Some Stability Conditions for $y^{\prime \prime}+q y=0$

Don B. Hinton ${ }^{1}$
University of Georgia, Athens, Georgia 30601
Submitted by J. P. LaSalle

Suppose that q is a real-valued continuous function defined on a ray $[a, \infty)$. We consider the second-order linear differential equation

$$
\begin{equation*}
y^{\prime \prime}+q y=0 \tag{1}
\end{equation*}
$$

Three problems that have received much attention are: Find conditions on q such that if y is a solution of (1), then either (i) y is bounded on $[a, \infty$), (ii) $y(x) \rightarrow 0$ as $x \rightarrow \infty$ or (iii) $\int_{a}^{\infty} y(x)^{2} d x<\infty$. For the literature on problems (i) and (ii) the reader may consult [1, Section 5]. Numerous contributions to problem (iii) are to be found in [2-6, 9].

A recent counter-example by Willet [10] gives the surprising result that condition (ii) above may not be satisfied even if $q^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$. However Lazer [7], has given the simple conditions that $\int_{a}^{\infty}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\infty$ and $q(x) \rightarrow \infty$ as $x \rightarrow \infty$ imply that condition (ii) is satisfied.

In this note we extend the method of Lazer to derive both upper and lower bounds for $y(x)^{2}+z(x)^{2}$ where y and z are two linearly independent solutions of Eq. (1). From these bounds we will have as a corollary a necessary and sufficient condition that condition (iii) be satisfied. In addition we obtain that condition (ii) is satisfied under a hypothesis weaker than that of Lazer.

Throughout q is supposed to satisfy the conditions

$$
\begin{array}{ccccc}
q>0 & \text { on } \quad[a, \infty) \quad \text { with } \quad q(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow \infty \\
& q & \text { has three continuous derivatives on } \tag{3}\\
{[a, \infty)}
\end{array}
$$

and

$$
\begin{equation*}
\left|q^{\prime}(x)\right|=0\left(q(x)^{3 / 2}\right) \quad \text { as } \quad x \rightarrow \infty \tag{4}
\end{equation*}
$$

We define the function η on $[a, \infty)$ by: $\eta(b)$ is the first zero to the right of b of the solution y of (1) with initial conditions $y(b)=0$ and $y^{\prime}(b)=1$. Equation (2) above clearly implies that all solutions of (1) are oscillatory. We define the function e on $[a, \infty)$ by:

$$
e(b)-\text { l.u.b. }\left\{\frac{\left|q^{\prime}(t)\right|}{q(t)^{3 / 2}}: b \leqslant t<\infty\right\} .
$$

[^0]The hypotheses on q imply that e is a positive-valued, nonincreasing function.

Lemma 1. If $e(b)<(2 \pi)^{-1}$ and $b \leqslant t \leqslant \eta(b)$, then

$$
\begin{equation*}
\left|q(t)^{1 / 2}[\eta(b)-b]-\pi\right|<\left(2 \pi^{2}\right) e(b) \tag{5}
\end{equation*}
$$

Proof. By the Sturm comparision theorem,

$$
\pi\left[q_{\max }\right]^{-1 / 2} \leqslant \eta(b)-b \leqslant \pi\left[q_{\min }\right]^{-1 / 2}
$$

where the minimum and maximum of q are calculated over the interval $[b, \eta(b)]$. By the intermediate value theorem there is a number $z, b \leqslant z \leqslant \eta(b)$, such that $\eta(b)-b=\pi q(z)^{-1 / 2}$. Define f on $[b, \eta(b)]$ by $f(t)=\pi[q(t) / q(z)]^{1 / 2}$. Hence $f(z)=\pi$ and

$$
\left|f^{\prime}(t)\right|-\frac{\pi}{2}[q(t) q(z)]^{-1 / 2}\left|q^{\prime}(t)\right| \leqslant \frac{1}{2 \pi} e(b) q(z)^{1 / 2} f(t)^{2}
$$

