiting the nesting property of the
pairing μ (Observation 5). In the first case we have t ′ /∈ Γ̃ε0 which is a contradiction to t ′ = μ(t) ∈ Γ̃ε0 . In the second
case we have on the one hand μ(s) ∈ ξ(a) and thus μ(s) /∈ Γ̃ε0 . On the other hand we have s ∈ Γ̃ε0 , because it is an
endpoint of ξ(b). This is a contradiction. �
3.2. Sampling density

In this subsection we detail the conditions on the sampling density ε that need to be satisfied for our results to hold.

(i) For our proofs we need that ε < 1/4.
(ii) We need that ξ(a) ∩ ξ(b) = ∅ for all a, b /∈ ∂Σ2. Actually we need that the excluded regions not only have

empty intersection but are also well separated. We always can achieve such a well separation if we choose ε0 for
the exclusions sufficiently small. One should observe that this is the case, because we assume the finite graph
structure of the medial axis. Since by the genericity assumption, the set N of non-manifold points are finite, they
are isolated and so are the points in A(N).
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Fig. 5. Illustration for ε2: The medial ball for x and x′ is grown to B when it intersects Γ in three connected components, x, c and σ(a, b). By
definition ‖a − b‖ � ε2ρ(x).

Let ε1 be the smallest δ such that Γδ ⊆ Γ̃ε0 . This ε1 will play an important role in our analysis.

Observation 8. For any two points x, y ∈ ξ(a), it holds that ‖x − y‖ � 2ε1f (a).

Proof. This follows from the fact that ξ(a) is included in Uε1f (a)(a). �
For our proofs we will require that,

ε <
ε1

4Δ + 2ε1
,

where Δ = supx,y∈Σ
f (x)
f (y)

is a shape dependent constant. Observe that Δ � 1 implies that ε < ε1.

(iii) We need the following construction to explain this condition.
For x ∈ Γε1/2 let B(m,ρ(x)) be the corresponding medial ball, i.e., the ball with center m and radius ρ(x) =
‖x −m‖ where m ∈ M \N . Let R(x) be the set that contains all r > 0 such the ball B(m+ r(m−x), (r +1)ρ(x))

intersects ∂Σ in at least three connected components one of which is a curve segment σ(a(r), b(r)) around x′.
Notice that R(x) can be empty. We set

ε2 =
{∞, ∀x ∈ Σ,R(x) = ∅,

minx∈Γε1/2,R(x) �=∅, r∈R(x) ‖a(r) − b(r)‖/ρ(x), otherwise.

We assume ε2 to be strictly positive. It turns out that we do not need to use ε2 in proofs when R(x) is empty. That
is why we set ε2 arbitrarily to ∞ in the first case. For our proofs we will require that ε < ε2/8.

3.3. Main result

Our main result is the following approximation theorem.

Theorem 1. Let Σ be a shape as described above and S an ε-sample of its boundary ∂Σ . Let ε > 0 fulfills the
sampling conditions (i)–(iii). Then the following hold:

(1) For any x ∈ ∂Σ2 there is a Delaunay edge pq ∈ DelS|Σ where ‖x−p‖ = O(ε1)f (x) and ‖x′−q‖ = O(ε1)f (x′).
(2) Let pq ∈ DelS|Σ be a Delaunay edge where ‖p − q‖ > 2ε1

1−2ε1
f (p) = �(ε1)f (p). Then, there exists an anchor

hull H(m) so that {x, x′} ⊆ A(m) and ‖p − x‖ = O(ε1)f (x) and ‖q − x′‖ = O(ε1)f (x′).

Notice that (2) only refers to certain long Delaunay edges. This restriction cannot be avoided as some of the
Delaunay edges approximate the edges that reconstruct ∂Σ from S. These Delaunay edges do not approximate any
anchor hull of a point on the medial axis. Also, if all anchor polygons are triangles, (2) implies that each long Delaunay
edge approximates an anchor edge. As we mentioned earlier, in case of non-triangular anchor polygons, some of the
long Delaunay edges may not approximate any anchor edge. Instead they approximate a diagonal of an anchor polygon
H(m) where |A(m)| > 3.

