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Suppose that g is a real-valued continuous function defined on a ray [a, ).

We consider the second-order linear differential equation

¥ +g=0. M)
Three problems that have received much attention are: Find conditions on ¢
such that if y is a solution of (1), then either (i) ¥ is bounded on [a, c0),
(ii) ¥(x) — 0 as x — oo or (iii) f: y(x)? dx << oo. For the literature on prob-
lems (i) and (ii) the reader may consult [1, Section 5]. Numerous contribu-
tions to problem (iii) are to be found in [2-6, 9].

A recent counter-example by Willet [10] gives the surprising result that
condition (ii) above may not be satisfied even if ¢'(x) — o0 as ¥ — 0. How-
ever Lazer [7], has given the simple conditions that [ : [ {g73)" | < ©
and g(x) — 00 as ¥ — oo imply that condition (ii) is satisfied.

In this note we extend the method of Lazer to derive both upper and
lower bounds for y(x)? - 2(x)? where y and z are two linearly independent
solutions of Eq. (1). From these bounds we will have as a corollary a necessary
and sufficient condition that condition (iii) be satisfied. In addition we obtain
that condition (ii) is satisfied under a hypothesis weaker than that of Lazer.

Throughout g is supposed to satisfy the conditions

g>0 on [q,00) with g(x)—> o as  x—o00, (2)

g¢  has three continuous derivatives on [a, o) 3)
and
g = 0= a2 . @)
We define the function % on [a, c0) by: 5(b) is the first zero to the right of &
of the solution y of (1) with initial conditions y(b) == 0 and y’(d) = 1. Equa-
tion (2) above clearly implies that all solutions of (1) are oscillatory. We
define the function e on [a, o) by:

_ REAONIY
e(b) = L.u.b. PO b<<t<oo.

1 This research was supported by the National Science Foundation under grant
GP-6292.
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The hypotheses on ¢ imply that e is a positive-valued, nonincreasing func-
tion.

Lemma 1. If e(b) < (27)~! and b < t < 7(b), then
| g2 [n(B) — B8] — = | < (27%) e(b). (5)
Proor. By the Sturm comparision theorem,

T gmax] ™ < (b)) — b < 7[gmin] V3,

where the minimum and maximum of ¢ are calculated over the interval
[6, 7(b)]. By the intermediate value theorem there is a number 2, b <{ 2 < 5(b),
such that () — b = mg(2)~1/2. Define f on [b, 7(b)] by f(¢) == =[qg(2)/q(z)]*/%
Hence f(2) = = and

P01 = 20 gD 40| < o elb) @21

If inequality (5) does not hold, then the continuity of ¢ implies there is a
t* € [b, n(b)] such that

|f(@*) — 7| = (2n%) e(b),
and for ¢ between z and t*,
() — 7| < (20%) e(b) <.
For such ¢ we then have f(¢) < 2. Thus

ety =1/ 1 =| [ Far)

<o gerr| [ reral

< o efB) (&1 (2 [n(B) — B] = (2% (D).

This contradiction proves the lemma.

If | ¢’ | = o(¢g®/%) as x — o0, then e(b) > 0 as b — 0. In such case there
is then by Lemma 1 a number b, such that if b, < b and ¢ and s € [b, 7(b)],
then

1< [%]”2 <2 (6)
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Lemma 2. If | (¢2/3)" | = 0(1) as x — 0, then | ¢’ | = o(¢*?) as x — o0.

Proof. Since ¢7%/2 — (0 as x — oo, we have by Problem 15 of [8, p. 101]

that (¢71/2) — 0 as x — c0. Since (g71/2)" = — ¢'[2¢%/2, the lemma is proved.
Following [7] we note that if y is a solution of (1), then
{FPg 2 — (g 3y + [ + 27V ] % =274 52 Q]

If y and 2 are linearly independent solutions of (1) with y2' — 2y’ = 1 and

r = (3® + 2%)1/2, then it is wellknown that " + gr = r~3. This differential

equation in 7 implies the relation

(PR — () 7 P [+ 2] =2y
®

which may be verified by differentiation.

TuEOREM 1. If ! (q—llz)ff | = 0(1) as x-— o0, f: q—1/2 , (q..]_/z)/l/ | < oo
and y is a solution of (1), then

lim sup y(x)? g(x)1/2 < 0 as  x— 00, 9

Proor. By Lemma 2, e(b) >0 as b-— oo. Let b, be as in the remark
following Lemma 1. Let M be a bound for | (¢g71/2)" | on [a, c0). By the above
hypothesis, there is a number & Z= b, such that for all x > b,

® 1
—~1/2 —1/2\" 2
[[omi@m i <g (10)

and
glx) 2 M < }. (11)

If Eq. (9) does not hold then there is an increasing sequence {c,}7 such that
each ¢, > b, ¢, — 0 as n— 0,

Yen)? glea)'/® = max {p(x)* g(x)'? : b < x < ¢}
and
Y(€,)? g(c,)1 2 — o as  n-— 0. (12)
Clearly y(c,) 5 0. Let a, and b, be the greatest zero of y less than ¢, and least
zero of y greater than ¢, , respectively. There is no lost in generality in sup-

posing b <C 4, . Since ¢ > 0, 3’ has only one zero between 4, and b, . Denote
this zero by ¢} and let

F=Pqt?— () ' + [¢7 + 273~
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By Eqs. (6), (7), and (10) and the inequality y(c,)? < ¥(c¥)?, we have

Fet) = e + 27 ()] (e
=B+ 20 [ gy ey
<F®) -2 T ) )

+ 2t

[T 1@y g )™ et (e
SFO) + 2 @) [T 1 2 [ ]
<) + g ale)* 9(&-

Solving this inequality for ¢(c,, )*/2 y(c;})? and applying (6) and (11) yields

gle) 2 y(e)? < F(b) [(ﬁ@)_)l/z i 2_1(1(6")'.1/2 (G () - 1 ]4

q(cn) 8
<o [ 3]s

Thus we now have

en)'? y(ea)® < qlen) P H(e)? < 4F(B),

which is a contradiction to condition (12). This contradiction proves the
theorem.