If inequality (5) does not hold, then the continuity of q implies there is a $t^{*} \in[b, \eta(b)]$ such that

$$
\left|f\left(t^{*}\right)-\pi\right|=\left(2 \pi^{2}\right) e(b)
$$

and for t between z and t^{*},

$$
|f(t)-\pi| \leqslant\left(2 \pi^{2}\right) e(b)<\pi
$$

For such t we then have $f(t)<2 \pi$. Thus

$$
\begin{aligned}
\left(2 \pi^{2}\right) e(b) & =\left|f\left(t^{*}\right)-\pi\right|=\left|\int_{z}^{t^{*}} f^{\prime}(t) d t\right| \\
& \leqslant \frac{1}{2 \pi} e(b) q(z)^{1 / 2}\left|\int_{z}^{t^{*}} f(t)^{2} d t\right| \\
& <\frac{1}{2 \pi} e(b) q(z)^{1 / 2}(2 \pi)^{2}[\eta(b)-b]=\left(2 \pi^{2}\right) e(b) .
\end{aligned}
$$

This contradiction proves the lemma.
If $\left|q^{\prime}\right|=o\left(q^{3 / 2}\right)$ as $x \rightarrow \infty$, then $e(b) \rightarrow 0$ as $b \rightarrow \infty$. In such case there is then by Lemma 1 a number b_{0} such that if $b_{0} \leqslant b$ and t and $s \in[b, \eta(b)]$, then

$$
\begin{equation*}
2^{-1} \leqslant\left[\frac{q(t)}{q(s)}\right]^{1 / 2} \leqslant 2 \tag{6}
\end{equation*}
$$

Lemma 2. If $\left|\left(q^{-1 / 2}\right)^{\prime \prime}\right|=0(1)$ as $x \rightarrow \infty$, then $\left|q^{\prime}\right|=o\left(q^{3 / 2}\right)$ as $x \rightarrow \infty$.
Proof. Since $q^{-1 / 2} \rightarrow 0$ as $x \rightarrow \infty$, we have by Problem 15 of [8, p. 101] that $\left(q^{-1 / 2}\right)^{\prime} \rightarrow 0$ as $x \rightarrow \infty$. Since $\left(q^{-1 / 2}\right)^{\prime}=-q^{\prime} / 2 q^{3 / 2}$, the lemma is proved.

Following [7] we note that if y is a solution of (1), then
$\left\{\left(y^{\prime}\right)^{2} q^{-1 / 2}-\left(q^{-1 / 2}\right)^{\prime} y y^{\prime}+\left[q^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\right] y^{2}\right\}^{\prime}=2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime \prime} y^{2}$.
If y and z are linearly independent solutions of (1) with $y z^{\prime}-z y^{\prime} \equiv 1$ and $r=\left(y^{2}+z^{2}\right)^{1 / 2}$, then it is wellknown that $r^{\prime \prime}+q r=r^{-3}$. This differential equation in r implies the relation
$\left\{\left(r^{\prime}\right)^{2} q^{-1 / 2}-\left(q^{-1 / 2}\right)^{\prime} r r^{\prime}+\left[r^{2} q^{1 / 2}\right]^{-1}+\left[q^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\right] r^{2}\right\}^{\prime}=2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime \prime} r^{2}$,
which may be verified by differentiation.
Theorem 1. If $\left|\left(q^{-1 / 2}\right)^{\prime \prime}\right|=0(1)$ as $x \rightarrow \infty, \int_{a}^{\infty} q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\infty$ and y is a solution of (1), then

$$
\begin{equation*}
\lim \sup y(x)^{2} q(x)^{1 / 2}<\infty \quad \text { as } \quad x \rightarrow \infty \tag{9}
\end{equation*}
$$

Proof. By Lemma 2, $e(b) \rightarrow 0$ as $b \rightarrow \infty$. Let b_{0} be as in the remark following Lemma 1. Let M be a bound for $\left|\left(q^{-1 / 2}\right)^{\prime \prime}\right|$ on $[a, \infty)$. By the above hypothesis, there is a number $b \geqslant b_{0}$ such that for all $x \geqslant b$,

$$
\begin{equation*}
\int_{b}^{x} q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\frac{1}{12} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
q(x)^{-1 / 2} M<\frac{1}{4} . \tag{11}
\end{equation*}
$$

