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Abstract

Tsallis relative operator entropy was defined as a parametric extension of relative operator
entropy and the generalized Shannon inequalities were shown in the previous paper. After
the review of some fundamental properties of Tsallis relative operator entropy, some operator
inequalities related to Tsallis relative operator entropy are shown in the present paper. Our
inequalities give the upper and lower bounds of Tsallis relative operator entropy. The operator
equality on Tsallis relative operator entropy is also shown by considering the tensor product.
This relation generalizes the pseudoadditivity for Tsallis entropy. As a corollary of our opera-
tor equality derived from the tensor product manipulation, we show several operator inequal-
ities including the superadditivity and the subadditivity for Tsallis relative operator entropy.
Our results are generalizations of the superadditivity and the subadditivity for Tsallis entropy.
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1. Introduction

The relative operator entropy

S(A|B) ≡ A1/2 log(A−1/2BA−1/2)A1/2, (1)

for two invertible positive operators A and B, was introduced by Fujii and Kamei in
[5], as a generalization of the operator entropy

H(A) ≡ S(A|I ) = −A log A (2)

defined in [12]. In the present paper, we study a parametric extension of relative oper-
ator entropy, we call it Tsallis relative operator entropy which was firstly introduced
in our previous paper [8], in the following manner.

Definition 1.1 [8]. For two invertible positive operators A and B on Hilbert space,
and any real number λ ∈ (0, 1], Tsallis relative operator entropy is defined by

Tλ(A|B) ≡ A1/2(A−1/2BA−1/2)λA1/2 − A

λ
. (3)

Note that more general operator than the above Eq. (3) has been introduced in [6],
it was named solidarity and then several properties were shown in [6,4,3].

In statistical physics, Tsallis [14] introduced the parametrically extended Shannon
entropy to study the multifractal system. It is called Tsallis entropy and is defined for
the probability distribution p(x) ≡ p(X = x) of the random variable X such as

Sq(X) ≡ 1 − ∑
x p(x)q

q − 1
(q ∈ R).

The definition of Tsallis entropy was generalized for density operator ρ (positive
operator with unit trace) in noncommutative (quantum) case, such that

Sλ(ρ) ≡ Tr[ρ1−λ] − 1

λ
(0 < λ � 1).

We use the parameter λ in the present paper, instead of the parameter q which is
often used to study Tsallis entropy, where we have the simple relation λ = 1 − q. As
main features of Tsallis entropy, it has

(i) the concavity in ρ for all 0 < λ � 1,

(ii) the pseudoadditivity

Sλ(ρ1 ⊗ ρ2) = Sλ(ρ1) + Sλ(ρ2) + λSλ(ρ1)Sλ(ρ2), (4)

and
(iii) it converges to von Neumann entropy S(ρ) ≡ Tr[H(ρ)] as λ → 0.
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It is remarkable that Rényi entropy (which is also called α entropy) [13]
1

1−α
log

∑
x p(x)α has also the concavity in p(x) for the limited region of the para-

meter α < 1, but it lacks the concavity in the case of α > 1, which means that
it is not suitable to use for the study of thermodynamical physics. (The classical
Tsallis entropy Sq(X) has the concavity in p(x) for all q � 0.) There is a different
mathematical property between Rényi entropy and Tsallis entropy in the sense that
Tsallis entropy has a pseudoadditivity while Rényi entropy has an additivity. After
the birth of Tsallis entropy, the nonadditive (sometimes called nonextensive or Tsal-
lis) statistical physics has been in progresses with Tsallis entropy and the related
entropic quantities such as Tsallis relative entropy [15,1,7]. Therefore it is impor-
tant to study the properties of such entropic quantitties in mathematical physics. We
studied the fundamental properties of Tsallis relative entropy from the information
theoretical point of view, and derived some important trace inequalities in [7]. The
Tsallis relative entropy in quantum system was defined by

Dλ(ρ|σ) ≡ 1 − Tr[ρ1−λσλ]
λ

(5)

for any 0 < λ � 1 and any two density operators ρ and σ . It has similar features to
Tsallis entropy such that

(i) Dλ(ρ|σ) has the joint convexity in ρ and σ and for all 0 < λ � 1,

(ii) Dλ(ρ|σ) has the pseudoadditivity

Dλ(ρ1 ⊗ ρ2|σ1 ⊗ σ2) = Dλ(ρ1|σ1) + Dλ(ρ2|σ2) − λDλ(ρ1|σ1)Dλ(ρ2|σ2),

(6)

and
(iii) it converges to the quantum relative entropy U(ρ|σ) ≡ Tr[ρ(log ρ − log σ)]

introduced by Umegaki in [16], by taking the limit as λ → 0.

