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Articular cartilage defects may result from injury

or osteochondral pathology, such as osteonecro-

sis and osteochondritis dissecans. In adults, these

defects heal poorly and progress to catastrophic

degenerative arthritis. Articular cartilage is a thin

viscoelastic layer, usually less than 3 mm thick,

which covers the articulating surface of the bone

in a diarthrodial joint, and permits a smooth mo-

tion with minimal friction against the opposite

contacting cartilage. Cartilage is constituted by 

a unique extracellular matrix (ECM) produced

and maintained by a limited number of chondro-

cytes, which are distributed predominantly in the

deep layer near the osteochondral junction, and

are trapped by the ECM, with much limited abil-

ity of migration. The ECM has a structural func-

tion, contributes to the mechanical property of

cartilage, has a feedback regulatory role on chon-

drocyte activities,1 and also characterizes the phe-

notype of the chondrocytes. The whole structure
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Articular cartilage defects heal poorly and lead to catastrophic degenerative arthritis. Clinical experience
has indicated that no existing medication substantially promotes the healing process and the cartilage 
defect requires surgical replacement, preferably with an autograft. However, there is a shortage of articular
cartilage that can be donated for autografting. A review of previous unsuccessful experiences reveals the
reason for the current strategy to graft cartilage defects with regenerated cartilage. Autologous cartilage 
regeneration is a cell-based therapy in which autogenous chondrocytes or other chondrogenic cells 
are cultured to constitute cartilaginous tissue according to the principles of tissue engineering. Current
studies are concentrating on improving such techniques from the three elements of tissue engineering,
namely the cells, biomaterial scaffolds, and culture conditions. Some models of articular cartilage regener-
ation have yielded good repair of cartilage defects, in animal models and clinical settings, but the overall
results suggest that there is room for improvement of this technique before its routine clinical application.
Autologous cartilage regeneration remains the mainstay for repairing articular cartilage defects but more
studies are required to optimize the efficacy of regeneration. A more abundant supply of more stable cells,
i.e. capable of maintaining the phenotype of chondrogenesis, has to be identified. Porous scaffolds of 
biocompatible, biodegradable materials that maintain and support the presentation of the chondrogenic
cells need to be fabricated. If the cells are not implanted early to allow their in vivo constitution of cartilage,
a suitable in vitro cultivation method has to be devised for a consistent yield of regenerative cartilage. 
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lacks blood or lymphatic vessels, therefore, the

cell infiltration in the normal inflammation

process after injury is unlikely to occur and in-

jury does not heal.

The clinical finding that articular cartilage

“once destroyed, is not repaired,” has not been

changed since it was first observed by Hunter in

1743.2 Conservative treatment with various medi-

cations gives only temporary relief of symptoms

rather than cure, and clinicians have sought a sur-

gical strategy. Initial surgical interventions aim to

stimulate the natural repair process for rebuilding

cartilage tissue, and include abrasion arthroplasty

to evoke local chondrocytes, and multiple drill-

ing or microfracture to release the subchondral

progenitor cells, which in turn might generate new

cartilage.3,4 The unfavorable outcome of debride-

ment and abrasion chondroplasty has confirmed

the low intrinsic activity of human chondrocytes,

and has led to subsequent serial trials of marrow

stimulation techniques.5 Among the latter, Gridie’s

multiple drilling was first introduced in the 1980s,

but the original idea was the revascularization of

the defect site instead of recruitment of marrow

progenitor cells. The clot cannot remain in the

defect, and only sparse scar tissue can be expected.

Steadman’s microfracture of subchondral bone

may allow more bone marrow to enter the site 

of cartilage defect, where more variety of marrow

content can accumulate. This technique largely

replaced multiple drilling in the 1990s. However,

the reparative tissue is fibrocartilage, which has dif-

ferent biomechanical properties from the native

hyaline cartilage.2

More recent surgical strategies aim to replace

the defect with patches or grafts. Cartilage allo-

graft has problems with preparation and storage,

and chondrocytes expire during the process.6–8 If

implanted freshly, cartilage allograft is challenged

by immune reaction from the immersing synovial

fluid, which was once considered insignificant for

the avascular nature of articular cartilage.9 Auto-

grafting is more promising.10 Mosaicplasty with

autologous osteochondral graft has yielded better

clinical outcomes than other surgical modalities,

including abrasion arthroplasty, Pridie drilling,

and microfracture.11–14 This technique is easily

applied and the grafts self-secure to the subchon-

dral bone without additional fixing procedures

or devices.15 This is a major advantage because

cartilage-only grafts are difficult to fix to the re-

cipient site. Usually, the graft is secured to the

surround native cartilage by sutures, which is a

technically demanding and time-consuming pro-

cedure and may further damage the native tissue.