If Eq. (9) does not hold then there is an increasing sequence $\left\{c_{n}\right\}_{1}^{\infty}$ such that each $c_{n}>b, c_{n} \rightarrow \infty$ as $n \rightarrow \infty$,

$$
y\left(c_{n}\right)^{2} q\left(c_{n}\right)^{1 / 2}=\max \left\{y(x)^{2} q(x)^{1 / 2}: b \leqslant x \leqslant c_{n}\right\}
$$

and

$$
\begin{equation*}
y\left(c_{n}\right)^{2} q\left(c_{n}\right)^{1 / 2} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty \tag{12}
\end{equation*}
$$

Clearly $y\left(c_{n}\right) \neq 0$. Let a_{n} and b_{n} be the greatest zero of y less than c_{n} and least zero of y greater than c_{n}, respectively. There is no lost in generality in supposing $b<a_{1}$. Since $q>0, y^{\prime}$ has only one zero between a_{n} and b_{n}. Denote this zero by c_{n}^{*} and let

$$
F=\left(y^{\prime}\right)^{2} q^{-1 / 2}-\left(q^{-1 / 2}\right)^{\prime} y y^{\prime}+\left[q^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\right] y^{2}
$$

By Eqs. (6), (7), and (10) and the inequality $y\left(c_{n}\right)^{2} \leqslant y\left(c_{n}^{*}\right)^{2}$, we have

$$
\begin{aligned}
F\left(c_{n}^{*}\right) & =\left[q\left(c_{n}^{*}\right)^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\left(c_{n}^{*}\right)\right] y\left(c_{n}^{*}\right)^{2} \\
= & F(b)+2^{-1} \int_{b}^{c_{n}^{*}}\left[q^{-1 / 2}\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right]\left[q^{1 / 2} y^{2}\right] \\
& \leqslant F(b)+2^{-1} \int_{b}^{r_{n}}\left[q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|\right]\left[q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2}\right] \\
& +2^{-1}\left|\int_{c_{n}}^{c_{n}^{*}}\left[q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|\right]\left[q^{1 / 2} q\left(c_{n}\right)^{-1 / 2}\right]\left[q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2}\right]\right| \\
\leqslant & \leqslant F(b)+2^{-1} q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2}\left[\int_{b}^{c_{n}} q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{m \prime \prime}\right|+2 \int_{a_{n}}^{b_{n}} q^{-1 / 2}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|\right] \\
\leqslant & \leqslant F(b)+\frac{1}{8} q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2} .
\end{aligned}
$$

Solving this inequality for $q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2}$ and applying (6) and (11) yields

$$
\begin{aligned}
q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2} & \leqslant F(b)\left[\left(\frac{q\left(c_{n}^{*}\right)}{q\left(c_{n}\right)}\right)^{1 / 2}+2^{-1} q\left(c_{n}\right)^{-1 / 2}\left(q^{-1 / 2}\right)^{\prime \prime}\left(c_{n}^{*}\right)-\frac{1}{8}\right]^{-1} \\
& \leqslant F(b)\left[\frac{1}{2}-\frac{1}{8}-\frac{1}{8}\right]^{-1}=4 F(b)
\end{aligned}
$$

Thus we now have

$$
q\left(c_{n}\right)^{1 / 2} y\left(c_{n}\right)^{2} \leqslant q\left(c_{n}\right)^{1 / 2} y\left(c_{n}^{*}\right)^{2} \leqslant 4 F(b)
$$

which is a contradiction to condition (12). This contradiction proves the theorem.

We note that the hypothesis of Theorem 1 is weaker than that of 'Theorem 1 of [7] since the condition $\int_{a}^{\infty}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\infty$ implies that limit as $x \rightarrow \infty$ of $\left(q^{-1 / 2}\right)^{\prime \prime}(x)$ exists.

Lemma 3. Under the hypothesis of Theorem 1,

$$
\begin{equation*}
\lim \sup y^{\prime}(x)^{2} q(x)^{-1 / 2}<\infty \quad \text { as } \quad x \rightarrow \infty \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim \sup \left|y(x) y^{\prime}(x)\left(q^{-1 / 2}\right)^{\prime}(x)\right|<\infty \quad \text { as } \quad x \rightarrow \infty \tag{14}
\end{equation*}
$$

Proof. Theorem 1 implies that there is a number $L>0$ such that on $[a, \infty)$,

$$
\begin{equation*}
\left|y^{\prime}(x)^{2} q(x)^{-1 / 2}-\left(q^{-1 / 2}\right)^{\prime}(x) y(x) y^{\prime}(x)\right| \leqslant L \tag{15}
\end{equation*}
$$