As it was shown in our previous paper [7], we have the trace inequality,

Dλ(ρ|σ) � −Tr[Tλ(ρ|σ)] (7)

which means that the minus of the trace of Tsallis relative operator entropy for two
density operators ρ and σ is not equal to Tsallis relative entropy in general. This
trace inequality is a generalization of U(ρ|σ) � −Tr[S(ρ|σ)] proved by Hiai and
Petz in [11]. If ρ and σ are commutative, then we have

Dλ(ρ|σ) = −Tr[Tλ(ρ|σ)]. (8)

We are now interested in the operator inequalities [2,9,17], before taking the trace
of Tsallis relative entropy. As it is meaningful to study relative operator entropy for
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the development of the noncommutative information theory, we think it is indis-
pensable to study the properties of Tsallis relative operator entropy for the progress
of noncommutative statisitical physics and nonadditive quantum information theory
[15].

From the definition, we easily find that limλ→0 Tλ(A|B) = S(A|B), since
lnλ(x) ≡ xλ−1

λ
uniformly converges to log x for x � 0 by Dini’s theorem. Also we

have Hλ(A) ≡ Tλ(A|I ) = A1−λ−A
λ

, which we call it Tsallis operator entropy. We
easily find Hλ(A) converges to the operator entropy H(A) as λ → 0. In the following
section, we study the basical properties of Tsallis relative operator entropy.

2. Review of properties of Tλ(A|B)

In this section, we give several fundamental properties of Tsallis relative operator
entropy along the line of the paper [5]. More general results were shown in [6,4,3].
However, in this short paper, for the convenience of the readers, we will review
some properties of Tsallis relative operator entropy which is a special case of the
solidarity introduced in [6]. As a matter of convenience, we often use the notation
lnλ X ≡ Xλ−I

λ
for the positive operator X, through this paper. Then we often rewrite

Tsallis relative operator entropy Tλ(A|B) as

Tλ(A|B) = A1/2 lnλ(A
−1/2BA−1/2)A1/2.

All results in this section recover the properties of relative operator entropy in [5] as
λ → 0.

The Tsallis relative operator entropy Tλ(A|B) has the following properties.

Proposition 2.1 [4]
(1) (homogeneity) Tλ(αA|αB) = αTλ(A|B) for any positive number α.
(2) (monotonicity) If B � C, then Tλ(A|B) � Tλ(A|C).

Proof. (1) is trivial. Through this paper, we use the following notation:

A �λ B ≡ A1/2(A−1/2BA−1/2)λA1/2

representing the operator mean between A and B, which is often called λ-power
mean. See [10] for the operator mean. By the use of this notation, Tsallis relative
operator entropy can be rewritten by Tλ(A|B) = 1

λ
(A �λ B − A). It is known that

the monotonicity on the operator mean such that if A � B and C � D, then A �λ

B � C �λ D. Therefore if B � C, then Tλ(A|B) � Tλ(A|C). �

Note that the general results were shown in [4]. Moreover, Tλ(A|B) has the su-
peradditivity and joint concavity.
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Proposition 2.2
(1) (superadditivity) Tλ(A1 + A2|B1 + B2) � Tλ(A1|B1) + Tλ(A2|B2).

(2) (joint concavity) Tλ(αA1 + βA2|αB1 + βB2) � αTλ(A1|B1) + βTλ(A2|B2).

Proof. As mentioned above, we can rewrite Tλ(A|B) = 1
λ
(A �λ B − A) by means

of the operator mean A �λ B. It is known that in general the concavity
(A + B)m(C + D) � AmC + BmD holds for the operator mean m. Therefore we
have

Tλ(A1 + A2|B1 + B2) = 1

λ
{(A1 + A2) �λ (B1 + B2) − (A1 + A2)}

� 1

λ
(A1 �λ B1 − A1 + A2 �λ B2 − A2)

= Tλ(A1|B1) + Tλ(A2|B2).

(2) follows from the superadditivity and homogeneity. �

We also easily find that we have

Tλ(UAU∗|UBU∗) = UTλ(A|B)U∗

for any unitary operator U .
Finally we show the monotonicity of Tsallis relative operator entropy.

