JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 21, 126-131 (1968)

Some Stability Conditions for y'' + qy = 0

DON B. HINTON¹

University of Georgia, Athens, Georgia 30601 Submitted by J. P. LaSalle

Suppose that q is a real-valued continuous function defined on a ray $[a, \infty)$. We consider the second-order linear differential equation

$$y'' + qy = 0. \tag{1}$$

Three problems that have received much attention are: Find conditions on q such that if y is a solution of (1), then either (i) y is bounded on $[a, \infty)$, (ii) $y(x) \to 0$ as $x \to \infty$ or (iii) $\int_{a}^{\infty} y(x)^2 dx < \infty$. For the literature on problems (i) and (ii) the reader may consult [1, Section 5]. Numerous contributions to problem (iii) are to be found in [2-6, 9].

A recent counter-example by Willet [10] gives the surprising result that condition (ii) above may not be satisfied even if $q'(x) \to \infty$ as $x \to \infty$. However Lazer [7], has given the simple conditions that $\int_a^{\infty} |(q^{-1/2})^m| < \infty$ and $q(x) \to \infty$ as $x \to \infty$ imply that condition (ii) is satisfied.

In this note we extend the method of Lazer to derive both upper and lower bounds for $y(x)^2 + z(x)^2$ where y and z are two linearly independent solutions of Eq. (1). From these bounds we will have as a corollary a necessary and sufficient condition that condition (iii) be satisfied. In addition we obtain that condition (ii) is satisfied under a hypothesis weaker than that of Lazer.

Throughout q is supposed to satisfy the conditions

$$q > 0$$
 on $[a, \infty)$ with $q(x) \to \infty$ as $x \to \infty$, (2)

q has three continuous derivatives on $[a, \infty)$ (3)

and

$$q'(x) \mid = 0(q(x)^{3/2})$$
 as $x \to \infty$. (4)

We define the function η on $[a, \infty)$ by: $\eta(b)$ is the first zero to the right of b of the solution y of (1) with initial conditions y(b) = 0 and y'(b) = 1. Equation (2) above clearly implies that all solutions of (1) are oscillatory. We define the function e on $[a, \infty)$ by:

$$e(b) = ext{l.u.b.} \left\{ rac{\mid q'(t) \mid}{q(t)^{3/2}} : b \leqslant t < \infty
ight\}.$$

¹ This research was supported by the National Science Foundation under grant GP-6292.

The hypotheses on q imply that e is a positive-valued, nonincreasing function.

LEMMA 1. If
$$e(b) < (2\pi)^{-1}$$
 and $b \le t \le \eta(b)$, then
 $|q(t)^{1/2} [\eta(b) - b] - \pi | < (2\pi^2) e(b).$ (5)

PROOF. By the Sturm comparision theorem,

$$\pi[q_{ extsf{max}}]^{-1/2}\leqslant \eta(b)-b\leqslant \pi[q_{ extsf{min}}]^{-1/2},$$

where the minimum and maximum of q are calculated over the interval $[b, \eta(b)]$. By the intermediate value theorem there is a number $z, b \leq z \leq \eta(b)$, such that $\eta(b) - b = \pi q(z)^{-1/2}$. Define f on $[b, \eta(b)]$ by $f(t) = \pi [q(t)/q(z)]^{1/2}$. Hence $f(z) = \pi$ and

$$|f'(t)| = \frac{\pi}{2} [q(t) q(z)]^{-1/2} |q'(t)| \leq \frac{1}{2\pi} e(b) q(z)^{1/2} f(t)^2$$

If inequality (5) does not hold, then the continuity of q implies there is a $t^* \in [b, \eta(b)]$ such that

$$|f(t^*) - \pi| = (2\pi^2) e(b),$$

and for t between z and t^* ,

$$|f(t) - \pi| \leq (2\pi^2) e(b) < \pi.$$

For such t we then have $f(t) < 2\pi$. Thus

$$(2\pi^2) e(b) = |f(t^*) - \pi| = \left| \int_z^{t^*} f'(t) dt \right|$$

$$\leq \frac{1}{2\pi} e(b) q(z)^{1/2} \left| \int_z^{t^*} f(t)^2 dt \right|$$

$$< \frac{1}{2\pi} e(b) q(z)^{1/2} (2\pi)^2 [\eta(b) - b] = (2\pi^2) e(b).$$

This contradiction proves the lemma.