Denote the zeros of y on $[a, \infty)$ by the sequence $\left\{d_{n}\right\}_{1}^{\infty}$. Since $q>0$, the maximum value of $\left|y^{\prime}(x)\right|$ on $\left[d_{n}, d_{n+1}\right]$ is $\max \left\{\left|y^{\prime}\left(d_{n}\right)\right|,\left|y^{\prime}\left(d_{n+1}\right)\right|\right\}$. For $x=d_{n}$, Eq. (15) is $y^{\prime}\left(d_{n}\right)^{2} q\left(d_{n}\right)^{-1 / 2} \leqslant L$. By the remark following Lemma 1 we have for all sufficiently large n and x and $t \in\left[d_{n}, d_{n+1}\right]$ that $[q(t) / q(x)]^{1 / 2} \leqslant 2$. Hence for all sufficiently large n and $d_{n} \leqslant x \leqslant d_{n+1}$, $y^{\prime}(x)^{2} q(x)^{-1 / 2} \leqslant 2 L$, thus proving inequality (13).

Inequality (14) follows immediately from (13) and (15).
Theorem 2. If r is as in Eq. (8), then under the hypothesis of Theorem 1,

$$
\begin{equation*}
\lim \inf r(x)^{2} q(x)^{1 / 2}>0 \quad \text { as } \quad x \rightarrow \infty \tag{16}
\end{equation*}
$$

Proof. Since $r r^{\prime}=y y^{\prime}+z z^{\prime}$, we have by Lemma 3 that

$$
\begin{equation*}
\lim \sup \left|\left(q^{-1 / 2}\right)^{\prime} r r^{\prime}\right|<\infty \quad \text { as } \quad x \rightarrow \infty \tag{17}
\end{equation*}
$$

Applying Eq. (8) we have

$$
\begin{align*}
{\left[\left(r^{\prime}\right)^{2} q^{-1 / 2}\right.} & \left.+\left[r^{2} q^{1 / 2}\right]^{-1}\right](x)=\left[\left(q^{-1 / 2}\right)^{\prime} r r^{\prime}-\left[q^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\right] r^{2}\right](x) \\
& +\left\{\left(r^{\prime}\right)^{2} q^{-1 / 2}-\left(q^{-1 / 2}\right) r r^{\prime}+\left[r^{2} q^{1 / 2}\right]^{-1}+\left[q^{1 / 2}+2^{-1}\left(q^{-1 / 2}\right)^{\prime \prime}\right] r^{2}\right\}(a) \\
& +2^{-1} \int_{a}^{x}\left[q^{-1 / 2}\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right]\left(q^{1 / 2} r^{2}\right) \tag{18}
\end{align*}
$$

By (17) and Theorem 1, the right-hand side of (18) is bounded for $x \in[a, \infty)$. Hence there is a number $Q>0$ such that for $x \in[a, \infty)$,

$$
\begin{equation*}
\left[\left(r^{\prime}\right)^{2} q^{-1 / 2}+\left[r^{2} q^{1 / 2}\right]^{-1}\right](x) \leqslant Q \tag{19}
\end{equation*}
$$

However, each term of the left-hand side of (19) is non-negative so that $\left[r(x)^{2} q(x)^{1 / 2}\right]^{-1} \leqslant Q$ or

$$
\begin{equation*}
0<Q^{-1} \leqslant r(x)^{2} q(x)^{1 / 2} \tag{20}
\end{equation*}
$$

thus proving Theorem 2.
Corollary 2.1. Under the hypothesis of Theorem 1 we have that as $x \rightarrow \infty$,

$$
\begin{equation*}
0<\lim \sup y(x)^{2} q(x)^{1 / 2}<\infty \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\lim \sup y^{\prime}(x)^{2} q(x)^{-1 / 2}<\infty \tag{22}
\end{equation*}
$$

Proof. The right-hand parts of inequalities (21) and (22) are contained in Theorem 1 and Lemma 3. To prove the left-hand side of (21), let z be a solution of Eq. (1) such that $y z^{\prime}-z y^{\prime} \equiv 1$. If b is a zero of z and Q is as in Eq. (20), then

$$
Q^{-1} \leqslant r(b)^{2} q(b)^{1 / 2}=y(b)^{2} q(b)^{1 / 2}
$$

Since z has arbitrary large zeros, the left-hand part of (21) now follows.