Also notice that the approximation guarantees are stated in terms of ε1. That is, at a first glance it seems that we
do not get a better approximation for a denser sampling, i.e., smaller ε. However, the proper way to look at it, is as
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follows: Fix some constant ε0 for the exclusion that works well. For any ε that fulfills the conditions (i)–(iii) let ε′
0 be

the infimum of all ε0 � δ > 0 such that if we replace ε0 by δ the sampling density ε would still fulfill the conditions
(i)–(iii). Obviously we have that ε′

0 goes to zero if ε does so. Let ε′
1 be defined via ε′

0 in the same way as ε1 is defined
via ε0. The continuity of μ on Σ2 implies that ε′

1 goes to zero if ε′
0 does so. Thus in our guarantees we can replace ε1

by ε′
1. That shows that our guarantees actually imply that the approximations are getting better with higher sampling

density ε.

4. Proofs

Lemma 1. Let B = B(x, r) be a ball centered at x ∈ ∂Σ and σ(a, b) be the connected component in B ∩ ∂Σ

containing x. If σ(a, b) is empty of any sample point then

‖x − a‖ � εf (x) and ‖x − b‖ � εf (x).

Proof. Suppose the contrary, i.e., ‖x − a‖ > εf (x) or ‖x − b‖ > εf (x). Since a and b are contained in the boundary
of B , the radius r of B has to be larger than εf (x). By the sampling condition there exists a sample point p ∈ S

with ‖x − p‖ � εf (x). Thus, p is contained in B , but by our assumption it is not contained in σ(a, b). Hence B(x, r)

intersects ∂Σ in more than one component and thus has to contain a point of the medial axis, see [2]. This remains true
if we shrink the radius r of B until B contains p in its boundary. That shows that ‖x − p‖ � f (x) which contradicts
‖x − p‖ � εf (x) for ε < 1, a condition satisfied by our choice of ε, see condition (i) in the restriction on ε. �
Lemma 2. For any two points x, y ∈ ∂Σ such that σ(x, y) ∩ S = ∅, it holds that

‖x − y‖ � 2ε

1 − 2ε
f (x).

Proof. Let s be the point where σ(x, y) intersects the perpendicular bisector of xy. Apply Lemma 1 to the ball
B(s,‖x − s‖) to get ‖x − s‖ � εf (s) and ‖y − s‖ � εf (s). Applying the triangle inequality gives ‖x − y‖ � 2εf (s)

and the Lipschitz property of f finally gives the desired result. �
In the next lemma we show that all anchor edges connecting points outside the excluded regions are well approxi-

mated by Delaunay edges.

Lemma 3. Let x ∈ Γ̃ε0 . There is a Delaunay edge pq in DelS|Σ with ‖x −p‖ = O(ε)f (x) and ‖x′ −q‖ = O(ε)f (x′).

Proof. Let p ∈ S be the closest sample point to x, i.e., ‖x − p‖ � εf (x). If the segment σ(x′,p′) does not contain
any point from S then we have ‖x′ − p′‖ � 2ε

1−2ε
f (x′) by Lemma 2. Otherwise, let q ∈ σ(x′,p′) ∩ S be the closest

sample point in σ(x′,p′) to x′. By Lemma 2, ‖x′ − q‖ � 2ε
1−2ε

f (x′). The point q ′ has to be contained in the segment

σ(x,p) by Observation 5 which implies again by Lemma 2 that ‖x − q ′‖ � 2ε
1−2ε

f (x). Both cases can essentially be
treated the same way. Thus, we can assume without loss of generality that,

‖x − p‖ � εf (x) and ‖x′ − p′‖ � 2ε

1 − 2ε
f (x′).

Since p ∈ S, it only remains to show that there exists q ∈ S where pq is a Delaunay edge in DelS|Σ and ‖x′ − q‖ =
O(ε)f (x′).