In addition, the thin patch of graft without a se-

cure osteochondral adhesion may easily detach

from the underlying bone as a result of the shear-

ing force during joint motion. The mosaicplastic

grafts are firmly implanted and can be applied

using a minimally invasive arthroscopic proce-

dure.16 Finally, such osteochondral transplantation

concurrently replaces the pathological subchon-

dral bone that frequently exists with cartilage 

defects, such as those of the osteochondritis dis-

secans and osteonecrosis. Unfortunately, the util-

ity of mosaicplasty has been largely limited by the

extreme shortage of autogenous donor sources

in the human body.

The human body has little spare mature articu-

lar cartilage to serve as autografts, and mosaicplasty

is valid only for smaller-sized cartilage defects.17

Artificially constituted extra cartilage is needed

to repair larger defects. Periosteum or perichon-

drium has been considered a potential tissue to

generate articular cartilage and to patch cartilage

defects.18,19 The progenitor cells residing on the

cambium layer of the periosteum are induced 

by environmental factors at the recipient site to

present as chondrocytes, while the periosteum 

itself serves as a scaffold to accommodate these

cells.20,21 Some success has been reported but 

the results are less favorable than for mosaic-

plasty.18,22,23 Periosteal patching grafts cartilage

defects with progenitor cells rather than mature

chondrocytes, and the mechanism and efficiency

of transformation of progenitor cells to chondro-

genic cells remain unclear. Success is enhanced by

knee motion after transplantation of the perios-

teum,24 but the abrasion force during motion

may cause early suture failure and a subsequent

unsuccessful outcome.
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As with most conventional medicine, all these

historical efforts were clinical observations that

were based on trials and experience, and were

not deduced from evidence-based medicine. The

inadequate basic knowledge about cartilage repair

makes the evolution of these experience-based

techniques difficult and less efficient. Solutions

to the clinical problem of articular cartilage repair

may need multidisciplinary collaboration from

biotechnology.

Nevertheless, these clinical experiences have

led to the development of a new technique that

transplants laboratory-expanded chondrocytes in

an attempt to overcome the inadequate supply

of autogenous cartilage. Autologous chondrocyte

implantation (ACI)25 was first introduced in the

late 1900s. This technique harvests a minimum

amount of autogenous cartilage to retrieve chon-

drocytes, which are cultured in vitro to expand

the population, and seeded onto a biodegrad-

able porous sheet to constitute cartilage. The 

regenerated cartilage is in turn used for grafting.

Although they are not yet being used widely, 

surgical procedures specifically developed using

selected biomaterials have been introduced in

North America and Europe (Carticel; Genzyme

Biosurgery, Cambridge, MA, USA). ACI combines

the concepts of cell therapy and tissue engineering

to regenerate articular cartilage as a patch for the

repair of chondral defects,26,27 and remains the

mainstay of treating articular cartilage defects.

The elements of ACI have been improved contin-

ually to regenerate cartilage of better quality. The

next section reviews the recent progress of such

cartilage regeneration.

Articular Cartilage Regeneration

Articular cartilage regeneration develops new car-

tilage as an autograft to overcome the shortage 

of donor material. In principle, chondrocytes or

chondrogenic cells, with or without preceding

culture to multiply their number, are implanted

into the cartilage defect, where these cells deposit

ECM to constitute cartilage repair. This cell-based

technology has evolved over generations to im-

prove the efficiency of tissue regeneration and

surgical outcome (Table 1).15,28–32 The mainstay of

current practice is known as the third generation,

in which the three elements of tissue engineering

are applied, namely the cells, the scaffold that bears

these cells, and a suitable cultivation environment

(Figure 1). Currently, a fourth generation technique

is on the horizon, with the introduction of stem

cells and various growth factors, but the princi-

ples of tissue engineering remain fundamental to

cartilage regeneration. In general, autologous chon-

drogenic cells are inserted onto a biodegradable

scaffold that supports their growth and chondro-

genesis. The cell-laden scaffold is cultivated with

environmental factors appropriate for enhancing

cell presentation. Adopting the concept of tissue

engineering to cartilage regeneration has made the

related research more systematic and evidence-

based, and by using control studies. Recent evo-

lution of the cartilage regeneration technique can

be categorized by the three above elements of tissue

engineering, and we review the modern modifi-

cations in the following discussion (Table 2).