If c is a zero of y, then

$$
1=\left[y z^{\prime}-z y^{\prime}\right](c)=-z(c) y^{\prime}(c)
$$

so that

$$
\begin{equation*}
y^{\prime}(c)^{2} q(c)^{-1 / 2}=\left[z(c)^{2} q(c)^{1 / 2}\right]^{-1} \tag{23}
\end{equation*}
$$

By (21), $\lim \sup z(x)^{2} q(x)^{1 / 2}<\infty$ as $x \rightarrow \infty$. This inequality and Eq. (23) imply the left-hand part of (22).

Combining Theorems 1 and 2 gives immediately the following corollary concerning p-integrable solutions of Eq. (1).

Corollary 2.2. If $p \geqslant 1$ and the hypothesis of Theorem I is satisfied, then $\int_{a}^{\infty} q(x)^{-p / 4} d x<\infty$ is a necessary and sufficient condition that for all solutions y of (1) we have $\int_{a}^{\infty}|y(x)|^{p} d x<\infty$.

We now give some examples which illustrate these results.
Example 1. For $q(x)=x^{n}$ with $n>0$, there are positive numbers M_{1} and M_{2} such that for r as in Eq. (8),

$$
M_{1} x^{-n / 2} \leqslant r(x)^{2} \leqslant M_{2} x^{-n / 2}
$$

The condition $\int_{1}^{\infty} q(x)^{-p / 4} d x<\infty$ in Corollary 2.2 is equivalent to $n>4 / p$.
Example 2. Let $q(x)=x^{2 / 3}+\sin x$ on $[1, \infty)$. Since

$$
\begin{equation*}
\left(q^{-1 / 2}\right)^{\prime \prime}=\left(\frac{3}{4}\right) q^{-5 / 2}\left(q^{\prime}\right)^{2}-\left(\frac{1}{2}\right) q^{-3 / 2} q^{\prime \prime} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(q^{-1 / 2}\right)^{\prime \prime \prime}=\left(-\frac{15}{8}\right) q^{-7 / 2}\left(q^{\prime}\right)^{3}+\left(\frac{9}{4}\right) q^{-5 / 2} q^{\prime} q^{\prime \prime}-\left(\frac{1}{2}\right) q^{-3 / 2} q^{\prime \prime \prime}, \tag{25}
\end{equation*}
$$

and each of $q^{\prime}, q^{\prime \prime}$ and $q^{\prime \prime \prime}$ is of $0(1)$ as $x \rightarrow \infty$, the hypothesis of Theorem 1 is satisfied. Hence if y is a solution of equation (1), then $y(x) \rightarrow 0$ as $x \rightarrow \infty$. The condition $\int_{1}^{\infty}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\infty$ is not satisfied.

Example 3. Let $q(x)=x^{3}\left(1 \mid 2^{-1} \sin x\right)$ on $[1, \infty)$. Then each of q^{\prime}, $q^{\prime \prime}$, and $q^{\prime \prime \prime}$ is $0\left(x^{3}\right)$ as $x \rightarrow \infty$. Since $q(x) \geqslant\left(\frac{1}{2}\right) x^{3}$, we have by Eq. (24) that $\left(q^{-1 / 2}\right)^{\prime \prime} \rightarrow 0$ as $x \rightarrow \infty$, and by Eq. (25) $\int_{1}^{\infty}\left|\left(q^{-1 / 2}\right)^{\prime \prime \prime}\right|<\infty$. Hence there are positive numbers N_{1} and N_{2} such that if r is as in Eq. (8), then

$$
N_{1} x^{-3 / 2} \leqslant r(x)^{2} \leqslant N_{2} x^{-3 / 2}
$$

This inequality implies $\int_{1}^{\infty} r^{2}<\infty$, and hence Eq. (1) is of the limit circle type. The limit circle criteria which require monotonicity of q and q^{\prime} are not appliciable to this example since q^{\prime} and $q^{\prime \prime}$ are oscillatory.

[^0]: ${ }^{1}$ This research was supported by the National Science Foundation under grant GP-6292.