From Observation 6 and x ∈ Γ̃ε0 we also have x′ ∈ Γ̃ε0 . Furthermore, p and p′ are in Γε1/2 if εf (x) � ε1
2 f (a) and

2ε
1−2ε

f (x′) � ε1
2 f (a) for all a /∈ ∂Σ2. These constraints are satisfied by condition (ii) on ε1 and ε.

Let B = B(m,‖p − m‖) be the medial ball corresponding to p and p′, i.e., A(m) = {p,p′}. Grow B by moving
its center m in the direction of m − p while keeping p on its boundary. Stop the growth when B hits a sample point
q ∈ S.

We claim that, when we stop, m is in Σ . If it were not, m would have crossed ∂Σ at the point p′. At that moment B

would have contained a curve segment σ(z,p′) empty of any sample point for some z ∈ ∂Σ so that ‖z−p′‖ � f (p′).
This violates Lemma 1. Thus, we have established pq ∈ DelS|Σ .
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Let σ(a, b) be the connected component of B ∩ ∂Σ containing p′. We want to establish ‖q − p′‖ � 2ε
1−2ε

f (p′). If

q ∈ σ(a, b) we have ‖q − p′‖ � 2ε
1−2ε

f (p′) by Lemma 2. Otherwise, B meets ∂Σ in at least three components and q

is not contained in σ(a, b). Applying the definition of ε2 to p ∈ Γε1/2 we get that

ε2 � ‖a − b‖
‖p − m‖ = ‖a − b‖

‖p′ − m‖ � ‖a − b‖
f (p′)

.

Without loss of generality, we can assume that ‖a − p′‖ � ‖b − p′‖. That is, ‖a − p′‖ � ‖a−b‖
2 � ε2

2 f (p′). This
contradicts Lemma 2 if ε2

2 > 2ε
1−2ε

. This again is satisfied by our choice of ε, see condition (iii) in the restriction on ε.

Therefore, q must be contained in σ(a, b) and in fact be either a or b. So, we conclude that ‖q − p′‖ � 2ε
1−2ε

f (p′).
Using the triangle inequality

‖x′ − q‖ � ‖x′ − p′‖ + ‖p′ − q‖ � 2ε

1 − 2ε

(
f (x′) + f (p′)

)
� 2ε(2 − 2ε)

(1 − 2ε)2
f (x′).

This shows that ‖x − p‖ = O(ε)f (x) and ‖x′ − q‖ = O(ε)f (x′). �
In the next lemma we eliminate the restriction over excluded regions from Lemma 3 and extend it to all of ∂Σ .

Lemma 4. For any x ∈ ∂Σ2 there is a Delaunay edge pq ∈ DelS|Σ where ‖x − p‖ = O(ε1)f (x) and ‖x′ − q‖ =
O(ε1)f (x′).

Proof. If x ∈ Γ̃ε0 the claim is true by Lemma 3. So, assume otherwise. This means x ∈ ξ(a) for some a /∈ ∂Σ2, i.e.,
x lies in some excluded region. There are two cases, either a ∈ ∂Σ1 or a ∈ ∂Σi for i > 2.

If a ∈ ∂Σ1 then both x and x′ belong to ξ(a) which means ‖x −x′‖ � 2ε1f (a) by Observation 8. We know that if t

is an endpoint of ξ(a), the other endpoint is t ′. The anchor edge t t ′ is approximated by a Delaunay edge pq ∈ DelS|Σ
according to Lemma 3. This edge also approximates xx′ with the stated bounds.

Consider the remaining case where a ∈ Σi for i > 2. Let n be the non-boundary point in N where {a, b} ⊂ A(n)

and x′ ∈ ξ(b). Let t be the endpoint of ξ(a) so that x is contained in the segment σ(t, a). By Observation 7, we
have t ′ to be the endpoint of ξ(b) where x′ belongs to the curve segment σ(t ′, b). See Fig. 6. By Lemma 3 there is
a Delaunay edge pq ∈ DelS|Σ with ‖t − p‖ = O(ε)f (t) and ‖t ′ − q‖ = O(ε)f (t ′). By Observation 8 it also holds
that ‖t − x‖ = O(ε1)f (t) and ‖t ′ − x′‖ = O(ε1)f (t ′). Using the triangle inequality, the Lipschitz property of f and
ε < ε1 we get ‖p − x‖ = O(ε1)f (x) and ‖q − x′‖ = O(ε1)f (x′). �

Next we proceed to prove part (2) of Theorem 1.