If $|q'| = o(q^{3/2})$ as $x \to \infty$, then $e(b) \to 0$ as $b \to \infty$. In such case there is then by Lemma 1 a number b_0 such that if $b_0 \leq b$ and t and $s \in [b, \eta(b)]$, then

$$2^{-1} \leqslant \left[\frac{q(t)}{q(s)}\right]^{1/2} \leqslant 2. \tag{6}$$

HINTON

LEMMA 2. If $|(q^{-1/2})''| = 0(1)$ as $x \to \infty$, then $|q'| = o(q^{3/2})$ as $x \to \infty$.

Proof. Since $q^{-1/2} \rightarrow 0$ as $x \rightarrow \infty$, we have by Problem 15 of [8, p. 101] that $(q^{-1/2})' \rightarrow 0$ as $x \rightarrow \infty$. Since $(q^{-1/2})' = -q'/2q^{3/2}$, the lemma is proved. Following [7] we note that if y is a solution of (1), then

$$\{(y')^2 q^{-1/2} - (q^{-1/2})' yy' + [q^{1/2} + 2^{-1}(q^{-1/2})''] y^2\}' = 2^{-1}(q^{-1/2})''' y^2.$$
(7)

If y and z are linearly independent solutions of (1) with $yz' - zy' \equiv 1$ and $r = (y^2 + z^2)^{1/2}$, then it is wellknown that $r'' + qr = r^{-3}$. This differential equation in r implies the relation

$$\{(r')^2 q^{-1/2} - (q^{-1/2})' rr' + [r^2 q^{1/2}]^{-1} + [q^{1/2} + 2^{-1} (q^{-1/2})''] r^2\}' = 2^{-1} (q^{-1/2})''' r^2,$$
(8)

which may be verified by differentiation.

THEOREM 1. If $|(q^{-1/2})''| = 0(1)$ as $x \to \infty$, $\int_a^{\infty} q^{-1/2} |(q^{-1/2})'''| < \infty$ and y is a solution of (1), then

$$\limsup y(x)^2 q(x)^{1/2} < \infty \qquad \text{as} \qquad x \to \infty. \tag{9}$$

PROOF. By Lemma 2, $e(b) \to 0$ as $b \to \infty$. Let b_0 be as in the remark following Lemma 1. Let M be a bound for $|(q^{-1/2})''|$ on $[a, \infty)$. By the above hypothesis, there is a number $b \ge b_0$ such that for all $x \ge b$,

$$\int_{b}^{x} q^{-1/2} |(q^{-1/2})'''| < \frac{1}{12}$$
(10)

and

$$q(x)^{-1/2} M < \frac{1}{4}$$
 (11)

If Eq. (9) does not hold then there is an increasing sequence $\{c_n\}_1^\infty$ such that each $c_n > b$, $c_n \to \infty$ as $n \to \infty$,

$$y(c_n)^2 q(c_n)^{1/2} = \max \{ y(x)^2 q(x)^{1/2} : b \leqslant x \leqslant c_n \}$$

and

$$y(c_n)^2 q(c_n)^{1/2} \to \infty$$
 as $n \to \infty$. (12)

Clearly $y(c_n) \neq 0$. Let a_n and b_n be the greatest zero of y less than c_n and least zero of y greater than c_n , respectively. There is no lost in generality in supposing $b < a_1$. Since q > 0, y' has only one zero between a_n and b_n . Denote this zero by c_n^* and let

$$F = (y')^2 q^{-1/2} - (q^{-1/2})' yy' + [q^{1/2} + 2^{-1}(q^{-1/2})''] y^2.$$

By Eqs. (6), (7), and (10) and the inequality $y(c_n)^2 \leq y(c_n^*)^2$, we have

