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Suppose that q is a real-valued continuous function defined on a ray [a, co). 
We consider the second-order linear differential equation 

Y” + PY = 0. (1) 
Three problems that have received much attention are: Find conditions on q 
such that if y is a solution of (I), then either (i) y is bounded on [u, co), 
(ii) y(x) --t 0 as x -+ co or (iii) s,” Ye dx < co. For the literature on prob- 
lems (i) and (ii) the reader may consult [l, Section 51. Numerous contribu- 
tions to problem (iii) are to be found in [2-6, 91. 

A recent counter-example by Willet [lo] gives the surprising result that 
condition, (ii) above may not be satisfied even if q’(x) -+ CO as x -+ co. How- 
ever Lazer [7], has given the simple conditions that s,” ] (q-li2)“’ 1 < w 
and q(x) + co as x + co imply that condition (ii) is satisfied. 

In this note we extend the method of Laxer to derive both upper and 
lower bounds for ye + a(~)~ where y and z are two linearly independent 
solutions of Eq. (1). From these bounds we will have as a corollary a necessary 
and suflicient condition that condition (iii) be satisfied. In addition we obtain 
that condition (ii) is satisfied under a hypothesis weaker than that of Lazer. 

Throughout q is supposed to satisfy the conditions 

q >O on [a, oc)) with q(x) + w as x+ w, (2) 

9 has three continuous derivatives on [a, co) (3) 
and 

I 9’(4 I = w&43’2) as x-+ w. (4) 

We define the function r) on [a, co) by: q(b) is the first zero to the right of b 
of the solution y of (1) with initial conditions y(b) = 0 and y’(b) = 1. Equa- 
tion (2) above clearly implies that all solutions of (1) are oscillatory. We 
define the function e on [a, co) by: 

e(b) = 1.u.b. 
I 
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The hypotheses on q imply that e is a positive-valued, nonincreasing func- 
tion. 

LEMMA 1. I f  e(b) < (2?7--1 and &J < t < T(b), then 

1 q(t)l12 [q(b) - b] - 7~ / < (24 e(b). (5) 

PROOF. By the Sturm comparision theorem, 

where the minimum and maximum of q are calculated over the interval 
[b, v(b)]. By the intermediate value theorem there is a number a, b < z < q(b), 
such that q(b) - b = n-q(x)-1/2. Define f on [b, 7(b)] byf(t) =I r[q(t)/q(z)]““. 
Hencef(z) = x and 

If’(t) I = 3 [q(t) +>I-‘/” I n’(t) I < & 4) q(~Y’~.f(t>~. 

If inequality (5) does not hold, then the continuity of q implies there is a 
t* E [b, 7(b)] such that 

lf(t*) - m I = (2~~) e(b), 

and for t between z and t*, 

If(t) - 7r 1 < (27~~) e(b) < 77. 

For such t we then havef(t) < 2rr. Thus 

(27~~) e(b) = If(t*) - = 1 = / jrf’(t) dt / 

< -& e(b) q(z)1/2 (2~)~ [7(b) - b] = (2~~) e(b). 

This contradiction proves the lemma. 
If I 4’ 1 = o(q3j2) as x -+ co, then e(b) + 0 as 6 -+ co. In such case there 

is then by Lemma 1 a number b, such that if b, < b and t and s E [b, q(b)], 
then 

2-l < [$y2 < 2. (6) 
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LEMMA 2. I f  1 (q-lj2)” 1 = O(1) US x -+ co, then 1 q’ 1 = o(p) as x--t CO. 

Proof. Since qw1j2 + 0 as x’ + co, we have by Problem 15 of [8, p. 1011 
that (q-lj2)’ --f 0 as x -+ CO. Since (q-l/2)’ = - q’/2?‘2, the lemma is proved. 

Following [7] we note that if y is a solution of (l), then 

((392 q-112 - (q-‘/2)’ yy’ + [q1/2 + 2-l(q-1/2)"]Y2}' = 2-l(q-1/2)"Y2* (7) 

If y and z are linearly independent solutions of (1) with yx’ - zy’ = 1 and 
r = (y2 + ,~~)l/~, then it is wellknown that r” + qr = Y-~. This differential 
equation in Y implies the relation 

{(y')2p1/2 - (q-l/2)'yy' + [y2q1/2]-1 + [ql/2 + 2-'(q-l/2)"]y2}' =2-l(q-1/2)"y2, 

(8) 
which may be verified by differentiation. 