Lemma 5. For each Delaunay edge pq ∈ DelS|Σ with ‖p − q‖ > 2ε
1−2ε

f (p) and p ∈ Γ̃ε0 there exists an anchor hull
H(m) so that A(m) = {x, x′} and ‖p − x‖ = O(ε)f (x) and ‖q − x′‖ = O(ε)f (x′).

Proof. Let B = B(c,‖p − c‖) be a Delaunay ball circumscribing the edge pq . First, B must intersect ∂Σ in at least
two disjoint segments, one containing p and another containing q . Otherwise, p and q belong to a single component of
∂Σ ∩ B , the curve segment σ(p,q) lies inside B and σ(p,q) is empty of sample points. That creates a contradiction
to Lemma 2 as ‖p − q‖ > 2ε

1−ε
f (p) by assumption.

Fig. 6. When a ∈ ∂Σ1, both x and x′ are in ξ(a) shown by thickened curve segment. xx′ is approximated by pq (left). The case when x ∈ ξ(a)

and a ∈ ∂Σ3 is shown on the right.
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Let σp and σq be the two components of ∂Σ ∩ B containing p and q , respectively. We claim that σp ⊂ Γε1/2. By
Lemma 2 the Euclidean distance of p to any other point in σp cannot be more than 2ε

1−2ε
f (p) since σp is empty of

any sample point. Hence if 2ε
1−2ε

f (p) � ε1
2 f (a) for all a /∈ ∂Σ2, we will have σp ⊂ Γε1/2. This condition is satisfied

by the required relation between ε1 and ε.
Now we shrink B radially till it meets one of σp or σq in a single point, say x. Shrink B further while keeping x

on its boundary and moving its center c in the direction x − c until it meets both σp and σq in a single point. One
of these points is x and let the other be y. Also let B ′ = B(c′, r ′) be the new ball obtained by transforming B by the
above motion.

First, we claim that c′ ∈ Σ . Suppose it were not. Then, the center c of B during the above motion would have
passed through a point, say z, in ∂Σ since originally c lies in Σ as pq ∈ DelS|Σ . At that moment B would have
contained a curve segment of length larger than its radius while intersecting the curve in at least two connected
components. This would mean that there is a curve segment σ(w, z) empty of any sample point for some w ∈ ∂Σ so
that ‖w − z‖ � f (z). This violates Lemma 1.

Next, we establish that y = x′. Suppose not. Then, B ′ meets ∂Σ in at least three components and we can shrink B ′
further while keeping x on its boundary and moving its center c′ in the direction x − c′ until B ′ meets ∂Σ in exactly
two points. Let B ′′ = B(c′′, r ′′) be the new ball that we get from this transformation. We have that B ′′ is a medial ball,
c′′ a point on the medial axis with A(c′′) = {x, x′} and y �= x′. Furthermore, reversing the transformation from B ′ to
B ′′ shows that B ′ is a ball of the type that we used to define ε2. Let σ(a, b) be the connected component of B ′ ∩ ∂Σ

containing x′. The distance of x′ to one of a and b is at least half the length of ab. Assume that

‖a − x′‖ � ‖a − b‖
2

� ε2

2
‖c′′ − x‖ = ε2

2
‖c′′ − x′‖ � ε2

2
f (x′).

This contradicts Lemma 2 if ε2
2 � 2ε

1−2ε
a condition satisfied by our choice of ε, see condition (iii) in our restriction

on ε. Therefore, y = x′ and B ′ is a medial ball of Σ .
Without loss of generality, assume x ∈ σp . Then, ‖x −p‖ � 2ε

1−2ε
f (x) since otherwise we contradict Lemma 2 for

σ(x,p). The same holds for x′ as it has to lie in σq which also is empty of any sample point. �
In the next lemma we extend Lemma 5 by removing the restrictions on some of the excluded regions. Specifically,

it extends Lemma 5 to all of ∂Σ if Σ does not have any non-triangular anchor polygon.