$$\begin{split} F(c_n^*) &= \left[q(c_n^*)^{1/2} + 2^{-1}(q^{-1/2})''(c_n^*)\right] y(c_n^*)^2 \\ &= F(b) + 2^{-1} \int_b^{c_n^*} \left[q^{-1/2}(q^{-1/2})'''\right] \left[q^{1/2}y^2\right] \\ &\leqslant F(b) + 2^{-1} \int_b^{c_n^*} \left[q^{-1/2} \mid (q^{-1/2})'''\mid\right] \left[q(c_n)^{1/2} y(c_n^*)^2\right] \\ &\quad + 2^{-1} \left| \int_{c_n}^{c_n^*} \left[q^{-1/2} \mid (q^{-1/2})'''\mid\right] \left[q^{1/2}q(c_n)^{-1/2}\right] \left[q(c_n)^{1/2} y(c_n^*)^2\right] \right| \\ &\leqslant F(b) + 2^{-1}q(c_n)^{1/2} y(c_n^*)^2 \left[\int_b^{c_n} q^{-1/2} \mid (q^{-1/2})'''\mid + 2 \int_{a_n}^{b_n} q^{-1/2} \mid (q^{-1/2})'''\mid \right] \\ &\leqslant F(b) + \frac{1}{8} q(c_n)^{1/2} y(c_n^*)^2. \end{split}$$

Solving this inequality for $q(c_n)^{1/2} y(c_n^*)^2$ and applying (6) and (11) yields

$$q(c_n)^{1/2} y(c_n^*)^2 \leq F(b) \left[\left(\frac{q(c_n^*)}{q(c_n)} \right)^{1/2} + 2^{-1} q(c_n)^{-1/2} (q^{-1/2})''(c_n^*) - \frac{1}{8} \right]^{-1} \\ \leq F(b) \left[\frac{1}{2} - \frac{1}{8} - \frac{1}{8} \right]^{-1} = 4F(b).$$

Thus we now have

$$q(c_n)^{1/2} y(c_n)^2 \leqslant q(c_n)^{1/2} y(c_n^*)^2 \leqslant 4F(b),$$

which is a contradiction to condition (12). This contradiction proves the theorem.

We note that the hypothesis of Theorem 1 is weaker than that of Theorem 1 of [7] since the condition $\int_a^{\infty} |(q^{-1/2})'''| < \infty$ implies that limit as $x \to \infty$ of $(q^{-1/2})''(x)$ exists.

LEMMA 3. Under the hypothesis of Theorem 1,

$$\limsup y'(x)^2 q(x)^{-1/2} < \infty \qquad as \qquad x \to \infty \tag{13}$$

and

$$\limsup |y(x)y'(x)(q^{-1/2})'(x)| < \infty \quad as \quad x \to \infty.$$
 (14)

PROOF. Theorem 1 implies that there is a number L > 0 such that on $[a, \infty)$,

$$|y'(x)^2 q(x)^{-1/2} - (q^{-1/2})'(x) y(x) y'(x)| \leq L.$$
(15)

Denote the zeros of y on $[a, \infty)$ by the sequence $\{d_n\}_1^\infty$. Since q > 0, the maximum value of |y'(x)| on $[d_n, d_{n+1}]$ is max $\{|y'(d_n)|, |y'(d_{n+1})|\}$. For $x = d_n$, Eq. (15) is $y'(d_n)^2 q(d_n)^{-1/2} \leq L$. By the remark following Lemma 1 we have for all sufficiently large n and x and $t \in [d_n, d_{n+1}]$ that $[q(t)/q(x)]^{1/2} \leq 2$. Hence for all sufficiently large n and $d_n \leq x \leq d_{n+1}$, $y'(x)^2 q(x)^{-1/2} \leq 2L$, thus proving inequality (13).

Inequality (14) follows immediately from (13) and (15).

THEOREM 2. If r is as in Eq. (8), then under the hypothesis of Theorem 1,

$$\liminf r(x)^2 q(x)^{1/2} > 0 \quad as \quad x \to \infty. \tag{16}$$

PROOF. Since rr' = yy' + zz', we have by Lemma 3 that

$$\limsup |(q^{-1/2})' rr'| < \infty \quad \text{as} \quad x \to \infty. \tag{17}$$

Applying Eq. (8) we have

$$[(r')^{2} q^{-1/2} + [r^{2}q^{1/2}]^{-1}](x) = [(q^{-1/2})' rr' - [q^{1/2} + 2^{-1}(q^{-1/2})''] r^{2}](x) + \{(r')^{2} q^{-1/2} - (q^{-1/2}) rr' + [r^{2}q^{1/2}]^{-1} + [q^{1/2} + 2^{-1}(q^{-1/2})''] r^{2}\}(a) + 2^{-1} \int_{a}^{x} [q^{-1/2}(q^{-1/2})'''] (q^{1/2}r^{2}).$$
(18)

By (17) and Theorem 1, the right-hand side of (18) is bounded for $x \in [a, \infty)$. Hence there is a number Q > 0 such that for $x \in [a, \infty)$,

$$[(r')^2 q^{-1/2} + [r^2 q^{1/2}]^{-1}](x) \leq Q.$$
⁽¹⁹⁾

However, each term of the left-hand side of (19) is non-negative so that $[r(x)^2 q(x)^{1/2}]^{-1} \leq Q$ or

$$0 < Q^{-1} \leqslant r(x)^2 q(x)^{1/2}, \tag{20}$$

thus proving Theorem 2.