When constituting a regenerated cartilage, two

strategies have been proposed: (1) in vitro consti-

tution of complete chondral or osteochondral

grafts ready for implantation; and (2) cell-based

repair for in vivo development of regenerated carti-

lage. Although the former seems more straight-

forward, the optimal environmental parameters for

the constitution of cartilaginous tissue have not

yet been defined. Modern designs of bioreactors

may largely improve the yield of such laboratory

work, but the biological and mechanical properties

of the regenerated cartilage are currently inferior

for clinical application. The second strategy re-

gards the intra-articular environment as a naturally

suitable condition for the cultivation of regenerated

cartilage. Instead of well-constituted tissue, cells

are implanted to repair the cartilage defect. This is

similar to other models of cell therapy in current

clinical practice, in which chondrogenic cells

work in vivo to produce cartilaginous substances

and repair chondral defects.33 With this strategy,

we need to: (1) provide a sufficient number of

Repair of articular cartilage defect
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chondrogenic cells, which can properly produce

ECM and constitute the regenerated cartilage; and

(2) ensure that these cells remain in the grafted

cartilage defect, for the obvious reason that their

production can accumulate locally. ACI is a typical

example of a technique that uses this strategy.

The original attempt at ACI was a combination

of the two strategies: the chondrocytes were ex-

panded in vitro to reach a sufficient number and

were implanted as cells before constitution of the

tissue. The recently modified ACI processes are

closer to the second strategy.

Chondrogenic cells
Cartilage is relatively a hypocellular tissue, which

contains approximately 100 × 106 cells/cm3 on av-

erage, throughout the full thickness of mature

cartilage. These cells display a unique palisade ar-

chitectural pattern with round, single or columnar

cells within lacunae. Absence of this character is

indicative of degenerative changes or less differ-

entiation.33,34 Properly presenting chondrocytes

produce and organize the ECM that is composed

of type II collagen and glycosaminoglycans.

The limited number of autologous chondro-

cytes from spare cartilage may hardly be adequate

for the high demand of cells to constitute engi-

neered cartilage. The seeding density on bioma-

terials to develop cartilage has been reported as

10–130 × 106 cells/cm3, and is optimized at 60 ×
106 for the best mechanical properties of the

yielded tissue.34–38 To collect adequate cells for

such density, the number of harvested chondro-

cytes has to expand in vitro before seeding. Chon-

drocytes expanded in monolayer culture easily

lose their phenotype and transform to more 

fibroblast-like cells, which possess type I instead

of type II collagen.39 This problem has been im-

proved by recently renovated culture methods; for

example, chondrocytes cultured in type I collagen

gel may preserve their phenotype, and those that

have dedifferentiated may redifferentiate.40

Chondrogenic cells that are in more abundant

supply can be used for cartilage tissue engineering.

Bone-marrow-derived mesenchymal stem cells

(MSCs) are more plentiful, and can be induced

Repair of articular cartilage defect
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to form chondrogenic cells in chemically specified

culture media supplemented with transforming

growth factor-β (TGF-β).41,42 These multipotential

cells can also be induced to form osteogenic cells

under different culture conditions, and both types

of induction together may constitute a biphasic

osteochondral construct graft from a single cell

source. Some culture systems add mechanical con-

ditions to enhance the production of cartilaginous

tissue by MSCs.43 MSCs can also be collected from

other origins, including the periosteum, perichon-

drium, adipose tissue, placenta, and fetal tissues.

However, the bone marrow-derived MSCs exhibit

better chondrogenesis than MSCs of other origin,

under presently defined culture and induction

conditions.44

Aging of the cells is an issue when these auto-

genous cell-based techniques are applied to aged

people. Old chondrocytes have much lower ability

to build cartilage than young ones.45 For cartilage

repair in aged people, using cell type with greater

potential, such as bone marrow stromal progenitor

cells, may be more promising.42

The behavior of chondrogenic cells is affected

in many ways, such as: (1) the conditions under

which they are incubated, primarily the substance

that contains the cells; and (2) the physical, chem-

ical and biological factors applied to the cells. These

variables affect the cells’ ability to survive, multi-

ply, present the proper chondrogenic phenotype,

and constitute the cartilage tissue. The influence

of various chemicals, pharmaceutical preparations,

and biological factors on the cells has been inves-

tigated extensively in recent laboratory studies.46

However, reports about the in vivo conditions,

primarily from animal experiments, are relatively

few. There have been even fewer human studies,

which means that cartilage regeneration has a

long way to go before it reaches routine clinical

application.