Lemma 6. Let pq ∈ DelS|Σ be a Delaunay edge where ‖p − q‖ > 2ε1
1−2ε1

f (p). Then, there exists an anchor hull
H(m) so that {x, x′} ⊆ A(m) and ‖p − x‖ = O(ε1)f (x) and ‖q − x′‖ = O(ε1)f (x′).

Proof. If p or q belongs to Γ̃ε0 , the claim follows from Lemma 5 and ε < ε1. So, assume that neither of p or q

belongs to Γ̃ε0 . Let p ∈ ξ(a) where a ∈ A(n) for a non-manifold medial axis point n ∈ N .
First consider the case where n is a non-boundary point in N . We claim q has to lie in some ξ(b) where b ∈ A(n),

see Fig. 7. Each of the edges of the anchor polygon H(n) has a Delaunay edge approximating it according to Lemma 4.
The Delaunay edge pq cannot intersect any of these Delaunay edges except at their endpoints. Consider the space
X ⊂ R

2 delimited by these Delaunay edges and the shorter curve segments between their endpoints, see the shaded
region in Fig. 7. We claim that q ∈ X. Suppose not. Because of our choice of ε (condition (ii)) and Lemma 3, each of
these curve segments contains a point c where c ∈ A(n) and no other point from ∂Σi for i � 3. Therefore, the edge
pq has to intersect a Delaunay edge as p lies inside X and q lies outside it. We reach a contradiction. Thus, q ∈ X.
But then even q ∈ ξ(b) for some b ∈ A(n), because we assumed q /∈ Γ̃ε0 .

Fig. 7. The region X is shaded. Delaunay edge pq approximates the diagonal ab of the anchor hull with vertices {a, b, c, d}.
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Next, we show a �= b. Assume the contrary. Then both p and q have to be contained in ξ(a). By Observation 8 it
follows that ‖p − q‖ � 2ε1f (a). Also from Observation 8 it holds ‖p − a‖ � 2ε1f (a). The latter inequality together
with the Lipschitz continuity of f imply that ‖p − a‖ � 2ε1

1−2ε1
f (p). Using the Lipschitz continuity of f once more

we get

f (a) � f (p) + ‖p − a‖ �
(

1 + 2ε1

1 − 2ε1

)
f (p) = 1

1 − 2ε1
f (p).

From our assumption on the length of pq it follows

‖p − q‖ >
2ε1

1 − 2ε1
f (p) � 2ε1f (a).

This is a contradiction. Thus, both points p and q cannot lie simultaneously in ξ(a). This means a �= b as the excluded
regions are separated by condition (ii) on ε. Then, pq approximates the edge ab with the conditions as stated in the
theorem.

Next, consider the case where n is an endpoint of M , i.e., a boundary point in N , and A(n) = a. Let t and t ′ be the
endpoints of ξ(a). Using Observation 8 and the Lipschitz property of f we have

‖p − t‖ � 2ε1f (a) � 2ε1

1 − 2ε1
f (t)

and

‖p − t ′‖ � 2ε1f (a) � 2ε1

1 − 2ε1
f (t ′).

By Observation 7, the segment t t ′ is an anchor edge. Also since t and t ′ belong to Σ̃ε0 by definition, we have, according
to Lemma 3, a Delaunay edge, say uv, with ‖u − t‖ = O(ε)f (t) and ‖v − t ′‖ = O(ε)f (t ′). By the construction used
in the proof of Lemma 3 either u is the closest sample point to t in one direction along Σ or v is the closest sample
point to t ′ in one direction along Σ . In both cases p has to be contained in σ(u, v). We distinguish two cases either
p ∈ {u,v} or p /∈ {u,v}.

In the first case we can assume without loss of generality that p = u. From Lemma 2 and ‖p − q‖ � 2ε1f (p) we
have that q can not be a neighbor of p along Σ . Thus, it has to be neighbor of v along Σ . Hence by Observation 8 it
is ‖q − v‖ � 2ε

1−2ε
f (v). Thus, we can conclude from Lemma 2 that

‖q − t ′‖ � ‖q − v‖ + ‖v − t ′‖ � 2ε

1 − 2ε
f (v) + O(ε)f (t ′).