Proposition 2.3 [3]. For a unital positive linear map � from the set of the bounded
linear operators on Hilbert space to itself, we have

�(Tλ(A|B)) � Tλ(�(A)|�(B)).

Proof. Putting X = A1/2B−1/2 and the formula lnλ t = −tλ lnλ t−1, Tsallis relative
operator entropy is calculated as

Tλ(A|B) = A1/2(lnλ A−1/2BA−1/2)A1/2

= A1/2{ − (A−1/2BA−1/2)λ lnλ(A
1/2B−1A1/2)

}
A1/2

= A1/2{ − (XX∗)−λ lnλ(XX∗)
}
A1/2

= A1/2{ − (XX∗)−λ lnλ(XX∗)X
}
B1/2.

In general, for any bounded linear operator A on Hilbert space and the continuous
function f on the interval [0, ‖A‖2], we have Af (A∗A) = f (AA∗)A. Thus we have

Tλ(A|B) = A1/2 {−X(X∗X)−λ lnλ(X
∗X)

}
B1/2

= B1/2 {−X∗X(X∗X)−λ lnλ(X
∗X)

}
B1/2

= B1/2 {
F(X∗X)

}
B1/2

= B1/2{F(B−1/2AB−1/2)
}
B1/2,
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where F is the concave function defined by F(t) = −t1−λ lnλ t, (0 < λ � 1). There-
fore Tsallis relative operator entropy can be written by

Tλ(A|B) = F(A/B)/B−1,

where X/Y ≡ Y−1/2XY−1/2, which is same notation used in [5]. Thus the present
theorem follows by the similar way of the proof of Theorem 7 in [5]. �

Note that the general results were shown in [3].

3. Inequalities as bounds for Tλ(A|B)

In the previous section, some basical properties of Tsallis relative operator en-
tropy are shown. In this section, we discuss on the upper and lower bounds of Tsallis
relative operator entropy.

Firstly we prove the relation of ordering between Tsallis relative operator entropy
and relative operator entropy.

Proposition 3.1 [6]. For any invertible positive operator A and B, 0 < λ � 1, we
have

T−λ(A|B) � S(A|B) � Tλ(A|B).

Proof. Since we have

x−λ − 1

−λ
� log x � xλ − 1

λ
,

for any x > 0 and λ > 0, we have the following inequalities

ln−λ(A
−1/2BA−1/2) � log(A−1/2BA−1/2) � lnλ(A

−1/2BA−1/2).

Multiplying A1/2 to both sides from both sides, the present proposition follows. �

As for the bounds of Tsallis relative operator entropy, we have the following
results.

Proposition 3.2
(1) Tλ(A|B) � Hλ(A) + A1−λ lnλ ‖B‖.
(2) If µA � B, then Tλ(A|B) � (lnλ µ)A.

Proof. (1) follows from the direct calculations, since B � ‖B‖I . (2) also follows
from the direct calculations, since µA � B. �
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Moreover we have the following bounds for Tsallis relative operator entropy.

Lemma 3.3. For any positive real number x and 0 < λ � 1, the following inequal-
ities hold:

1 − 1

x
� lnλ x � x − 1.

Proof. It follows from easy calculations. �

Proposition 3.4 [6]. For any invertible positive operator A and B, 0 < λ � 1,

A − AB−1A � Tλ(A|B) � −A + B. (9)

Moreover, Tλ(A|B) = 0 if and only if A = B.

Proof. From Lemma 3.3, we have

I − A1/2B−1A1/2 � lnλ(A
−1/2BA−1/2) � −I + A−1/2BA−1/2.

Multiplying A1/2 from the both sides, we have

A1/2(I − A1/2B−1A1/2)A1/2 � A1/2 lnλ(A
−1/2BA−1/2)A1/2

� A1/2(−I + A−1/2BA−1/2)A1/2.

Therefore we have

A − AB−1A � Tλ(A|B) � −A + B.

Moreover, we suppose Tλ(A|B) = 0. Then, from the above inequalities, we have

A − AB−1A � 0 � B − A,

which implies A � B and A � B. Thus we have A = B. If A = B, then we easily
find Tλ(A|B) = 0. �

Finally we prove the further bounds of Tsallis relative operator entropy with the
λ-power mean �λ.