THEOREM 1. If  1 (q-l/z)” 1 = O(1) as x + co, s,” q-112 1 (q-+2)“’ ( < co 
and y  is a solution of (I), then 

lim supy(~)~ q(x)lj2 < 03 as x--t co. (9) 

PROOF. By Lemma 2, e(6) + 0 as b + co. Let b, be as in the remark 
following Lemma 1. Let M be a bound for 1 (q-l12)” ( on [a, co). By the above 
hypothesis, there is a number b > b, such that for all x > b, 

s 
a 
b q-1/2 I (q-“/2)” / < h (10) 

and 

q(x)+ A4 < 3 . (11) 

If Eq. (9) does not hold then there is an increasing sequence {c,Jy such that 
each c, > b, c, + co as n + co, 

y(c,J2 q(c,J1j2 = max {ye q(x)1/2 : b < x < c,} 

and 

y(cJ2 q(cn)1/2 -+ co as n-+co. (12) 

Clearly y(c,J # 0. Let a, and b, be the greatest zero of y less than c, and least 
zero of y greater than c,‘ , respectively. There is no lost in generality in sup- 
posing b < a, . Since q > 0, y’ has only one zero between a, and 9, . Denote 
this zero by c,* and let 

F =ty')2 q-1/2 - (q-1’2)’ yy’ + [q1’2 + 2-l(q-1’S)“] y2. 
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By Eqs. (6), (7), and (10) and the inequality y(c,$ < ye, we have 

F(c,*) = [q(cZ)l’2 + 2-I(q-“2)” (CZ)] y(c,*)2 

= F(b) + 2-l J”; [q-‘l”(q-“P)“] [q’l”y”] 

<F(b) T  2-l 
i 
?” rP2 I tq-1’2)” II rQ(41’2Yk321 
b 

+ 2-l 1 jz [P2 I (!F2Y’ II [c?“2dcn)-1’21 MGY2Y~~31 ( 

<F(b) + 2-1q(cn)1’2y(c,*)2 [ j1”9-112 ( (q-l’“)” 1 + 2 s”: q-1” 1 (q-I’“)” I] 

<F(b) + $ q(c,)1’2y(c,*)2. 

Solving this inequality for q(cn )1/z y(c,*)2 and appIying (6) and (1 I ) yields 

q(&J1’2y(c,*)2 <F(b) [#&“’ + 2-‘q(c,);“2 (q-1’2)” (c*,) - $I-’ 

<F(b) [+ - $ - $]-I = 41;(b). 

Thus we now have 

which is a contradiction to condition (12). This contradiction proves the 
theorem. 

We note that the hypothesis of Theorem 1 is weaker than that of Theorem 1 
of [7] since the condition s,” / (g-rf2)“’ 1 < co implies that limit as x + co of 

(qe1j2)” (x) exists. 

LEMMA 3. Under the hypothesis of Theorem I, 

and 
lim sup y’(~)~ q(x)-lj2 < co as x--+00 (13) 

lim sup 1 y(x) y’(x) (q-lj2)’ (x) ) < co as x+ co. (14) 

PROOF. Theorem 1 implies that there is a number L > 0 such that on 

[a, a), 
I YW2 9t+1’2 - (P2) (4 y(x) Y'W I < L. (15) 

409/2Iir-9 



130 HINTON 

Denote the zeros of y on [a, co) by the sequence (d,};. Since p > 0, the 
maximum value of / y’(x) 1 on [d, , k+J is max {I ~‘(4) I , IY’(~+J I>. For 
x = d, , Eq. (15) is y’(d,)z q(dn)-l12 < L. By the remark following Lemma 1 
we have for all sufficiently large n and x and t E [d, , dn+J that 

Cd4/&)3”” G 2. H ence for all sufficiently large n and d, < x < dn+l , 
y’(x)” q(x)-112 < 2L, thus proving inequality (13). 

Inequality (14) follows immediately from (13) and (15). 