It follows from the Lipschitz continuity of f that ‖q − t ′‖ = O(ε)f (t ′) = O(ε1)f (t ′) and pq approximates the anchor
hull edge t t ′ with the properties stated in the theorem.

In the second case also q has to be contained in σ(u, v). By Observation 8 we have q /∈ σ(t, t ′). We are left with two
cases: if u is the closest sample point to t in one direction along Σ then q ∈ σ(t ′, v) and if v is the closest sample point
to t ′ in one direction along Σ then q ∈ σ(u, t). Both cases can be dealt with in the same way. Here we consider the case
that q ∈ σ(t ′, v). By the construction used in the proof of Lemma 3 we have that v is the closest sample point to u′ in
one direction along Σ . That is, we either have q ∈ σ(u,u′) or q = v. In the latter case pq approximates the anchor hull
edge t t ′ with the properties stated in the theorem. In the other case we even have q ∈ σ(t ′, u′) and q ′ ∈ σ(t, u). Since
by construction σ(t, u) is empty of sample points also σ(t, q ′) is empty sample points, i.e., ‖t − q ′‖ � 2ε

1−2ε
f (q ′) by

Lemma 2. This implies,

‖p − q ′‖ � ‖p − t‖ + ‖t − q ′‖ � 2ε1

1 − 2ε1
f (t) + 2ε

1 − 2ε
f (q ′).

Using the Lipschitz continuity of f we get ‖p − q ′‖ = O(ε1)f (q ′). That is, pq approximates the anchor hull edge
qq ′ with the properties stated in the theorem. �

Lemmas 4 and 6 prove Theorem 1.
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(a) (b) (c)

Fig. 8. Segmentation using prominent Delaunay triangles. (a) Dog. (b) Swordfish. (c) Rabbit.

5. An application

We apply the anchor hull approximation to the problem of matching shapes. We follow the intuition that similar
shapes often have similar anchor hulls. Formally, this intuition is justified by the fact that shapes under small C2-per-
turbations have small Hausdorff distance between their medial axes; see Attali et al. [6]. We devise an algorithm that
first segments a shape based on the anchor hulls and then matches two shapes with respect to these segments.

Segmentation. Given a point sample S of the boundary ∂Σ of a shape Σ , we identify the triangles in a triangulation
of the anchor polygons from the Delaunay triangulation of S. Obviously, anchor polygons of Σ that have small
edges compared to the local feature size are hard to identify. The Delaunay triangles approximating these anchor
polygons become indistinguishable from other thin triangles that approximate anchor edges. Therefore, we look for
approximation of the prominent anchor polygons. We say an anchor polygon is prominent in Σ if all of its edges
have length more than 1.5 times the feature size at its vertices. It is known that, in two dimensions Voronoi vertices
approximate the medial axis [9]. Therefore, for a point p ∈ S we approximate f (p) by f̂ (p) which is the distance of
p to the closest Voronoi vertex. We say a Delaunay triangle pqr in the Delaunay triangulation of S is prominent if all
of its edges have lengths more than 1.5 times max{f̂ (p), f̂ (q), f̂ (r)}.

Before proceeding to the segmentation, we reconstruct ∂Σ from S so that we have DelS|Σ . The underlying space
Σ̂ of DelS|Σ approximates Σ . Any of the curve reconstruction algorithms [11] can be chosen for that purpose. Let
T be the set of prominent triangles in DelS|Σ and |T | be the underlying space of their union. Then, each triangle
in T and each connected component of Σ̂ − |T | becomes a segment in our segmentation of Σ̂ . Fig. 8 shows this
segmentation of some shapes.

Signature. These segments of Σ̂ are mapped to a set of weighted points called the signature of Σ . In order to
measure the similarity of two shapes, we compare their signatures which boils down to matching two weighted point
sets of small cardinality. This signature generation and a subsequent scoring process is very similar to a method
described in [13]. We include the details for completeness.