Lemma 3.5. For any positive real number α and x and 0 < λ � 1, the inequalities
hold

xλ

(
1 − 1

αx

)
+ lnλ

1

α
� lnλ x � x

α
− 1 − xλ lnλ

1

α
. (10)

The equality of the right hand side of the above inequalities hold if and only if x = α.
The equality of the left hand side of the above inequalities hold if and only if x = 1

α
.

Proof. Since we have lnλ z � z − 1 for any z > 0 and 0 < λ � 1, we have lnλ
x
α

�
x
α

− 1 for any α > 0 and x > 0. By the formula lnλ
x
y

= lnλ x + xλ lnλ
1
y
, we have
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lnλ x � x

α
− 1 − xλ lnλ

1

α
,

which implies the right hand side of the inequalities Eq. (10). Putting 1
x

instead
of x in the above inequality, we have the left hand of inequalities Eq. (10), since
lnλ

1
x

= −x−λ lnλ x. �

Theorem 3.6. For any invertible positive operators A and B, and any positive real
number α, the following inequality holds

A �λ B − 1

α
A �λ−1 B +

(
lnλ

1

α

)
A � Tλ(A|B)

� 1

α
B − A −

(
lnλ

1

α

)
A �λ B. (11)

The equality of the right hand side of the above inequalities holds if and only if
B = αA. The equality of the left hand side of the above inequalities holds if and
only if A = αB. We have that Tλ(A|B) = 0 is equivalent to A = B.

Proof. From Lemma 3.5, we have

(A−1/2BA−1/2)λ − 1

α
(A−1/2BA−1/2)λ−1 +

(
lnλ

1

α

)
I

� lnλ(A
−1/2BA−1/2)

� 1

α
(A−1/2BA−1/2) − I −

(
lnλ

1

α

)
(A−1/2BA−1/2)λ.

Multiplying A1/2 to both sides from the both sides, we have the present theorem. It
is clear that the equality conditions follow from Lemma 3.5.

We assume that Tλ(A|B) = 0 holds. Then we have

A �λ B − 1

α
A �λ−1 B +

(
lnλ

1

α

)
A � 0 � 1

α
B − A −

(
lnλ

1

α

)
A �λ B.

Putting α = 1 in the right hand side of the above inequalities, we have A � B. More-
over putting α = 1 and λ = 1 in the left hand side of the above inequalities, we
have B � A. Thus we have A = B. Conversely, if A = B then Tλ(A|B) = 0 easily
follows from the definition of Tλ(A|B). �

Remark 3.7. We note that Eq. (11) recovers the inequalities shown in [9]:

(1 − log α)A − 1

α
AB−1A � S(A|B) � (log α − 1)A + 1

α
B

as λ → 0. Moreover, if we put α = 1, then we have

A − AB−1A � S(A|B) � B − A

which recover the inequalities of Corollary 5 in [6], cf. Eq. (9).
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4. Inequalities on Tλ(A|B) derived from the tensor product

Taking account for the pseudoadditivity (Eqs. (4) and (6)) which are the typical
features of Tsallis entropies, we consider the Tsallis relative operator entropy of two
positive operator of the tensor product A1 ⊗ A2 and B1 ⊗ B2. To show our theorem,
we state the following lemma for the convenience of the readers.

Lemma 4.1. For any real number a and any strictly positive operators X and Y, we
have

(X ⊗ Y )a = Xa ⊗ Ya.

Proof. Firstly we have

(X ⊗ Y )n = Xn ⊗ Yn (12)

for any natural number n and any strictly positive operators X and Y . Since we have
(X−1 ⊗ Y−1)(X ⊗ Y ) = I ⊗ I, we also have

(X ⊗ Y )−1 = X−1 ⊗ Y−1. (13)

By Eq. (12), we have W ⊗ Z = (Wm ⊗ Zm)1/m for any natural number m and any
strictly positive operators W and Z. Putting W = X1/m and Z = Y 1/m, we have

(X ⊗ Y )1/m = X1/m ⊗ Y 1/m. (14)

From Eqs. (12)–(14), we thus have (X ⊗ Y )q = Xq ⊗ Yq for any rational number q

and any strictly positive operators X and Y . Therefore we have the present lemma
by the fact that any real number can be approximated by a rational number. �

Theorem 4.2. For any 0 < λ � 1 and any strictly positive operators A1, A2, B1 and
B2, we have