COROLLARY 2.1. Under the hypothesis of Theorem 1 we have that as $x \to \infty$,

$$0 < \limsup y(x)^2 q(x)^{1/2} < \infty$$
 (21)

$$0 < \limsup y'(x)^2 q(x)^{-1/2} < \infty.$$
 (22)

PROOF. The right-hand parts of inequalities (21) and (22) are contained in Theorem 1 and Lemma 3. To prove the left-hand side of (21), let z be a solution of Eq. (1) such that $yz' - zy' \equiv 1$. If b is a zero of z and Q is as in Eq. (20), then

$$Q^{-1} \leqslant r(b)^2 q(b)^{1/2} = y(b)^2 q(b)^{1/2}.$$

Since z has arbitrary large zeros, the left-hand part of (21) now follows.

If c is a zero of y, then

$$1 = [yz' - zy'](c) = -z(c)y'(c)$$
$$y'(c)^2 q(c)^{-1/2} = [z(c)^2 q(c)^{1/2}]^{-1}.$$
 (23)

so that

By (21), $\limsup z(x)^2 q(x)^{1/2} < \infty$ as $x \to \infty$. This inequality and Eq. (23) imply the left-hand part of (22).

Combining Theorems 1 and 2 gives immediately the following corollary concerning p-integrable solutions of Eq. (1).

COROLLARY 2.2. If $p \ge 1$ and the hypothesis of Theorem 1 is satisfied, then $\int_a^{\infty} q(x)^{-p/4} dx < \infty$ is a necessary and sufficient condition that for all solutions y of (1) we have $\int_a^{\infty} |y(x)|^p dx < \infty$.

We now give some examples which illustrate these results.

EXAMPLE 1. For $q(x) = x^n$ with n > 0, there are positive numbers M_1 and M_2 such that for r as in Eq. (8),

$$M_1 x^{-n/2} \leqslant r(x)^2 \leqslant M_2 x^{-n/2}.$$

The condition $\int_{1}^{\infty} q(x)^{-p/4} dx < \infty$ in Corollary 2.2 is equivalent to n > 4/p.

EXAMPLE 2. Let $q(x) = x^{2/3} + \sin x$ on $[1, \infty)$. Since

$$(q^{-1/2})'' = \binom{3}{4} q^{-5/2} (q')^2 - \binom{1}{2} q^{-3/2} q''$$
(24)

and

$$(q^{-1/2})''' = (-\frac{15}{8}) q^{-7/2} (q')^3 + (\frac{9}{4}) q^{-5/2} q' q'' - (\frac{1}{2}) q^{-3/2} q''',$$
(25)

and each of q', q'' and q''' is of 0(1) as $x \to \infty$, the hypothesis of Theorem 1 is satisfied. Hence if y is a solution of equation (1), then $y(x) \to 0$ as $x \to \infty$. The condition $\int_{x}^{\infty} |(q^{-1/2})'''| < \infty$ is not satisfied.

EXAMPLE 3. Let $q(x) = x^3(1 + 2^{-1} \sin x)$ on $[1, \infty)$. Then each of q', q'', and q''' is $0(x^3)$ as $x \to \infty$. Since $q(x) \ge (\frac{1}{2}) x^3$, we have by Eq. (24) that $(q^{-1/2})'' \to 0$ as $x \to \infty$, and by Eq. (25) $\int_1^\infty |(q^{-1/2})'''| < \infty$. Hence there are positive numbers N_1 and N_2 such that if r is as in Eq. (8), then

$$N_1 x^{-3/2} \leqslant r(x)^2 \leqslant N_2 x^{-3/2}.$$

This inequality implies $\int_{1}^{\infty} r^2 < \infty$, and hence Eq. (1) is of the limit circle type. The limit circle criteria which require monotonicity of q and q' are not appliciable to this example since q' and q'' are oscillatory.