Let RS,Σ denote the set of segments that are computed from a point sample of the shape boundary ∂Σ . To simplify
notations we use RΣ for RS,Σ . Let r ∈ RΣ be a segment where

r =
⋃

σ∈DelS|Σ
σ.

Further let cσ and vσ denote the centroid and volume of σ respectively. The representative point r∗ of a segment r

and its weight r̂ are defined as follows.
If r is a prominent anchor triangle σ , then

r̂ = circumradius of σ and

r∗ = circumcenter of σ.

Otherwise,

r̂ =
∑

vσ , r∗ =
∑

σ∈r (vσ · cσ )

r̂
.

σ∈r
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Fig. 9. Matching results: Leftmost column shows the query shapes. Each row contains the shapes with the highest four scores.

That is, when r is not a prominent triangle, the weight of r is its area and its representative point is the weighted
average of the centroids of all σ ∈ r , weight being the area of each triangle.

A prominent anchor polygon H(m) with more than three vertices are approximated by union of prominent triangles
in the Delaunay triangulation. The circumcenters and circumradii of these triangles approximate the medial axis point
m and the radius of the corresponding medial ball respectively. Thus, m and this radius and their approximations tend
to be similar across similar shapes though the approximate triangulation of H(m) may be different. This justifies our
choice of r∗ and r̂ in case r is a prominent triangle.

Given a segmentation RΣ of a shape Σ , the signature Sg(Σ) is defined as a set of weighted points, i.e.,

Sg(Σ) = {
(r∗, r̂) | r ∈ RΣ

}
.

Scoring. The amount of similarity between two shapes is measured by scoring the similarity between their signa-
tures. In order to score the similarity between two signatures Sg(Σ1) and Sg(Σ2), we need aligning them first.

Let r∗, s∗ be the representative points in Sg(Σ1) and Sg(Σ2), respectively, with maximum weights. We first trans-
late Sg(Σ2) so that r∗, s∗ coincide. Then an alignment is obtained by rotating Sg(Σ2) so that a line segment between
s∗ and another point of Sg(Σ2) aligns with a line segment between r∗ and another point in Sg(Σ1). Certainly, there
are �(mn) alignments possible where |Sg(Σ1)| = m and |Sg(Σ2)| = n. Since m,n are typically small (less than ten),
checking all alignments is not prohibitive.

For each alignment we compute a score and the maximum of all the scores is taken to be the amount of similarity
and corresponding transformations give the best alignment.

Before we compute the score, the weights of the segments are normalized so that each weight is between 0 and 1.
Next, for each point q∗ ∈ Sg(Σ2), we determine the Euclidean nearest neighbor, say p∗, in Sg(Σ1). If ‖p∗ − q∗‖ is
less than a threshold, we compute a similarity score as

1 −
∣∣∣∣ p̂ − q̂

p̂ + q̂

∣∣∣∣,
where the threshold is a parameter that tells how much tolerance we can have for the proximity of two segments. The
points in Sg(Σ1) and Sg(Σ2) that do not have nearest neighbors in the other set within threshold distance contribute
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to a dissimilarity score which is equal to the negative of their weights. Finally, we add both similarity and dissimilarity
scores to obtain the score of matching between the two shapes Σ1 and Σ2.

Experimental results. We implemented the above matching algorithm and experimented with it on a database of
approximately 300 shapes. Fig. 9 shows the result. The leftmost column contains the query shapes. Each row contains
four shapes that matched with the query shape with the four highest scores. We also show the segmentation of each
shape. It is evident that similar shapes are mostly segmented similarly as they have similar anchor hulls. We compared
our results with the shape matching algorithm of [13]. The results are very much comparable though the anchor hull
based algorithm is simpler.

6. Conclusions

In this paper we established an approximation result between the Delaunay triangulation of a point sample from
the boundary of a two dimensional shape and its anchor hulls. Obviously, the results hold for the complement of the
shape as well. What about shapes in three dimensions? We believe that the results should extend to three dimensions
as well. We plan to work out the details in future research.
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