Tλ(A1 ⊗ A2|B1 ⊗ B2) = Tλ(A1|B1) ⊗ A2 + A1 ⊗ Tλ(A2|B2)

+ λTλ(A1|B1) ⊗ Tλ(A2|B2). (15)

Proof. From Lemma 4.1, we have (A1 ⊗ A2) �λ (B1 ⊗ B2) = (A1 �λ B1) ⊗ (A2 �λ

B2). Then we directly calculate

Tλ(A1 ⊗ A2|B1 ⊗ B2)

= 1

λ

{
(A1 ⊗ A2) �λ (B1 ⊗ B2) − A1 ⊗ A2

}
= 1

λ

{
(A1 �λ B1) ⊗ (A2 �λ B2) − A1 ⊗ A2

}
= 1

λ

{
1

2
(A1 �λ B1) ⊗ (A2 �λ B2) − 1

2
A1 ⊗ (A2 �λ B2)

+ 1

2
(A1 �λ B1) ⊗ (A2 �λ B2) − 1

2
(A1 �λ B1) ⊗ A2
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+ 1

2
A1 ⊗ (A2 �λ B2) − 1

2
A1 ⊗ A2 + 1

2
(A1 �λ B1) ⊗ A2 − 1

2
A1 ⊗ A2

}

= 1

2
Tλ(A1|B1) ⊗ (A2 �λ B2) + 1

2
(A1 �λ B1) ⊗ Tλ(A2|B2)

+ 1

2
A1 ⊗ Tλ(A2|B2) + 1

2
Tλ(A1|B1) ⊗ A2

= 1

2
Tλ(A1|B1) ⊗ (A2 �λ B2) − 1

2
Tλ(A1|B1) ⊗ A2 + Tλ(A1|B1) ⊗ A2

+ 1

2
(A1 �λ B1) ⊗ Tλ(A2|B2) − 1

2
A1 ⊗ Tλ(A2|B2) + A1 ⊗ Tλ(A2|B2)

= λ

2
Tλ(A1|B1) ⊗ Tλ(A2|B2) + λ

2
Tλ(A1|B1) ⊗ Tλ(A2|B2)

+ Tλ(A1|B1) ⊗ A2 + A1 ⊗ Tλ(A2|B2)

= λTλ(A1|B1) ⊗ Tλ(A2|B2) + Tλ(A1|B1) ⊗ A2 + A1 ⊗ Tλ(A2|B2). �

Remark 4.3. Theorem 4.2 can be also proven by the use of the equality:

lnλ(X ⊗ Y ) = (lnλ X) ⊗ I + I ⊗ (lnλ Y ) + λ(lnλ X) ⊗ (lnλ Y ),

for any 0 < λ � 1 and any positive operators X and Y .

Taking the limit as λ → 0 in Theorem 4.2, we have the following corollary.

Corollary 4.4. For any strictly positive operators A1, A2, B1 and B2, we have

S(A1 ⊗ A2|B1 ⊗ B2) = S(A1|B1) ⊗ A2 + A1 ⊗ S(A2|B2).

Remark 4.5. Corollary 4.4 can be also proven by the use of of the equality:

log(X ⊗ Y ) = (log X) ⊗ I + I ⊗ (log Y ),

for any positive operators X and Y .

Corollary 4.6. For any 0 < λ � 1 and any invertible density operators ρ1 and ρ2,

we have Eq. (4).

Proof. We put B1 = B2 = I in Theorem 4.2. Then we have

Hλ(A1 ⊗ A2) = Hλ(A1) ⊗ A2 + A1 ⊗ Hλ(A2) + λHλ(A1) ⊗ Hλ(A2).

We put Ai = ρi , (i = 1, 2) in the above and take the trace on the both side, then we
have our claim, since Sλ(ρ) = Tr[Hλ(ρ)] for density operator ρ. �

Remark 4.7. The additivity of von Neumann entropy S(ρ):

S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)
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is recovered in the limit of Eq. (4) as λ → 0. Since the quantum Tsallis entropy is
nonnegative for any 0 < λ � 1 and any density operators ρi , (i = 1, 2), we have the
superadditivity for the quantum Tsallis entropy:

Sλ(ρ1 ⊗ ρ2) � Sλ(ρ1) + Sλ(ρ2) (16)

holds. We note that the pseudoadditivity Eq. (4) is a special case of the pseudo-
additivity for the quantum Tsallis relative entropy Eq. (6). Theorem 4.2 does not
directly imply the pseudoadditivity for the quantum relative entropy, due to inequal-
ity Eq. (7). However, in commutative (classical) case, Eq. (15) directly recovers the
pseudoadditivity (Proposition 1.2(4) in [7]) of Tsallis relative entropy for probability
distributions, due to Eq. (8). (See [7] on the relation between the quantum Tsallis
relative entropy and Tsallis relative operator entropy.)