We note that the hypothesis of Theorem 1 is weaker than that of Theorem 1
of [7] since the condition f: [ (g7173)” | << oo implies that limit as x — oo of
(g713)" (x) exists.

Levma 3. Under the hypothesis of Theorem 1,

lim sup y'(x)? g(x)"1/2 < o as x> (13)
and
lim sup | y(x) y'(x) (¢712) (x) | < o0 as  x— 0. (14)

ProoF. Theorem ] implies that there is a number L > 0 such that on
[a, ),
| (x)? glx) 2 — (g7V2) (%) p(%) ¥'(%) | < L. (15)

409/21/1-9
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Denote the zeros of y on [a, ) by the sequence {d,}7". Since g >0, the
maximum value of | y'(x) | on [d,, d,.,] is max {| y'(d,) |, | ¥'(dys1) |} For
x =d, , Eq. (15) is ¥'(d,)? 9(d,) "/ < L. By the remark following Lemma 1
we have for all sufficiently large » and x and ¢ € [d,, d,,,] that
[9(t)/q(x)]*”* < 2. Hence for all sufficiently large 7 and d, < x < d,,,,
¥'(%)? g(x)"1/2 <L 2L, thus proving inequality (13).

Inequality (14) follows immediately from (13) and (15).

THEOREM 2. If r is as in Eq. (8), then under the hypothesis of Theorem 1,
liminf r(x)% g(x)* >0 a5  x— c0. (16)
Proor. Since 7' = yy’ -+ zz’, we have by Lemma 3 that
lim sup | (¢71/2) rr’ | < o0 as X — 0. (17)
Applying Eq. (8) we have
()2 g1/ + [r%g' 217 (%) = [(q/3) v’ — [@"/% + 27X (g /%)) 7] ()
g2 — () ' 4 [P - [¢ F 27 Y] 9% (a)

g f : [g2/2(g1/2)"] (qH/2r2). (18)

By (17) and Theorem 1, the right-hand side of (18) is bounded for x € [a, o).
Hence there is a number 0 > 0 such that for x € [a, ),

() g7V + [r*g" 2] (%) < Q. (19)

However, each term of the left-hand side of (19) is non-negative so that
[r(»)* g(x)**] < Q or

0 <O <rlx) o=, (20)

thus proving Theorem 2.

CoroLLaRY 2.1.  Under the hypothesis of Theorem I we have that as x — 0,
0 < lim sup y(x)? g(x)1? < o0 (21)

and
0 < lim sup y'(x)? q(x)~1/2 << c0. (22)
Proor. The right-hand parts of inequalities (21) and (22) are contained
in Theorem 1 and Lemma 3. T'o prove the left-hand side of (21), let 2 be a

solution of Eq. (1) such that y2’ — 2y’ = 1. If b is a zero of # and Q is as in
Eq. (20), then

071 < 10 4O = 50 9O
Since z has arbitrary large zeros, the left-hand part of (21) now follows.
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If ¢ is a zero of y, then
1 =[yz" — 2y} (c) = — 2(c) y'(c)

Y () gle) ™ = [=(e)? g(e)#] . (23)

so that

By (21), lim sup 2(x)? ¢(x)'/2 < o0 as ¥ — o0, This inequality and Eq. (23)
imply the left-hand part of (22).

Combining Theorems 1 and 2 gives immediately the following corollary
concerning p-integrable solutions of Eq. (1).

CoROLLARY 2.2. Ifp = 1 and the hypothesis of Theorem | is satisfied, then
_[ q(x)~?/* dx < o0 is a necessary and sufficient condition that for all solutions y
of(l) we have J' | y(x) |? dx < o0.

We now give some examples which illustrate these results.

ExampLE 1. For g(x) == x" with n > 0, there are positive numbers M,
and M, such that for r as in Eq. (8),

Myx—n/2 < r(x)? < Myx—n/2,
The condition IT g(x)~®/* dx < oo in Corollary 2.2 is equivalent to n > 4/p.
ExampLe 2. Let ¢(x) = %2/ 4- sin x on [1, o). Since
(@) =@ @) — @) g2 (24)

@) = (=) ¢ QP + @ P — B, (25)

and

"

and each of ¢, ¢” and ¢” is of 0(1) as x — oo, the hypothesis of Theorem 1
is satisfied. Hence if y is a solution of equation (1), then y(x)-— 0 as x — 0.

The condition _[:c | (771/2)" | < 00 is not satisfied.

Exampie 3. Let g(x) = «3(1 + 2'sinx) on [I, o). Then each of ¢/,
¢, and ¢" is 0(x®) as x — o0. Since ¢(x) > (%) x3, we have by Eq. (24) that
(g~1/2)" — 0 as x — o0, and by Eq. (25) f [ (g71%)" | < co. Hence there are
positive numbers N, and N, such that if 7 is as in Eq. (8), then

N3 < r(x)? << Npx372,

This inequality implies f r? < o0, and hence Eq. (1) is of the limit circle
type. The limit circle criteria which requ1re monotonicity of g and ¢’ are not
appliciable to this example since ¢’ and ¢" are oscillatory.