Biomaterial scaffolds
Biomaterial scaffolds provide the chondrogenic

cells with a temporary habitation, where they sur-

vive, multiply, and produce ECM to constitute re-

generated cartilage. Although the cellular products

are expected to replace the degradable biomaterial,

the process is usually time-consuming and the

scaffold should be implanted before completion

of the process. The biomaterials thus play the role

of a vehicle to transfer cells and therefore should

be compatible with the native tissue around the

recipient site.47

Many natural substances are suitable as the

cell-carrying scaffold for cartilage engineering,

including fibrin, agarose, alginate, collagen, chi-

tosan and hyaluronan. Many of these are hydrogels

and can be designed as injectable in their liquid

form, which blends well with chondrogenic cells.48

After being injected into the recipient site, they
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Cells produce ECM to
constitute tissue:
• Native cells
• Stem cells
• Allogenic cells

Factors to promote
cellular presentation:
• Chemical factors
• Mechanical factors
• Biological factors
 – Growth factors
 – Hormones

Tissue
regeneration

Scaffolds temporarily house cells at
the place of tissue regeneration:
• Degradable biomaterials
• Porous architecture
• Adequate structural strength

Cells
“Seeds”

Biomaterial
scaffolds

“Soil”

Environmental
factors

“Fertilizer”

Figure 1. The “tissue engineering triad”. The cell is the main character to generate tissue. Porous scaffolds made from
absorbable biomaterials provide the habitation for the cells. Cell behavior is directed by the environmental factors. 
The environmental factors are the chemical, physical and biological variables and substances in the culture system.
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set by gelation to fill in any shape and size of car-

tilage defect.

Fibrin is a major component of blood clots. It

can be used to adhere other engineered cartilage

onto the recipient site, as a stand-alone scaffold,

or as a growth factor.49,50 Its utility is much limited

by its inferior mechanical properties, the possi-

bility of evoking immune and inflammatory re-

sponses, and its inability to allow immigration

of host cells. Agarose and alginate have better

mechanical strength than fibrin, and have been

reported to support the regeneration of cartilage

in a rabbit model.51 However, they are not suffi-

ciently strong to survive the friction of joint motion

in larger animals and are not absorbed well by

the body.

Some native components of joint tissues that

are considered to have the best biocompatibility

evoke the least immune response. Collagen sponge

has been used in many studies that have loaded

chondrocytes or MSCs to build cartilage in vitro

or in vivo in various animals.52–56 It has also been

used with other materials and techniques such 

as gene treatment to enhance cartilage regenera-

tion.57,58 However, collagen is only available from

living creatures, which means that it is expensive

and has the possibility of transmitting prion-

induced diseases, especially with collagen of bovine

origin. Furthermore, human cells cultured in con-

tact with such animal-derived protein may express

molecules that induce the host immune response,

which would be harmful for the implanted cells.59

Hyaluronan is a native component of synovial

fluid and ECM of cartilage, and has been used for

cartilage engineering.60–62 Although not a native

substance in the human body, chitosan is a poly-

saccharide and evokes minimal inflammatory 

reaction, at least theoretically. It has been prepared

as a thermally sensitive product that is injectable

as a liquid that sets to gel at body temperature.63

Synthetic polymeric scaffolds also have poten-

tial for tissue engineering, with the advantages of

reliable sources and flexibility by manipulating

the fabrication process. The most widely used are

the poly-α-hydroxy esters, especially polylactic acid

(PLA) and polyglycolic acid. These polymers have

been approved for clinical use in the USA and are

manufactured for routine hospital or surgical use.

They are readily made into scaffolds for tissue en-

gineering, in the form of foam or woven or non-

woven fiber mesh. Products of these polymers

have much better mechanical strength than those

of natural substances, which makes it easier for

them to be fixed to the recipient site, and makes

them more resistant to the friction of joint mo-

tion.64 Copolymers of these two substances allow

adjustment of the degradation rate of the scaffold.