Since we have Tλ(A|B) � 0 for any B � A, Tλ(A|B) � 0 for any B � A and
we have X ⊗ Y � 0 for any X � 0 and Y � 0, Theorem 4.2 implies the following
corollary.

Corollary 4.8
(i) For any 0 < λ � 1 and 0 < Ai � Bi, (i = 1, 2), we have the following inequal-

ities:
(a) Tλ(A1 ⊗ A2|B1 ⊗ B2) � λTλ(A1|B1) ⊗ Tλ(A2|B2).

(b) Tλ(A1 ⊗ A2|B1 ⊗ B2) � Tλ(A1|B1) ⊗ A2 + A1 ⊗ Tλ(A2|B2).

(ii) For any 0 < λ � 1 and 0 < Bi � Ai, (i = 1, 2), we have the following inequal-
ities:
(c) Tλ(A1 ⊗ A2|B1 ⊗ B2) � λTλ(A1|B1) ⊗ Tλ(A2|B2).

(d) Tλ(A1 ⊗ A2|B1 ⊗ B2) � Tλ(A1|B1) ⊗ A2 + A1 ⊗ Tλ(A2|B2).

Remark 4.9. We easily find from the above (b) and (d) that we have the superaddi-
tivity without depending on the ordering Ai and Bi . This superadditivity for Tsallis
relative operator entropy is a generalization of the superadditivity for Tsallis entropy
Eq. (16). Indeed, the inequality Eq. (16) follows if we put B1 = B2 = I and Ai = ρi ,
(i = 1, 2), where ρi are invertible density operators, in the above (b) and (d) and then
take the trace of them.

5. Concluding remarks

If we define Tsallis relative operator entropy for the parameter λ � 0 and two
invertible positive operators A and B by

T̃λ(A|B) ≡ A1/2(A−1/2BA−1/2)λA1/2 − A

λ
,

we have the following operator inequalities by the similar way of Corollary 4.8.
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Proposition 5.1
(1) For any λ � 0 and 0 < Ai � Bi, (i = 1, 2), we have the following inequali-

ties:
(a′) T̃λ(A1 ⊗ A2|B1 ⊗ B2) � λT̃λ(A1|B1) ⊗ T̃λ(A2|B2).

(b′) T̃λ(A1 ⊗ A2|B1 ⊗ B2) � T̃λ(A1|B1) ⊗ A2 + A1 ⊗ T̃λ(A2|B2).

(2) For any λ � 0 and 0 < Bi � Ai, (i = 1, 2), we have the following inequali-
ties:
(c′) T̃λ(A1 ⊗ A2|B1 ⊗ B2) � λT̃λ(A1|B1) ⊗ T̃λ(A2|B2).

(d′) T̃λ(A1 ⊗ A2|B1 ⊗ B2) � T̃λ(A1|B1) ⊗ A2 + A1 ⊗ T̃λ(A2|B2).

Remark 5.2. (a′) and (c′) are the same inequalities with (a) and (c) in Corollary 4.8.
We easily find from the above (b′) and (d′) that we have the subadditivity without
depending on the ordering Ai and Bi . By the similar way of Remark 4.9, this sub-
additivity for Tsallis relative operator entropy implies the subadditivity for Tsallis
entropy:

Sλ(ρ1 ⊗ ρ2) � Sλ(ρ1) + Sλ(ρ2), (17)

for any λ � 0 and any invertible density operators ρi , (i = 1, 2).

In Tsallis statistical physics, the subadditivity Eq. (17) and the superadditivity Eq.
(16) are famous and fundamental. Considering the tensor product, we could show the
subadditivity ((b′) and (d′) in Proposition 5.1) and the superadditivity ((b) and (d) in
Corollary 4.8) for Tsallis relative operator entropy as an operator inequality version,
respectively. Our results can be seen as the generalizations of Eqs. (17) and (16).
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