THEOREM 2. If Y is as in Eq. (8), then under the hypothesis of Theorem 1, 

lim inf ~(2)~ q(x)1/2 > 0 as x+ co. UN 

PROOF. Since rr’ = yy’ + ZZ’, we have by Lemma 3 that 

lim sup 1 (q-li2)’ rr’ 1 < 03 as x-+ co. 

Applying Eq. (8) we have 

(17) 

[(1’)2 q-112 + [Gql’2]-1] (x) = [(q-‘/2)’ YY' - [q1/2 + 2-‘(q-‘97 r2J (x) 

+ ((r’)2 q-1/2 - (q-1/2) rr’ + [r2q1/2J-1 + [q1f2 + 2-1(p1/2)WJ r”} (a) 

+ 2-I j5 [q-yq-1i2y-j (qlP$). 
a 

By (17) and Theorem 1, the right-hand side of (18) is bounded for x E [a, co)- 
Hence there is a number Q > 0 such that for x E [a, co), 

[(T’)~ q-1’2 + [r2q1’2]-1] (x) < Q. (19 

However, each term of the left-hand side of (19) is non-negative so that 
[Ye q(x)l/2]-l ,< Q or 

0 < Q-’ ,< Ye q(x)1’2, (20) 

thus proving Theorem 2. 

COROLLARY 2.1. Under the hypothesis of Theorem I we have that as x + co, 

0 < lim ~upy(x)~ q(x)lj2 < co (21) 
and 

0 < lim sup Y’(x)~ q(x)-l12 < co. (22) 

PROOF. The right-hand parts of inequalities (21) and (22) are contained 
in Theorem 1 and Lemma 3. To prove the left-hand side of (21), let z be a 
solution of Eq. (1) such that yx’ - zy’ G 1. If b is a zero of z and Q is as in 
Eq. (20), then 

Q-l < am q(b)1’2 = am q(b)“2. 

Since x has arbitrary large zeros, the left-hand part of (21) now follows. 
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If c is a zero of y, then 

so that 
1 = [yz’ - zy’] (c) = - Z(C) y’(c) 

y’(c)2 q(c)-1’2 = [z(c)” q(c)1/2]--1. (23) 

By (21), lim sup z(x)” q(x)i12 < co as x + co. This inequality and Eq. (23) 
imply the left-hand part of (22). 

Combining Theorems 1 and 2 gives immediately the following corollary 
concerning p-integrable solutions of Eq. (1). 

COROLLARY 2.2. If p > 1 and the hypothesis of Theorem 1 is satis$ed, then 
J-1 q(x)-Pi4 dx < CO is a necessary and suficient condition that for all solutions y  

of (1) we have s,” 1 y(x) jp dx < CO. 
We now give some examples which illustrate these results. 

EXAMPLE 1. For q(x) = x” with n > 0, there are positive numbers Mi 
and M, such that for Y as in Eq. (8), 

MIx+12 < Y(X)" < Mzx-“‘2. 

The condition s,” q(x)-p14 dx < co in Corollary 2.2 is equivalent to n > 4/p. 

EXAMPLE 2. Let q(x) = x2i3 + sin x on [l, ‘x)). Since 

and 

(q-1/2)" _ ($) q-5/2(q')2 _ ($Lq-3/2 q" (24) 

(q-1/2)"' --_ (- L85)q-'/2(q')3 + ($)q-5/2q'q" _ (&)q-"/2f', (25) 

and each of q’, q” and q”’ is of O(1) as x + co, the hypothesis of Theorem 1 
is satisfied. Hence if y is a solution of equation (l), then y(x) -+ 0 as x + co. 
The condition s,” ( (q-l12)“’ / < cc is not satisfied. 

EXAMPLE 3. Let q(x) = x3(1 + 2-l sin x) on [l, co). Then each of q’, 
q”, and q”’ is 0(x3) as x -+ co. Since q(x) > (4) x3, we have by Eq. (24) that 
(qS1j2)” --f 0 as x + co, and by Eq. (25) s,” 1 (q-l12)“’ / < co. Hence there are 
positive numbers Nt and N, such that if Y  is as in Eq. (8), then 

N1x-3’2 < Y(X)” < N2x-3’2. 

This inequality implies rr ~2 < co, and hence Eq. (1) is of the limit circle 
type. The limit circle criteria which require monotonicity of q and 4’ are not 
appliciable to this example since q’ and q” are oscillatory. 