This is important because the residence time of

the implanted polymer must be sufficient to serve

its scaffold purpose, but not so long as to impede

tissue regeneration. If MSCs are seeded onto a PLA

scaffold, they display chondrocyte differentiation

in culture medium supplemented with TGF-β.65

Other polymers of interest include poly(ethylene

glycol)-terephthalate, poly(butylene terephthalate),

poly(ethylene glycol) fumarate, poly(N-isopropy-

lacrylamide), and carbon fiber scaffolds.66–69

Beside the biomaterial content, the design of

the scaffold architecture may also affect the seeded

cells. Because the ECM of natural cartilage distrib-

utes nonhomogeneously, with the chondrocytes

present predominantly near the osteochondral

junction and collagen fibers along the articular

surface, a scaffold architecture that mimics the

natural environment may facilitate the growth of

seeded chondrocytes. A layered agarose scaffold

with such depth-dependent nonhomogeneity has

been designed for good in vitro regeneration of

cartilage from chondrocytes.70

The clinical success of mosaicplasty brings the

idea of engineering biphasic osteochondral com-

posites for cartilage repair.47,71,72 Osteochondral

repair has several advantages over cartilage-only

repair. A uniform, predefined tidemark at the os-

teochondral junction can prevent the detachment

of cartilage from the subchondral bone during

joint motion. The osseous phase of the engineered

osteochondral composite is a rigid support of the

overlying chondral phase, and can self-secure to

the recipient site by press-fit. Many studies use

tricalcium phosphate (TCP), a major component

of bone minerals, to fabricate this osseous phase.
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When the marrow stromal cells at the recipient

site make contact with the TCP content of the

implant, they become osteogenic and build bony

replacement within the scaffold, such that the

implant integrates well with the host bone.73–76

Alternatively, osteogenic and chondrogenic cells

can be preseeded concurrently and respectively

to their corresponding phases. The chondrogenic

cells preferentially stay in the chondral phase of

the construct.71,72

Culture conditions
Chondrocytes or other induced chondrogenic

cells should be able to produce ECM that consti-

tutes the regenerated cartilage. In both of the

aforementioned strategies, chemical, physical and

biological factors may be applied to promote cel-

lular presentation when culturing the construct.

Bioreactors are designed to adjust environmental

factors for the optimal performance of the chon-

drocytes.77,78 Factors of interest include the friction

caused by surface motion, compressive stress,

oxygen tension, hydrostatic force, and dynamic

mechanical stimulation.79–83

MSCs have been considered to substitute for

insufficient autogenous chondrocytes, therefore,

more factors are required to efficiently induce these

cells to become chondrogenic. Various cytokines

and growth factors are added to the chemically

defined culture media to promote chondrogene-

sis, including various isoforms of TGF-β, bone

morphogenic protein (BMP), activin, osteogenic

protein-1, fibroblast growth factor-2 (FGF-2), 

insulin-like growth factor-1 (IGF-1), prolactin, in-

terleukin-1β, Cyr-61, and growth hormone.84–100

The most well known is the superfamily of TGF-β,

which consists of more than 40 polypeptides

that share high homology and affect the cells

through similar transmembranous receptor com-

plexes and intracellular pathways.101,102 The cascade

triggered by TGF-β can cross-talk with the Wnt

pathway.103 Some other nonproteinaceous chem-

ical factors have also been shown to promote

chondrogenesis, including prostaglandin E2, thy-

roxin, 1.25-dihydroxy vitamin D, ascorbic acid,

dexamethasone, ethanol, staurosporine, dibutyryl

cAMP, concanavalin A, and vanadate.104–116 These

chemicals are less labile, with a longer half-life than

the protein-based factors, and are thus advanta-

geous for prolonged in vitro culture over several

weeks.

Regardless of the nature of the cells, standard

culture conditions require the presence of serum,

basically of bovine origin. The risk of undesired

pathogen transmission has been debated when

the cells are implanted to humans. Autologous

serum-supplemented culture medium has become

the state of the art for ACI, but serum-free culture

is more attractive.117 The avascular condition of

natural cartilage does not suggest that serum is

needed to support the chondrocytes. One study

has even indicated that serum hinders the chon-

drogenic ability of chondrocytes.118 Serum-free

culture is worthy of further development to develop

regenerated cartilage for clinical application.

Needs and Perspectives

Safety of engineered cartilage
Either chondrocytes or MSCs are used to constitute

engineered cartilage, and in vitro manipulation

of the cells is necessary in most of the currently

available systems. When the constructed cartilage

tissue is considered for clinical use, the safety of

the whole process has been debated and the cost

is high. The entire process has to be conducted

with expensive laboratory facilities that meet the

high standard of good tissue practice. In addition,

all reagents involved in the process should be

proven as safe for human use. More complicated

manipulation of the cells will arouse more con-

cern that the cells may be affected in unknown

ways. When developing a system to regenerate

cartilage for clinical application, we should always

consider its safety and simplicity, even if it is nec-

essary to compromise the quality of the regenerated

tissue.

Surgical applicability
The ultimate goal of cartilage engineering is the

surgical application of the product in humans.

Repair of articular cartilage defect
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Animal experiments have testified to the surgical

applicability and efficiency of cartilage defect re-

pairs, and this is necessary before clinical appli-

cation of the models.119 The in vivo environment

in animal experiments can be a naturally optimized

“bioactive chamber” to construct cartilage tissue

without any artificial bioreactor.26 An ideal animal

model has similar articular anatomy and physi-

ology to those in humans, with suitable dimen-

sions for surgical operation. Porcine and canine

models are good examples in the literature for

cartilage repair.

A well-designed model of cartilage repair

should be easily applicable in the operating room,

so that the operative time is shortened and surgical

invasion minimized. For example, the biphasic

osteochondral construct can self-secure to the

prepared recipient site within seconds. We have

previously developed a system that implants

freshly harvested chondrocytes directly to the

cartilage defect, using a specially designed biphasic

biodegradable scaffold.76,120 The cylindrical scaf-

fold is a porous construction with two phases: 

a thin, spongy chondral phase of PLA on the top,

and a more rigid osseous phase of PLA–TCP as

the base (Figure 2). With a low seeding density

of 2× 106 chondrocytes/cm3 to the chondral phase,

the subsequent in vivo growth yields good cartilage

tissue at the grafted site in porcine knees (Figure 3).

This avoids the complex culture process and fin-

ishes the harvest of autogenous chondrocytes and

their implantation in one surgical procedure.

H. Chiang, C.C. Jiang
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A B C

Figure 3. Demonstration of osteochondral repair with a biphasic scaffold in a porcine model. Autogenous cartilage was
harvested, pulverized, and enzymatically treated to retrieve chondrocytes, which were then seeded onto the chondral
phase of the scaffold. (A) An osteochondral defect of the identical dimension to the prepared scaffold was created artifi-
cially on the femoral condyle in the knee joint. The prepared scaffold was press-fit installed. (B) Six months after surgery,
the defect was repaired with regenerated cartilage. (C) Microsection of the recipient site shows the histology of the 
regenerated tissue (hematoxylin & eosin, 1×). Without preseeding cells to the osseous phase, the bone marrow stromal
cells migrated into the porous scaffold and mineralized the space. The regenerated tissue, both chondral and osseous, 
integrated well with the surrounding native tissue.

Figure 2. The cylindrical biphasic osteochondral scaffold.
The diameter and height of this cylinder are 8 mm.



From laboratory to clinic
As a result of the unfavorable clinical experiences of

cartilage repair in the past, biotechnology has been

introduced to this field for evidence-based devel-

opment of a solution. The knowledge to date sup-

ports that articular cartilage is best repaired with

autologous engineered cartilage, and a lot of re-

search has been carried out to improve cartilage

regeneration. Although the efficacy of regeneration

has much improved in the laboratory and animal

studies, most findings have not been investigated

for their clinical safety and performance. Further

studies should highlight their clinical relevance to

facilitate the development of products applicable

to humans.

We need to organize currently available knowl-

edge to develop clinically applicable models of

cartilage repair, on the basis of autogenous chon-

drogenic cell implantation. A clinically applicable

model of cartilage regeneration should be safe, effi-

cient, and as simple as possible. Our model de-

scribed in the previous section may be an example.

It can be finished in a single seed-and-implant sur-

gery procedure, which decreases the surgical risks

and complications from repetitive operations of

conventional ACI. If the site of repair allows an

arthroscopic approach, the surgery can be done in

a minimally invasive manner within a short time,

estimated at 1 hour. By avoiding the complex treat-

ment of the autogenous cells in vitro, the safety 

of the procedure can be improved and the cost

reduced.
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